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§1. Introduction.

The motivation for this paper derives from the work of F. Cohen, R. Cohen,
B. Mann and R. Milgram ([5], [6]) and that of V. Vassiliev ([15]). The former
gives a description of the stable homotopy type of the space of basepoint preserv-
ing holomorphic maps of degree d from the Riemann sphere S2 = C ∪ ∞ to the
complex projective space CPm. We denote this space by Hol∗d(S

2,CPm). Let
Dj = F (C, j)+∧Σj Sj be the j-th subquotient of the May-Milgram model for Ω2S3

([11], [14]), where F (X, j) denotes the configuration space of j disjoint points in X,

F (X, j) = {(x1, · · · , xj) ∈ Xj : xi 6= xj if i 6= j},

F (X, j)+ = F (X, j)∪{∗} (∗ is a disjoint base point) and Σj is the symmetric group
on j letters which acts on both F (X, j) and the j-sphere Sj = S1 ∧ S1 · · · ∧ S1 by
permuting coordinates.

Cohen, Cohen, Mann and Milgram proved

Theorem ([5], [6]). There is a stable homotopy equivalence

Hol∗d(S
2,CPn−1) 's ∨d

j=1Σ
2(n−2)jDj ,

where Σk denotes the k fold reduced suspension.

On the other hand, Vassiliev studied the space SPd
n(C) consisting of all monic

complex polynomials g(z) = zd + a1z
d−1 + · · · + ad−1z + ad (aj ∈ C) of degree d

without roots of multiplicity ≥ n and proved

Theorem ([15]). There is a stable homotopy equivalence

Hol∗d(S
2,CPn−1) 's SPdn

n (C).

Remark. Let Cd(X) denote the quotient space Cd(X) = F (X, d)/Σd. Then since
SPd

2(C) = Cd(C) and there is a stable homotopy equivalence C2d(C) 's ∨d
j=1Dj

([3]), the above two results coincide when n = 2. However, it is easy to see that
they do not coincide when n ≥ 3.

Combining these two theorems we see that SPdn
n (C) and ∨d

j=1Σ
2(n−2)jDj are

stable homotopy equivalent. This raises the problem of establishing this equivalence
directly. The first aim of this paper is to do just that. In other words, in this paper
we shall prove, without using the above results, the following:
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Theorem 1. There is a stable homotopy equivalence

fd : ∨d
j=1Σ

2(n−2)jDj
's−−→ SPdn

n (C).

We prove this basically by imitating the method of [5] with Hol∗d(S
2,CPn−1)

replaced by SPdn
n (C). One virtue of this approach is that we can then apply the

method of R. Cohen and D. Shimamoto ([7]), to obtain immediately the following
stronger version of Vassiliev’s theorem:1

Theorem 2. If n ≥ 3, there is a homotopy equivalence

SPd
n(C) ' Hol∗[d/n](S

2,CPn−1),

where [x] denotes the integer part of x.

Corollary 3 ([10]). Let n ≥ 3. Then there is a map

SPd
n(C)→ Ω2

0CPn−1 ' Ω2S2n−1

which is a homotopy equivalence up to dimension (2n− 3)[d/n].

First we recall a few definitions and results. Let SPd
n(|z| < d) denote the subspace

of SPd
n(C) consisting of all polynomials g(z) all of whose roots are contained in

{|z| < d}. We may identify SPd
n(C) ∼= SPd

n(|z| < d) in a natural way. Let α ∈ C
be any fixed number such that |α| > d. Define the stabilization map SPd

n(C) →
SPd+1

n (C) by

SPd
n(C)

∼=−−−−→ SPd
n(|z| < d) −−−−→ SPd+1

n (C)

g(z) −−−−→ g(z) · (z − α)
Although the definition of of this map depends on the choice of the number α,
we only need its homotopy class, which does not. Similarly we can define the
stabilization map (homotopy class) SPd

n(C)→ SPd+j
n (C) as the composite

SPd
n(C) −→ SPd+1

n (C) −→ · · · −→ SPd+j−1
n (C) −→ SPd+j

n (C)

and let SPd+j(C)/ SPd(C) be the mapping cone of the stabilization map SPd(C)→
SPd+j(C).

Let Td : SPd
n(C)→ Ω2

dCPn−1 be the jet map given by

Td(g)(z) = [g(z) : g′(z) : g′′(z) : · · · : g(n−1)(z)] for z ∈ C ∪∞ = S2.

We shall make use of the following two results of [10]:

Theorem 4 ([10]). If n ≥ 3, the jet embedding induces a homotopy equivalence

T = lim
d→∞

Td : lim→
d

SPd
n(C) −→ Ω2

0CPn−1 ' Ω2S2n−1.

Here the limit is taken over the stabilization maps SPd
n(C)→ SPd+1

n (C).

Theorem 5 ([1], [10]). If n ≥ 3 and 1 ≤ j < n, then the stabilization map
SPdn

n (C)→ SPdn+j
n (C) is a homotopy equivalence.

1The same result is stated in a recent pre-print of S. Kallel
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§2. C2-structures.

In this section we show how to deduce our main results from theorems 4 and 5.
The first step of our argument is to define a C2-structure on SPn(C) in the

manner of [2] and [11], where SP0
n(C) = {∗} and SPn(C) =

∐
d≥0 SPd

n(C).

Definition 2.1. (1) Let α : C
∼=−→ D+ and β : C

∼=−→ D− be fixed homeomorphisms,
where:

D+ = {z ∈ C : |z − 2
√
−1| < 1} and D− = {z ∈ C : |z + 2

√
−1| < 1}.

For a monic polynomial f = f(z) =
∏

j(z − γj) ∈ C[z], let α(f) and β(f) denote
the polynomials:

α(f) =
∏
j

(z − α(γj)), β(f) =
∏
j

(z − β(γj)).

Define the map ∗ : SPk
n(C)× SPl

n(C)→ SPk+l
n (C) by f(z) ∗ g(z) = α(f) · β(g).

(2) Let J2 = J × J = (0, 1) × (0, 1) be an open unit cube in C = R2. An open
little 2-cube is an affine embedding c : J2 → J2 with parallel axes.

Let C2(j) be the space of j-tuples (c1, · · · , cj) of open little 2-cubes with mutually
disjoint images, i.e.

C2(j) = {(c1, · · · , cj) : ci’s are open little 2-cubes, ci(J2) ∩ ck(J2) = ∅ if i 6= k}.

Define the C2-structure map I : C2(j)×Σj (SPd
n(C))j → SPjd

n (C) by

((c1, · · · , cj), (f1, · · · , fj)) 7→ c1(f1) ∗ (c2(f2) ∗ (c3(f3) ∗ (· · · ∗ (cj(fj))) · · · )

where for f(z) =
∏

i(z − zi) ∈ C[z] and an open little 2-cube σ, we let

σ(f) =
∏

i

(z − σ(zi)).

Lemma 2.2. The maps {I : C2(j)×Σj (SPd
n(C))j → SPjd

n (C)} induce a (homotopy
associative) C2-operad structure on SPn(C) =

∐
d≥0 SPd

n(C).

Proof. Analogous to (4.12) of [2]. ¤
Corollary 2.3. If n ≥ 3, there is a homotopy equivalence

ΩB(SPn(C)) ' Ω2CPn−1.

Proof. This follows from the group-completion theorem and theorem 4. ¤
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Definition 2.4. Define the jet map Td : SPd
n(C)→ Hol∗d(S

2,CPn−1) ⊂ Ω2
dCPn−1

by Td(f) = (f(z), f ′(z), f ′′(z), · · · , f (n−1)(z)).

Let ∗′ : Hol∗d1
(S2,CPn−1) × Hol∗d2

(S2,CPn−1) −→ Hol∗d1+d2
(S2,CPn−1) be the

product defined in (4.8) of [2].

Lemma 2.5. The following diagram is homotopy commutative:

SPd1
n (C)× SPd2

n (C) ∗−−−−→ SPd1+d2
n (C)

Td1×Td2

y Td1+d2

y
Hol∗d1

(S2,CPn−1)×Hol∗d2
(S2,CPn−1) ∗′−−−−→ Hol∗d1+d2

(S2,CPn−1)

Proof. Analogous to (4.14) of [2]. ¤
Lemma 2.6. The following diagram is homotopy commutative:

C2(j)×Σj (SPd
n(C))j I−−−−→ SPjd

n (C)

id×Σj
(Td)j

y Tjd

y
C2(j)×Σj (Hol∗d(S

2,CPn−1))j I′−−−−→ Hol∗jd(S
2,CPn−1)

where I ′ is the C2 operad structure map given in [2], (4.8).

Proof. The proof is analogous to (4.16) of [2]. ¤

We can now turn to the proof of theorem 1. If n = 2, there is nothing to prove.
So, from now on, we assume that n ≥ 3 and write SPd

n = SPd
n(C). First, we consider

the case d = 1.

Lemma 2.7. There is a homotopy equivalence S2n−3 ' SPn
n .

Proof. From the definition,

SPn
n = {f(z) = zn + a1z

n−1 + · · ·+ an ∈ C[z] : f(z) 6= (z + α)n for any α ∈ C}.
Note that f(z) = zn + a1z

n−1 + · · ·+ an = (z + α)n if and only if

a1 = nα and ai =
(

n

i

)
(
a1

n
)i for 2 ≤ i ≤ n.

Consider the map π : SPn
n → C given by

zn + a1z
n−1 + · · ·+ an 7→ a1.

For any β ∈ C, taking

ai =
(

n

i

)
· β

i

ni
for 2 ≤ i ≤ n,

defines a canonical homeomorphism

π−1(β) ∼= Cn−1 − {(a2, · · · , an)} ∼= Cn−1 − {0}.
Hence there is a fibration Cn−1 − {0} −→ SPn

n
π−→ C and a homotopy equivalence

SPn
n
∼= C× (Cn−1 − {0}) ' S2n−3. ¤
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Recall the following well-known result:

Lemma 2.8 ([4], [14]). (1) There are stable homotopy equivalences

Ω2
0CPn−1 ' Ω2S2n−1 's ∨d≥1F (C, d)+ ∧ (∧dS2n−3)

and
D(n, d) = F (C, d)+ ∧Σd

(∧dS2n−3) 's Σ2(n−2)dDd.

(2) The canonical projection

F (C, d)×Σd
(S2n−3)d → F (C, d)+ ∧Σd

(∧dS2n−3) = D(n, d)

has a stable section

ed : D(n, d) = F (C, d)+ ∧Σd
(∧dS2n−3)→ F (C, d)×Σd

(S2n−3)d.

Theorem 2.9. Let jd : SP(d−1)n
n → SPdn

n denote the stabilization map and let
hd : Σ2(n−2)dDd → SPnd

n / SPn(d−1)
n be the stable map given by the composite

Σ2(n−2)dDd 's D(n, d) ed−→ F (C, d)×Σd
(S2n−3)d '

F (C, d)×Σd
(SPn

n)d Id−→ SPnd
n

proj−−→ SPnd
n / SPn(d−1)

n

where Id is the C2-structure map. Then hd : Σ2(n−2)dDd
's−−→ SPnd

n / SPn(d−1)
n is a

stable homotopy equivalence.

The proof of theorem 2.9 will be given in the next section. Assuming theorem
2.9 we now complete the proofs of theorems 1, 2 and corollary 3.

Proof of theorem 1. Let fd : ∨1≤j≤dΣ2(n−2)jDj −→ SPnd
n be the stable map given

by the composite of maps

fd : ∨d
j=1Σ

2(n−2)jDj
∨ej−−→ ∨d

j=1(F (C, j)×Σj (SPn
n)j)

∨Ij−−→ ∨d
j=1 SPjn

n

∨ιj−−→ SPdn
n

We want to show that fd is a stable homotopy equivalence. We proceed by
induction on d. Since D1 ' S1, the case d = 1 follows from lemma 2.7.

Assume that the result holds for d− 1, i.e. the map

fd−1 : ∨1≤j≤d−1Σ2(n−2)jDj
's−−→ SP(d−1)n

n
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is a stable homotopy equivalence.
Note that the stable map fd : ∨1≤j≤dΣ2(n−2)jDj → SPnd

n is equal to the stable
map

∨1≤j≤d Σ2(n−2)jDj

= (∨1≤j≤d−1Σ2(n−2)jDj) ∨ Σ2(n−2)dDd
fd−1∨Id◦ed−−−−−−−→ SP(d−1)n

n ∨ SPdn
n

jd∨id−−−→ SPdn
n ∨ SPdn

n
folding map−−−−−−−→ SPdn

n

where jd : SP(d−1)n
n → SPdn

n is the stabilization map and the map Id ◦ ed is the
composite

Σ2(n−2)dDd 's D(n, d) ed−→ F (C, d)×Σd
(S2n−3)d

' F (C, d)×Σd
(SPn

n)d Id−→ SPnd
n .

Now we can see that the diagram

∨1≤j≤d−1Σ2(n−2)jDj
⊂−−−−→ ∨1≤j≤dΣ2(n−2)jDj −−−−→ Σ2(n−2)dDd

fd−1

y's fd

y hd

y's

SP(d−1)n
n

jd−−−−→ SPnd
n

proj−−−−→ SPnd
n / SP(d−1)n

n

where the horizontal sequences are cofibrations, is homotopy commutative.
Since fd−1 and hd are stable homotopy equivalences, fd is also a stable homotopy

equivalence. ¤

Let J2(X) denote the May-Milgram model for Ω2Σ2X ([11])

J2(X) = (
∐
j≥1

F (C, j)×Σj Xj)/ ∼

and let J2(X)d ⊂ J2(X) be the subspace

J2(X)d = (
∐

1≤j≤d

F (C, j)×Σj Xj)/ ∼

⊂ J2(X) ' Ω2Σ2X.

where ∼ denotes the well known equivalence relation.

Proof of theorem 2. It follows from theorem 5 that it suffices to prove that there is
a homotopy equivalence

SPdn
n ' Hol∗d(S

2,CPn−1).
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Since the C2 structure of the SPd
n’s is compatible with that induced from the

double loop sums, the maps Ij induce a map εd : J2(S2n−3)d → SPdn
n such that

the diagram

∨d
j=1(F (C, j)×Σj

(SPn
n)j)

∨Ij−−−−→ ∨d
j=1SPdn

n

∨qj

y ∨ιj

y
J2(S2n−3)d

εd−−−−→ SPdn
n

is homotopy commutative. Since the stable maps ej are stable sections of the Snaith
splitting, the stable map

J = (∨qj) ◦ (∨ej) : ∨d
j=1Σ

2(n−2)jDj
's−−→ J2(S2n−3)d

is a stable homotopy equivalence.
Consider the (stable homotopy commutative) diagram

∨d
j=1Σ

2(n−2)jDj
∨ej−−−−→ ∨d

j=1(F (C, j)×Σj (SPn
n)j)

∨Ij−−−−→ ∨d
j=1SPdn

n

=

y ∨qj

y ∨ιj

y
∨d

j=1Σ
2(n−2)jDj

J−−−−→
's

J2(S2n−3)d
εd−−−−→ SPdn

n

Since the stable maps

fd = (∨ιj) ◦ (∨Ij) ◦ (∨ej) : ∨d
j=1Σ

2(n−2)jDj
's−−→ SPdn

n

and
J = (∨qj) ◦ (∨ej) : ∨d

j=1Σ
2(n−2)jDj

's−−→ J2(S2n−3)d

are both stable homotopy equivalences, the map εd is also a stable homotopy equiv-
alence. Hence the induced homomorphism

(εd)∗ : H∗(J2(S2n−3)d,Z)
∼=−→ H∗(SPdn

n ,Z)

is an isomorphism. Since both spaces J2(S2n−3)d and SPdn
n are simply connected,

the map
εd : J2(S2n−3)d

'−→ SPdn
n

is a homotopy equivalence.
On the other hand, it follows from [7] that there is a homotopy equivalence

J2(S2n−3)d ' Hol∗d(S
2,CPn−1).

Hence there is a homotopy equivalence SPdn
n ' Hol∗d(S

2,CPn−1). ¤
Proof of corollary 3. Since the homotopy equivalence given in theorem 2 is natural,
there is a homotopy commutative diagram

SPd
n

ιd−−−−→ limd′→∞ SPd′

n
'−−−−→ Ω2S2n−1

'
y =

y
Hol∗[d/n](S

2,CPn−1) −−−−→ limd′→∞Hol∗d′(S
2,CPn−1) '−−−−→ Ω2S2n−1

Since the bottom horizontal map Hol∗[d/n](S
2,CPn−1) → Ω2S2n−1 is a homotopy

equivalence up to dimension (2n− 3)[d/n] from the main result of Segal ([13]), the
result follows. ¤
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§3. Proof of theorem 2.9.

In this section we shall prove theorem 2.9.

Lemma 3.1. If id : Hol∗d(S
2,CPn−1)→ Ω2

dCPn−1 is the inclusion map, the map∐
d

(ind ◦ Tnd) :
∐
d≥0

SPnd
n →

∐
d∈Z

Ω2
dCPn−1 = Ω2CPn−1

is a C2-map up to homotopy.

Proof. Analogous to (4.16) of [2]. ¤

Let
SP∞n = lim

d→∞
SPdn

n (C) = lim
d→∞

SPdn
n

be the (homotopy) limit induced by the stabilization maps

SPn
n → SP2n

n → SP3n
n → SP4n

n → · · · · · ·

and let ιd : SPdn
n → SP∞n be the natural inclusion map.

Lemma 3.2. There is a homotopy commutative diagram

∨∞d=1F (C, d)×Σd
(S2n−3)d '−−−−→ ∨∞d=1F (C, d)×Σd

(SPn
n)d ∨Id−−−−→ ∨∞d=1 SPnd

n

∨qd

y ∨ιd

y
J2(S2n−3) ' Ω2S2n−1 '−−−−→ Ω2

0CPn−1 '←−−−− SP∞n

where qd : F (C, d)×Σd
(S2n−3)d → J2(S2n−3) denotes the natural projection map.

Proof. It follows from lemma 3.1 and the group completion theorem that there is
an induced C2-map

j̃ : SP∞n
'−→ Ω2

0CPn−1 ' Ω2S2n−1

such that the diagram

(a)

J2(SP∞n )
C(j̃)−−−−→
'

J2(Ω2S2n−1)

r1

y r2

y
SP∞n

j̃−−−−→
'

Ω2S2n−1

8



is homotopy commutative, where r1 and r2 are natural retractions. Note that, by
theorem 3, j̃ is also a homotopy equivalence.

Similarly, since SPn
n ' S2n−3, it follows from lemma 3.1 that the diagram

(b)

∨∞d=1F (C, d)×Σd
(S2n−3)d ∨qd−−−−→ J2(S2n−3)

J2(ι)−−−−→ J2(SP∞n )

∨Id

y r1

y
∨∞d=1SPdn

n
∨ιd−−−−→ SP∞n

is homotopy commutative, where ι : S2n−3 ' SPn
n

ι1−→ SP∞n denotes the natural
inclusion map.

It follows from (a) and (b) that the following diagram is also homotopy commu-
tative:

∨∞d=1F (C, d)×Σd
(S2n−3)d ∨qd−−−−→ J2(S2n−3)

J2(ι)−−−−→ J2(SP∞n )
J2(j̃)−−−−→ J2(Ω2S2n−1)

∨Id

y r1

y r2

y
∨∞d=1SPnd

n
∨ιd−−−−→ SP∞n

j̃−−−−→
'

Ω2S2n−1

Since the homotopy class of the map S2n−3 ι−→ SP∞n
j̃−→
'

Ω2S2n−1 is the generator of

π2n−3(Ω2S2n−1) ∼= Z, this map is homotopic to the natural inclusion of the bottom
cell E2 : S2n−3 → Ω2S2n−1 . Hence there is a homotopy commutative diagram

J2(S2n−3)
J2(j̃◦ι)−−−−→ J2(Ω2S2n−1)

=

y r2

y
J2(S2n−3) '−−−−→ Ω2S2n−1

Hence the map

J2(S2n−3)
J2(j̃)◦J2(ι)−−−−−−−→ J2(Ω2S2n−1) r2−→ Ω2S2n−1

is homotopic to the natural homotopy equivalence J2(S2n−3) '−→ Ω2S2n−1. Thus
the above diagram reduces to the diagram in the statement of the lemma. ¤
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Lemma 3.3. The stable map

(∨ιd) ◦ (∨Id ◦ ed) : ∨∞d=1Σ
2(n−2)dDd → ∨∞d=1 SPnd

n → SP∞n

is a stable homotopy equivalence.

Proof. Consider the homotopy commutative diagram of lemma 3.2:

∨∞d=1Σ
2(n−2)dDd

∨ed

y
∨∞d=1F (C, d)×Σd

(S2n−3)d '−−−−→ ∨∞d=1F (C, d)×Σd
(SPn

n)d ∨Id−−−−→ ∨∞d=1 SPnd
n

∨qd

y ∨ιd

y
J2(S2n−3) ' Ω2S2n−1 '−−−−→ Ω2

0CPn−1 '←−−−− SP∞n

Since the ed’s are stable sections of the Snaith splitting Ω2S2n−1 's ∨∞d=1Σ
2(n−2)dDd,

the map (∨qd) ◦ (∨ed) : ∨∞d=1Σ
2(n−2)dDd

's−−→ Ω2S2n−1 is a stable homotopy equiv-
alence. Hence the map

(∨ιd) ◦ (∨(Id ◦ ed)) : ∨∞d=1Σ
(2(n−2)dDd → ∨∞d=1 SPnd

n → SP∞n

is also a stable homotopy equivalence. ¤

The following lemma is the key to the proof of theorem 2.9.

Lemma 3.4. (1) The induced homomorphism (jd)∗ : H∗(SP(d−1)n
n ,Z)→ H∗(SPdn

n ,Z)
is injective.

(2) The induced homomorphism

(hd)∗ : H∗(Σ2(n−2)dDd, F )→ H∗(SPdn
n / SP(d−1)n

n , F )

is injective for F = Q or Z/p (p: any prime).

We shall prove theorem 2.9 using lemma 3.4, whose proof will be postponed to
the next section.
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Proof of theorem 2.9.
Let F = Q or F = Z/p (p: any prime). It follows from the Snaith splitting, (1)

of lemma 3.4 and theorems 3, 4 that there is an isomorphism of F -vector spaces

H∗(∨∞d=1Σ
2(n−2)dDd, F ) ∼= H∗(∨∞d=1 SPdn

n / SP(d−1)n
n , F ).

Hence for each j

dimF Hj(∨∞d=1Σ
2(n−2)dDd, F ) = dimF Hj(∨∞d=1 SPdn

n / SP(d−1)n
n , F ) <∞.

However, from (2) of lemma 3.4

(∨hd)∗ : H∗(∨∞d=1Σ
2(n−2)dDd, F ) −→ H∗(∨∞d=1 SPdn

n / SP(d−1)n
n , F )

is injective and so that

(∨hd)∗ : H∗(∨∞d=1Σ
2(n−2)dDd, F )

∼=−→ H∗(∨∞d=1 SPdn
n / SP(d−1)n

n , F )

is an isomorphism. Hence

(hd)∗ : H∗(Σ2(n−2)dDd, F )
∼=−→ H∗(SPdn

n / SP(d−1)n
n , F )

is also an isomorphism. Thus from the universal coefficient theorem, hd induces an
isomorphism on integral homology. Hence hd is a stable homotopy equivalence. ¤

§4. Transfer homomorphisms.

In this section we shall prove lemma 3.4. For this purpose, we use Dold-type
transfer homomorphisms ([8]).

For a based space (X, x0), let Sp∞(X) denote the infinite symmetric product

Sp∞(X) = lim
d→∞

Xd/Σd.

An element of Sp∞(X) may be thought of as a formal finite sum α =
∑

j xj , where
xj ∈ X.

Assume that n ≥ 3. Then by theorem 5, SP(d−1)n
n ' SPdn−1

n .
Define the transfer map

τ : SPdn
n → Sp∞(SPdn−1

n ) ' Sp∞(SP(d−1)n
n )

by

f(z) =
dn∏

j=1

(z − αj) 7→
dn∑
i=1

dn∏
j=1,j 6=i

(z − αj)

11



The map τ naturally extends to a homomorphism of abelian monoids

τd−1 : Sp∞(SPdn
n )→ Sp∞(SP(d−1)n

n )

such that the following diagram is commutative:

SPdn
n

=−−−−→ SPdn
n

∩
y τ

y
Sp∞(SPdn

n )
τd−1−−−−→ Sp∞(SP(d−1)n

n )

The next result follows easily from the definition.

Lemma 4.1. The diagram

Sp∞(SP(d−1)n
n )

jd−−−−→ Sp∞(SPdn
n )

proj

y τd−1

y
Sp∞(SPdn

n / SP(d−1)n
n )

proj←−−−− Sp∞(SP(d−1)n
n )

is homotopy commutative.

For 0 ≤ j ≤ d, define the transfer map τd,j : Sp∞(SPdn
n ) → Sp∞(SPjn

n ) as the
composite

Sp∞(SPdn
n )

τd−1−−−→ Sp∞(SP(d−1)n
n )

τd−2−−−→ · · · −→ Sp∞(SP(j+1)n
n )

τj−→ Sp∞(SPjn
n ),

where we take τd,d = id.

Lemma 4.2. (1) The induced homomorphism

(jd)∗ : H∗(SP(d−1)n
n ,Z)→ H∗(SPdn

n ,Z)

is injective.
(2) The induced homomorphism, proj ◦ (τd,j)∗:

H̃∗(SPdn
n ,Z)

∼=−→ ⊕0≤k≤dH̃∗(SPkn
n ,Z)/Im [(jk)∗ : H̃∗(SP(k−1)n

n )→ H̃∗(SPkn
n )]

is an isomorphism.

Proof. It is well-known that if X is connected πj(Sp∞(X)) ∼= H̃j(X,Z). It follows
from lemma 4.1 that (τd,k)∗ ◦ (jd)∗ ≡ (τd−1,k)∗ (mod Im (jk)∗) and τd,d = id. Then
the assertion follows from lemma 2 of [8]. ¤
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Corollary 4.3. (1) There is a homotopy equivalence

Sp∞(SPdn
n )

∏
τ̃d,k−−−−→
'

d∏
k=1

Sp∞(SPkn
n / SP(k−1)n

n )

where the map τ̃d,k is the composite

Sp∞(SPdn
n )

τd,k−−→ Sp∞(SPkn
n )

proj−−→ Sp∞(SPkn
n / SP(k−1)n

n )

(2) In particular, there is a homotopy equivalence

Sp∞(SPdn
n )

proj×τd,d−1−−−−−−−−→
'

Sp∞(SPdn
n / SP(d−1)n

n )× Sp∞(SP(d−1)n
n ).

Lemma 4.4. The stable map

τd,d−1 ◦ Sp∞(Id) ◦ Sp∞(ed) : Sp∞(Σ2(n−2)dDd)
Sp∞(ed)−−−−−→ Sp∞(F (C, d)×Σd

(S2n−3)d)
Sp∞(Id)−−−−−→ Sp∞(SPdn

n )
τd,d−1−−−−→ Sp∞(SP(d−1)n

n )

is null-homotopic.

Assuming lemma 4.4, we can prove lemma 3.4.

Proof of lemma 3.4. The assertion (1) was already proved in (1) of lemma 4.2 and
it suffices to prove (2).

It follows from lemma 3.3 that the induced homomorphism

H∗(Σ2(n−2)dDd)
(Id◦ed)∗−−−−−→ H∗(SPdn

n )

is injective. Consider the composite of homomorphisms

H∗(Σ2(n−2)dDd)
(Id◦ed)∗−−−−−→
injective

H∗(SPdn
n )

∼=
y(proj∗,(τd,d−1)∗)

H∗(SPdn
n / SP(d−1)n

n )⊕H∗(SP(d−1)n
n )

Notice that the second homomorphism (proj∗, (τd,d−1)∗) is an isomorphism (by
corollary 4.3) and that (τd,d−1)∗ ◦ (Id ◦ed)∗ = 0 (by lemma 4.4). Hence the induced
homomorphism

(hd)∗ : H∗(Σ2(n−2)dDd)
(Id◦ed)∗−−−−−→ H∗(SPdn

n )
proj∗−−−→ H∗(SPdn

n / SP(d−1)n
n )

is injective and this completes the proof. ¤

Now it remains to prove lemma 4.4. For this purpose, we recall the relation
between transfers and covering projections.
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Definition 4.5. Assume that 1 ≤ j < d.
(1) Let

qd,j : F (C, d)×Σj×Σd−j
(S2n−3)d → F (C, d)×Σd

(S2n−3)d

denote the natural covering projection corresponding to the subgroup Σj ×Σd−j ⊂
Σd. Define the transfer map for qd,j ,

σ : F (C, d)×Σd
(S2n−3)d → Sp∞(F (C, d)×Σj×Σd−j

(S2n−3)d)
by

σ(x) =
∑

x̃∈q−1
d,j(x)

x̃.

(2) Let ρj : F (C, d)×Σj×Σd−j
(S2n−3)d → F (C, d)×Σj×Σd−j

(S2n−3)j denote the
projection map onto the first j coordinates of (S2n−3)d. Define a map

σj : F (C, d)×Σd
(S2n−3)d → Sp∞(F (C, d)×Σj×Σd−j

(S2n−3)j)
by σj = Sp∞(ρj) ◦ σ.

The map σj naturally extends to a map

σ̃j : Sp∞(F (C, d)×Σd
(S2n−3)d)→ Sp∞(F (C, d)×Σj×Σd−j

(S2n−3)j)
by the usual addition: σ̃j(

∑
i xi) =

∑
i σj(xi).

(3) Define a C2-structure map

Id,j : F (C, d)×Σj×Σd−j
(S2n−3)j → SPjn

n

similarly to the way Id was defined.

The following is easy to verify:

Lemma 4.6. Let 1 ≤ j < d. Then the following diagram is commutative:

Sp∞(F (C, d)×Σd
(S2n−3)d)

σ̃j−−−−→ Sp∞(F (C, d)×Σj×Σd−j
(S2n−3)j)

Sp∞(Id)

y Sp∞(Id,j)

y
Sp∞(SPdn

n )
τd,j−−−−→ Sp∞(SPjn

n )

Lemma 4.7. Let 1 ≤ j < d. Then the composite of stable maps

Σ2(n−2)dDd
ed−→ F (C, d)×Σd

(S2n−3)d σj−→ Sp∞(F (C, d)×Σj×Σd−j
(S2n−3)j)

is null-homotopic.

Proof. This is well known (cf. [6] p. 44). ¤

Now we can complete the proof of lemma 4.4.

Proof of lemma 4.4. It follows from (4.6) and (4.7) that
τd,d−1 ◦ Sp∞(Id) ◦ Sp∞(ed) ' Sp∞(Id,d−1) ◦ σ̃d−1 ◦ Sp∞(ed)

= Sp∞(Td,d−1) ◦ Sp∞(σd−1 ◦ ed)
' 0. ¤
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