HOMOLOGICAL STABILITY OF ORIENTED CONFIGURATION SPACES

Martin A. Guest, Andrzej Kozlowski and Kohhei Yamaguchi

§1. Introduction.

For a connected space M, let $F(M, d)$ be the space of ordered configurations of d distinct points in M, which is defined by

$$
F(M, d)=\left\{\left(x_{1}, \cdots, x_{d}\right) \in M^{d}: x_{i} \neq x_{j} \text { if } i \neq j\right\}
$$

Let Σ_{d} be the symmetric group of d letters $\{1,2, \cdots, d\} . \Sigma_{d}$ acts on $F(M, d)$ freely in the usual manner. The orbit space

$$
C_{d}(M)=F(M, d) / \Sigma_{d}
$$

is called the space of configurations of d distinct points in M. In this paper we shall assume that M is an open manifold, i.e. each component is non-compact and without boundary. Adding a point near one of the ends of M gives (up to homotopy) a stabilization map

$$
j_{d}: C_{d}(M) \rightarrow C_{d+1}(M)
$$

The following is well-known:
Theorem 0 ([Se]).
If M is an open manifold, then the stabilization map $j_{d}: C_{d}(M) \rightarrow C_{d+1}(M)$ is a homology equivalence up to dimension [d/2].
(We shall call a map $f: X \rightarrow Y$ a homology equivalence up to dimension m if the induced homomorphism

$$
f_{*}: H_{i}(X, \mathbf{Z}) \rightarrow H_{i}(Y, \mathbf{Z})
$$

is bijective when $i<m$ and surjective when $i=m$.)
Remarks. Various special cases of this result were known earlier. For example:
(1) Let $M=\mathbf{R}^{q}(q>2)$. Then $\lim _{q \rightarrow \infty} C_{d}\left(\mathbf{R}^{q}\right)=K\left(\Sigma_{d}, 1\right)$. The homology stabilization of the maps $K\left(\Sigma_{d}, 1\right) \rightarrow K\left(\Sigma_{d+1}, 1\right)$ follows from work of Nakaoka ([Na]). This also follows from Theorem 0 .
(2) Let $M=\mathbf{R}^{2}$. Then $C_{d}(M)=K\left(B r_{d}, 1\right)$. The statement of Theorem 0 in this case was proved by Arnold ([A]).

Let $\tilde{C}_{d}(M)=F(M, d) / A_{d}$, where $A_{d} \subset \Sigma_{d}$ is the alternating group of d letters $\{1, \cdots, d\}$. We shall call $\tilde{C}_{d}(M)$ the space of oriented configurations of d distinct points in M. There is a non-trivial double covering $\tilde{C}_{d}(M) \rightarrow C_{d}(M)$. Adding a point near an end of M gives a stabilization map

$$
\tilde{j}_{d}: \tilde{C}_{d}(M) \rightarrow \tilde{C}_{d+1}(M) .
$$

In this note we shall determine the homological stability dimension for the spaces $\tilde{C}_{d}(M)$, when M is obtained from a compact Riemann surface by removing a finite number of points.

More precisely, we shall prove:
Theorem 1. Let M be a compact Riemann surface, and let

$$
M^{\prime}=M \backslash\{n \text { points }\}
$$

where $n \geq 1$. Then the stabilization map

$$
\tilde{j}_{d}: \tilde{C}_{d}\left(M^{\prime}\right) \rightarrow \tilde{C}_{d+1}\left(M^{\prime}\right)
$$

is a homology equivalence up to dimension $[(d-1) / 3]$. Moreover, this bound is the best possible.

We shall give a proof in the next section, based on the calculations of $[B C T]$ and $[B C M]$. First we make some remarks and pose a question:

Remarks. (1) It seems somewhat surprising that the answer is (about) $d / 3$, not $d / 2$ as in the un-oriented case.
(2) An analogous argument proves a similar result for McDuff's configuration space $C_{n}^{ \pm}(M)$ of "positive and negative particles " ([McD]). An application of this will be given in [GKY].

Question. Is Theorem 1 true for any open manifold?

§2. Proof of Theorem 1.

Without loss of generality we shall from now on assume that

$$
M^{\prime}=\mathbf{C}-\{l \text { points }\}
$$

and write C_{n} for $C_{n}\left(M^{\prime}\right)$ and \tilde{C}_{n} for $\tilde{C}_{n}\left(M^{\prime}\right)$. We shall only consider the case $l \geq 1$. The case $l=0$ can be dealt with in a similar way.

We shall show that

$$
\begin{equation*}
H_{q}\left(\tilde{C}_{d}, \mathbf{F}\right) \rightarrow H_{q}\left(\tilde{C}_{d+1}, \mathbf{F}\right) \tag{}
\end{equation*}
$$

is bijective for $q<n(d)$ and surjective for $q=n(d)$ if $\mathbf{F}=\mathbf{Z} / p$ (p is any prime) or $\mathbf{F}=\mathbf{Q}$, where

$$
n(d)= \begin{cases}{[d / 2]} & \text { if } \mathbf{F} \neq \mathbf{Z} / 3 \\ {[(d-1) / 3]} & \text { if } \mathbf{F}=\mathbf{Z} / 3\end{cases}
$$

Theorem 1 follows from this and the universal coefficient theorem. (The case $\mathbf{F}=\mathbf{Z} / 2$ is trivial. Indeed, since $\tilde{C}_{d} \rightarrow C_{d}$ is a double covering and the stabilization map $C_{d} \rightarrow C_{d+1}$ is a homology equivalence up to dimension $[d / 2]$, the result follows from the Gysin exact sequence.)

We shall make use of the following well known fact (cf. [B]):
Lemma 2. Let G be a group and $H \subset G$ a subgroup of G of index 2. Let \mathbf{F} be any field of characteristic not equal to 2. Then there is a natural additive isomorphism

$$
H_{q}(H, \mathbf{F}) \cong H_{q}(G, \mathbf{F}) \oplus H_{q}(G, \mathbf{F}(-1))
$$

for any $q \geq 1$, where $\mathbf{F}(-1)$ denotes the field \mathbf{F} with the G-module structure given by

$$
g \cdot f= \begin{cases}-f & g \notin H \\ f & g \in H\end{cases}
$$

for $f \in \mathbf{F}$ and $g \in G$.
Let us take $G=\pi_{1}\left(C_{d}\right)$ and $H=\pi_{1}\left(\tilde{C}_{d}\right)$. Since $\tilde{C}_{d} \rightarrow C_{d}$ is a double covering, H can be identified with a subgroup of G of index 2 . We have $\tilde{C}_{d} \simeq K(H, 1), C_{d} \simeq K(G, 1)$ and we can identify the covering map with the map $K(H, 1) \rightarrow K(G, 1)$ induced by the inclusion $H \subset G$. We can thus apply Lemma 2 to obtain:

Lemma 3. If $\mathbf{F}=\mathbf{Z} / p$ (p any odd prime) or $\mathbf{F}=\mathbf{Q}$, then there is a natural additive isomorphism

$$
H_{q}\left(\tilde{C}_{d}, \mathbf{F}\right) \cong H_{q}\left(C_{d}, \mathbf{F}\right) \oplus H_{q}\left(C_{d}, \mathbf{F}(-1)\right)
$$

for any $q \geq 1$
Now, since $C_{d} \rightarrow C_{d+1}$ is a homology equivalence up to dimension [d/2], Theorem 1 follows directly from the following result:

Lemma 4. Let q and d be positive integers such that $1 \leq q \leq[d / 2]$ and $(q, d) \neq(1,2)$.
(1) If $\mathbf{F}=\mathbf{Z} / p$ (p prime, $p \geq 7$) or $\mathbf{F}=\mathbf{Q}$, then

$$
H_{q}\left(C_{d}, \mathbf{F}(-1)\right)=0
$$

(2) If $\mathbf{F}=\mathbf{Z} / 5$ and $(q, d) \neq(3,6)$, then

$$
H_{q}\left(C_{d}, \mathbf{Z} / 5(-1)\right)=0
$$

(3) If $\mathbf{F}=\mathbf{Z} / 3$ and $d \geq 3 q+2$, then

$$
H_{q}\left(C_{d}, \mathbf{Z} / 3(-1)\right)=0
$$

Proof. Let $1 \leq q \leq[d / 2]$.
By (8.4) of [BCM], if n is sufficiently large, then

$$
H_{q}\left(C_{d}, \mathbf{F}(-1)\right) \cong H_{q+(2 n+1) d}\left(\Omega^{2} S^{2 n+3} \times\left(\Omega S^{2 n+3}\right)^{l}, \mathbf{F}\right)
$$

Note that

$$
H_{j}\left(\left(\Omega S^{2 n+3}\right)^{l}, \mathbf{F}\right) \cong \begin{cases}\mathbf{F}^{m(\beta)} & \text { if } j=(2 n+2) \beta, \quad \beta \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and there is a stable splitting ([CMM], [S])

$$
\Omega^{2} S^{2 n+3} \simeq_{s} \vee_{\alpha \geq 1} \Sigma^{2 n} D_{\alpha}
$$

where we take

$$
m(\beta)=\binom{\beta+l-1}{l-1} \quad \text { and } \quad D_{\alpha}=F(\mathbf{C}, \alpha)_{+} \wedge_{\Sigma_{\alpha}}\left(\wedge^{\alpha} S^{1}\right)
$$

Since D_{α} has the homotopy type of a CW complex of dimension $2 \alpha-1, H_{j}\left(D_{\alpha}, \mathbf{Z} / p\right)=0$ for any $j \geq 2 \alpha$.

Applying the Künneth formula one can show that

$$
\begin{equation*}
H_{q}\left(C_{d}, \mathbf{F}(-1)\right) \cong \oplus_{\alpha=1}^{d} \tilde{H}_{q+2 \alpha-d}\left(D_{\alpha}, \mathbf{F}\right)^{m(d-\alpha)} \tag{**}
\end{equation*}
$$

From now on we shall only consider the case $\mathbf{F}=\mathbf{Z} / p$ (p an odd prime). The case $\mathbf{F}=\mathbf{Q}$ can be dealt with analogously.

The following is well known:
Lemma 5. Let $p \geq 3$ be any odd prime.
(1) There is a multiplicative isomorphism
(a)

$$
H_{*}\left(\Omega^{2} S^{3}, \mathbf{Z} / p\right)=\mathbf{Z} / p\left[x_{1}, x_{2}, \cdots\right] \otimes E\left[y_{0}, y_{1}, y_{2}, \cdots\right]
$$

where $\operatorname{deg}\left(x_{i}\right)=2 p^{i}-2$ and $\operatorname{deg}\left(y_{i}\right)=2 p^{i}-1$.
(2) There is an additive isomorphism

$$
\begin{equation*}
\tilde{H}_{*}\left(D_{\alpha}, \mathbf{Z} / p\right)=\oplus_{J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right) \in \mathcal{J}} \mathbf{Z} / p\left\{\prod_{j \geq 1} x_{j}^{m_{j}} \cdot \prod_{j \geq 0} y_{j}^{\epsilon_{j}}\right\} \tag{b}
\end{equation*}
$$

where we take:

$$
\mathcal{J}=\left\{J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right): \epsilon_{j} \in\{0,1\}, m_{j} \geq 0, w(J)=\alpha\right\}
$$

and

$$
w(J)=\epsilon_{0}+\sum_{j \geq 1} p^{j}\left(m_{j}+\epsilon_{j}\right)
$$

(c)

$$
\operatorname{dim}_{\mathbf{Z} / p} \tilde{H}_{q+2 \alpha-d}\left(D_{\alpha}, \mathbf{Z} / p\right)=\operatorname{card}(\mathcal{F})
$$

where
$\mathcal{F}=\left\{J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right) \neq(0,0, \cdots): \epsilon_{j} \in\{0,1\}, m_{j} \geq 0, D(J)=q+2 \alpha-d, w(J)=\alpha\right\}$
and

$$
D(J)=\epsilon_{0}+\sum_{j \geq 1}\left\{2\left(p^{j}-1\right) m_{j}+\left(2 p^{j}-1\right) \epsilon_{j}\right\} .
$$

Here $\operatorname{card}(S)$ denotes the cardinality of a finite set S.
Note that for $J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right)$, if $w(J)=\alpha$, then

$$
D(J)=q+2 \alpha-d \Leftrightarrow H(J)=\epsilon_{0}+\sum_{j \geq 1}\left(2 m_{j}+\epsilon_{j}\right)=d-q
$$

Hence
(d) $\mathcal{F}=\left\{J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right) \neq(0,0, \cdots): \epsilon_{j} \in\{0,1\}, m_{j} \geq 0, w(J)=\alpha, H(J)=d-q\right\}$.

By (c) and (d) it suffices to show:
Claim. Let $1 \leq q \leq[d / 2], 1 \leq \alpha \leq d$ and $(q, d) \neq(1,2)$.
(1) If $p \geq 7$ is an odd prime or $p=5$ and $(q, d) \neq(3,6)$, then $\mathcal{F}=\emptyset$
(2) If $p=3$ and $d \geq 3 q+2, \mathcal{F}=\emptyset$.

Proof of Claim. (1) Assume that $p \geq 5$ is a prime and $J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, \cdots\right) \in \mathcal{F}$.
Since $1 \leq q \leq[d / 2] \leq d / 2$,

$$
\epsilon_{0}+\sum_{j \geq 1}\left(2 m_{j}+\epsilon_{j}\right)=H(J)=d-q \geq d / 2 \geq \alpha / 2=\left\{\epsilon_{0}+\sum_{j \geq 1} p^{j}\left(m_{j}+\epsilon_{j}\right)\right\} / 2 .
$$

Hence
(e)

$$
\epsilon_{0}+\sum_{j \geq 1}\left\{\left(4-p^{j}\right) m_{j}+\left(2-p^{j}\right) \epsilon_{j}\right\} \geq 0
$$

Since $J \neq(0,0, \cdots)$, one can deduce from (e) that

$$
J=\left(\epsilon_{0}, m_{1}, \epsilon_{1}, m_{2}, \epsilon_{2}, \cdots\right)= \begin{cases}(1,0,0,0,0, \cdots) & \text { if } p \geq 7 \\ (1,0,0,0,0, \cdots) \text { or }(1,1,0,0,0, \cdots) & \text { if } p=5\end{cases}
$$

Hence

$$
(q, d)= \begin{cases}(1,2) & p \geq 7 \\ (1,2),(3,6) & p=5\end{cases}
$$

This is a contradiction.
(2) Assume $d \geq 3 q+2$ and $p=3$. Then

$$
\begin{aligned}
\alpha-d & =w(J)-(q+H(J)) \\
& =\left\{\epsilon_{0}+\sum_{j \geq 1} 3^{j}\left(m_{j}+\epsilon_{j}\right)\right\}-\left\{\epsilon_{0}+\sum_{j \geq 1}\left(2 m_{j}+\epsilon_{j}\right)\right\}-q \\
& =\sum_{j \geq 1}\left\{\left(3^{j}-2\right) m_{j}+\left(3^{j}-1\right) \epsilon_{j}\right\}-q \\
& \geq \frac{1}{2} \sum_{j \geq 1}\left(2 m_{j}+\epsilon_{j}\right)-q \\
& =\frac{1}{2}\left(d-q-\epsilon_{0}\right)-q \quad(\text { by } H(J)=d-q) \\
& =\frac{1}{2}\left(d-3 q-\epsilon_{0}\right) \quad \\
& \geq \frac{1}{2}\{(3 q+2)-3 q-1\}=\frac{1}{2}>0
\end{aligned}
$$

Hence $\alpha=w(J)>d$, which is a contradiction.
This completes the proof of Theorem 2.

References

[A] Arnold, V., On some topological invariants of algebraic functions, Trans. Moscow Math. Soc. 21 (1970), 30-52.
[BCT] Bödigheimer, C-F., Cohen, F. and Taylor, L., On the homology of configuration spaces, Topology 28 (1989), 111-123.
[BCM] Bödigheimer, C-F., Cohen, F. and Milgram, R., Truncated symmetric products and configuration spaces, Math. Z. 214 (1993), 179-216.
[B] T.Brocker, Homologie symmetrischer und alternierender Gruppen, Inventiones Math. 2 (1967), 222-237.
[CMM] Cohen, F., Mahowald, M., and Milgram, R., The stable decomposition for the double loop space of a sphere, Proc. Symp. Pure Math. 32 (1978), 225-228.
[CLM] Cohen, F., Lada, T., and May, P., The homology of iterated loop spaces, Lecture Notes in Mathematics 533 (1976).
[GKY] Guest, M.A., Kozlowski, A. and Yamaguchi, K., The space of polynomials without roots of multiplicity n, I, in preparation.
[M] May, P., The geometry of iterated loop spaces, Lecture Notes in Mathematics 271 (1972).
[McD] McDuff, D., Configuration spaces of positive and negative particles, Topology 14 (1975), 91-107.
[Na] Nakaoka, M., Decomposition theorem for homology groups of symmetric groups, Annals of Math. 71 (1960), 16-42.
[Se] Segal, G., The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.
[S] Snaith, V., A stable decomposition of $\Omega^{n} S^{n} X$, J. London Math. Soc. 7 (1974), 577-583.

Department of Mathematics, University of Rochester, Rochester, New York 14627, USA
Department of Mathematics, Toyama International University, Kaminikawa, Toyama 93012, Japan
Department of Mathematics, The University of Electro-Communications, Chofu, Tokyo 182, Japan

