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In this note we determine some homotopy groups of the space of rational functions of degree

d on the Riemann sphere, and describe a homogeneous space structure for the case of degree

2. As an application we show that C2-structure on qd≥0 Hol∗d is not compatible with that on

Ω2S2, where Hol∗d denotes the space of all based holomorphic maps of degree d from Riemann

sphere to itself.
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1. Introduction.

For each positive integer d, let Hold denote the space of all holomorphic (equivalently,
algebraic) maps of degree d from the Riemann sphere S2 = C ∪ ∞ to itself. This space
is of interest both from a classical and a modern point of view (see [1], [5]). Let Hol∗d
be the subspace of Hold consisting of maps which preserve a basepoint of S2. It is well
known that Hol1 is the group of fractional linear transformations PSL2(C) and that Hol∗1
may be identified with the affine transformation group of C. It is an elementary fact
that Hold and Hol∗d are connected spaces. The fundamental groups of these spaces are
Z/2d,Z respectively; these computations are due to Epshtein ([6]) and Jones (see [8]).
The following more general result was obtained by Segal:

Theorem 0 ([8]). Let Mapd be the space of all continuous maps of degree d from S2 to
itself and let Map∗d be the subspace consisting of maps f such that f(∞) = 1. Then the
natural inclusion maps induce the following isomorphisms of homotopy groups:

(1) If k < d, then πk(Hol∗d) = πk(Map∗d) = πk+2(S2).
(2) If k < d, then πk(Hold) = πk(Mapd).

The stable homotopy type of Hol∗d was studied in [3]. In this note we shall extend the
above results by determining some further homotopy groups of the space Hold. Our results
are as follows:
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Theorem 1.

(1) For k ≥ 2,

πk(Hold) =


πk(S3) d = 1
πk(S3)⊕ πk(S2) d = 2
Z/2 d ≥ 3, k = 2

(2) If k ≥ 3 and d ≥ 3, then πk(Hold) = πk(Hol∗d)⊕ πk(S3).
(3) In particular, if d > k ≥ 3, then πk(Hold) = πk+2(S2)⊕ πk(S3).

Theorem 2. The space Hol2 may be identified with a homogeneous space of the form
(SL2(C)× SL2(C))/H, where H is isomorphic to C∗ o Z/4. In this semi-direct product,
the action of Z/4 =< σ : σ4 = 1 > is given by σ ·α = α−1 for α ∈ C∗. In particular, Hol2
is homotopy equivalent to (S3 × S3)/(S1 o Z/4).

Theorem 3.

(1) The universal cover of Hol∗2 is homotopy equivalent to S2.
(2) The universal cover of Hol2 may be identified with a homogeneous space of the form

(SL2(C)×SL2(C))/D, where D is isomorphic to C∗. In particular, it is homotopy
equivalent to S3 × S2.

In Theorem 1, the case d = 1 follows from the fact that Hol1 may be identified with
PSL2(C) and hence is homotopy equivalent to RP 3; the case d = 2 is direct consequence
of (2) of Theorem 3.

In section 2, we shall consider the homogeneous structure of Hol2 based on the action
of Hol1×Hol1 by pre- and post-composition, and give the proof of Theorem 2 and (2) of
Theorem 3. In section 3, we shall investigate the space Hol∗2, and give the proof of (1)
of Theorem 3 . In section 4, we shall prove Theorem 1. In section 5 we shall give an
application of these results to the C2-operad structure on qd≥0 Hol∗d. In particular, we
shall show that the C2-structure on qd≥0 Hol∗d is not compatible with that on Ω2S2 up to
homotopy.

2. The Homogeneous Structure of Hol2.

From now on, we identify Hold with the space of functions f = p1/p2, where p1, p2 are
coprime polynomials such that max{deg(p1), deg(p2)} = d. The group Hol1 acts on Hold
by pre- and post-compositions: for (A,B) ∈ Hol1×Hol1 and f ∈ Hold we have

(A,B) · f (z) = A(f(B−1(z)).

The following proposition is well known, but we shall give a proof for the sake of com-
pleteness.
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Proposition 2.1. The group Hol1×Hol1 acts transitively on Hol2.

Proof. Let f = p/q ∈ Hol2. It suffices to show that A(f(B(z))) = z2 for some A,B ∈ Hol1.
Since Hol1 acts transitively on S2, there is a function A ∈ Hol1 such that A(f(∞)) =∞.
Hence, without loss of generality, we may suppose that f(∞) =∞, i.e. that deg(p) = 2 >
deg(q).

Claim: If f(∞) =∞, then there is some (A,B) ∈ Hol∗1×Hol∗1 such that

A(f(B(z))) = z2 or (z + z−1)/2.

We shall prove this by considering separately the cases deg(q) = 0, deg(q) = 1.

(i) If deq(q) = 0, we may suppose that f(z) = p(z) = a(z+ b)2 + c for some a 6= 0, b, c ∈ C.
If we put A(z) = a−1(z − c), B(z) = z − b then A(f(B(z))) = z2, as required. (ii) If
deg(q) = 1, we may suppose that q(z) = z + a, and p(z) = b{(z + a)2 + c(z + a) + d2}
with b 6= 0, d 6= 0. Putting A(z) = (z − bc)/2bd, B(z) = dz − a we see that A(f(B(z))) =
(z + z−1)/2. This completes the proof of the claim.

Let g(z) = (z + z−1)/2. If A(z) = (z + 1)/(z − 1), B(z) = (z − 1)/(z + 1) then
A(g(B(z))) = z2. This completes the proof of Proposition 2.1. ¤

Remark: It follows from the claim that Hol∗2 consists of two Hol∗1×Hol∗1 orbits. It is well
known that the map

SL2(C)→ Hol1,
(
a b
c d

)
7→ az + b

cz + d
,

is a double covering and induces an isomorphism PSL2(C) ∼= Hol1 of Lie groups. Thus
the group G = SL2(C)× SL2(C) acts (transitively) on Hol2.

Lemma 2.2. Let H denote the isotropy subgroup of SL2(C)×SL2(C) at z2 ∈ Hol2. Then

H =
{(
±

(
α2 0
0 α−2

)
,

(
α 0
0 α−1

))
,

(
±

(
0 iα2

iα−2 0

)
,

(
0 α
−α−1 0

))
: α ∈ C∗

}
.

Proof. This follows by direct calculation. ¤

Next we determine the group structure of H.

Lemma 2.3. Let K = C∗oZ/4 be the group defined by the action of Z/4 =< σ : σ4 = 1 >
on C∗ by σ · α = α−1 for α ∈ C∗. Then H and K are isomorphic Lie groups.

Proof. We put

σ1 =
(

0 i
i 0

)
, σ2 =

(
0 −1
1 0

)
.
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Define ϕ : K → H by

(α, σm) 7→
((

α2 0
0 α−2

)
σm1 ,

(
α 0
0 α−1

)
σm2

)
.

It is easy to check that ϕ is an isomorphism. ¤

Proof of Theorem 2. The first part of Theorem 2 follows from Proposition 2.1, Lemma
2.2 and Lemma 2.3. The inclusion map of the maximal compact subgroup SU(2) = S3 of
SL2(C) induces the homotopy equivalence (S3 × S3)/(S1 o Z/4) ' Hol2. ¤

Next we consider the universal cover of Hol2. Let D be the subgroup{((
α2 0
0 α−2

)
,

(
α 0
0 α−1

))
: α ∈ C∗

}
of SL2(C)× SL2(C), and let Dc be its maximal compact subgroup{((

α2 0
0 α−2

)
,

(
α 0
0 α−1

))
: |α| = 1, α ∈ C

}
.

Then D is a normal subgroup of H ∼= C∗ o Z/4 isomorphic to C∗. Similarly Dc is is
isomorphic to S1. Clearly the projection E = (SL2(C) × SL2(C))/D → (SL2(C) ×
SL2(C))/H = Hol2 is a regular covering. To show that E is simply connected, we shall
consider the fibre bundle SL2(C)→ E → SL2(C)/D whose projection map is induced by
the projection onto the second factor.

Lemma 2.4.
(1) E is fibre homotopy equivalent to the fibre bundle SU(2) → Y → S2, where Y =

(SU(2)× SU(2))/Dc.
(2) Y can be identified with the unit sphere bundle S(η2 ⊕ η−2), where η denotes the

Hopf complex line bundle over S2 = CP 1.

Proof. (1) The inclusion map SU(2) × SU(2) → SL2(C) × SL2(C) induces the desired
fibre homotopy equivalence Y → E.

(2) The second factor

S =
{(

α 0
0 α−1

)
: |α| = 1, α ∈ C

}
of Dc is the standard embedding of S1 into SU(2), and S1 → SU(2)→ SU(2)/S ≈ S2 is
the Hopf bundle. We may use the identifications SU(2) = Sp(1) = S3 ⊂ H, and extend the
action of Dc naturally to SU(2)×H. By considering the transition functions of the vector
bundle (SU(2)×H)/Dc, it is not difficult to see that Y is equivalent to S(η2 ⊕ η−2). ¤

Proof of (2) of Theorem 3. It follows from the homotopy exact sequence that Y (and hence
E) is simply connected. Hence E is the universal covering of Hol2. Since π2(BU(2)) = Z,
a 2-dimensional complex vector bundle ξ over S2 is determined by its first Chern class
c1(ξ). As c1(η2⊕η−2) = 0, it follows that η2⊕η−2 is trivial. Hence E ' Y ' S3×S2. ¤
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3. The Space Hol∗2.

In this section we shall use the actions of Hol1 (and Hol∗1) on Hold by post-composition:
A · f(z) = A(f(z)) for (A, f) ∈ Hol1×Hold. First, we have two easy lemmas:

Lemma 3.1. Let d ≥ 1. The group Hol1 acts freely on Hold by post-composition. Simi-
larly, Hol∗1 acts freely on Hol∗d by post-composition.

Proof. This follows immediately from the fact that any map of non-zero degree is surjec-
tive. ¤

Lemma 3.2. Let d ≥ 1. Then the natural inclusion map jd : Hol∗d → Hold induces a
homeomorphism j̃d : Hol∗1 \Hol∗d ≈ Hol1 \Hold .

Proof. Since Hol1 acts transitively on S2, the induced map j̃d : Hol∗1 \Hol∗d → Hol1 \Hold
is surjective. Since (Hol1 ·f) ∩ Hol∗d = Hol∗1 ·f for any f ∈ Hol∗d, j̃d is injective. If we
identify these spaces by j̃d, it is easy to see that the topologies coincide. ¤

Proposition 3.3 ([4]). There is a fibration S1 → Hol∗2 → RP 2.

Remark: Cohen and Shimamoto ([4]) deduce this from results of Donaldson ([5]) and
Atiyah and Hitchin ([1]) on monopoles. We shall give a direct and elementary proof.

Proof. By Lemma 3.1 we have a principal bundle

Hol∗1 → Hol∗2 → Hol∗1 \Hol∗2 .

By Theorem 2 and Lemma 3.2, Hol∗1 \Hol∗2 ≈ Hol1 \Hol2 ' (S3/S1)/{±1} ≈ S2/{±1} =
RP 2. Since Hol∗1 ' S1, we have the required fibration S1 → Hol∗2 → RP 2. ¤

Proof of (1) of Theorem 3.

Consider the above fibration S1 −→ Hol∗2
π−→ RP 2. Let p : S2 → RP 2 and q : X → Hol∗2

be the universal coverings. SinceX is simply connected, there is a lift θ : X → S2 such that
p ◦ θ = π ◦ q. It follows by diagram chasing that θ∗ : πk(X) → πk(S2) is an isomorphism
for all k. Hence θ is a homotopy equivalence. ¤

4. The Proof of Theorem 1.

Let ιn ∈ πn(Sn) be the oriented generator and η2 ∈ π3(S2) be the class of the Hopf
map. We put ηn = Σn−2η2 ∈ πn+1(Sn) for n > 2. The following three results are well
known and we omit the proofs.
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Lemma 4.1 ([9]).
(1) πn(Sn) = Z{ιn}.
(2) π3(S2) = Z{η2}, πn+1(Sn) = Z/2{ηn} for n > 2.
(3) πn+2(Sn) = Z/2{η2

n} for n > 1. Here we put η2
n = ηn ◦ ηn+1.

Lemma 4.2 ([7],[9]).
(1) [ι2, ι2] = 2η2.
(2) If k > 2, [ι2, α] = 0 for any α ∈ πk(S2).

Here [ , ] denotes the Whitehead product.

Let Map(Sn, X) denote the space of all continuous maps from Sn to X, and let
Map∗(Sn, X) be the subspace consisting of based maps. For a map f we denote by
Mapf (Sn, X) or Map∗f (S

n, X) the path-component containing f .

Lemma 4.3 ([10]). Let f ∈ Map∗(Sn, X) and let

Map∗f (S
n, X)→ Mapf (S

n, X) ev−→ X

be the evaluation fibration. If we use the identification πk(Map∗f (S
n, X)) = πk+n(X), then

the boundary operator ∂ : πk+n(X)→ πk−1(X) of the homotopy exact sequence associated
with the evaluation fibration is given (up to sign) by the Whitehead product: ∂(α) = [α, f ].

Proof of Theorem 1. (1) It suffices to consider the case d ≥ 3. Let I : Hol∗d → Map∗d
and J : Hold → Mapd be the inclusion maps. By Theorem 0, I and J are homotopy
equivalences up to dimension d. Consider the following commutative diagram:

Hol∗d −−−−→ Hold
ev−−−−→ S2

I

y J

y y=

Map∗d −−−−→ Mapd −−−−→
ev

S2

in which the horizontal sequences are evaluation fibre sequences. The result follows from
the induced diagram of homotopy groups, by using Lemmas 4.1, 4.2, and 4.3 and the Five
Lemma. This completes the proof of (1).

(2) Suppose that d ≥ 3 and k ≥ 3 are integers. Consider the commutative diagram of
principal bundles

Hol∗1 −−−−→ Hol∗d
pd−−−−→ Hol∗1 \Hol∗dy jd

y j̃d

y≈
Hol1 −−−−→ Hold

qd−−−−→ Hol1 \Hold
where jd is a natural inclusion map. In the induced homotopy exact sequences, since
Hol∗1 ' S1, (pd)∗ : πk(Hol∗d) → πk(Hol∗1 \Hol∗d) is an isomorphism for k ≥ 3. Hence
(jd)∗ ◦ (pd)−1

∗ ◦ (j̃d)−1
∗ : πk(Hol1 \Hold)→ πk(Hold) gives a splitting of (qd)∗. So we have

πk(Hold) = πk(Hol∗d)⊕ πk(Hol1).
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Because Hol1 ' RP 3, πk(Hol1) = πk(S3) and this completes the proof of (2). (3) It follows
from Theorem 0 that πk(Hol∗d) = πk+2(S2) for k < d and the assertion easily follows from
(2). ¤

Remark: The above method allows one to deduce the result of Epshtein ([6]) that π1(Hold) =
Z/2d from the result of Jones (see [8]) that π1(Hol∗d) = Z.

5. The C2-operad structure on qd≥0 Hol∗d.

Consider qd≥0 Hol∗d, the disjoint union of the based rational functions of degree d. It
is known that this is a C2-operad space ([2]). Let µd : F (C, d) × (S1)d → Hol∗d be the
structure map, where we identify Hol∗1 up to homotopy with S1. Let id : Hol∗d → Ω2

dS
2 and

i : Hol∗ → Ω2S2 be the inclusion maps. It is known that i is a C2-map up to homotopy
([2]). It follows from the May-Milgram model of Ω2Σ2X that we can identify Ω2S3 with
J(S1), where J(X) denotes the space

J(X) = qd≥1(F (C, d)×Σd X
d)/ ∼

and ∼ is a well known equivalence relation. On the other hand, there is a well known
equivalence Ω2S3 ' Ω2

0S
2.

The following observation of Professor F.R. Cohen shows that the C2-structure on Ω2
0S

2

is incompatible with the one on qd≥0 Hol∗d. (This contradicts the statement of [3] that
diagram (3.4) of that paper is homotopy commutative.)

Let Jd(X) be the d-th term of the May-Milgram filtration on J(X).

7



Proposition 5.1. There is no homotopy equivalence

θ : Map∗2(S
2, S2) = Ω2

2S
2 → Ω2S3

such that the following diagram is homotopy commutative:

F (C, 2)×Σ2 (S1)2
µ2−−−−→ Hol∗2

i2−−−−→ Ω2
2S

2

j2

y θ

y
J2(S1) −−−−→ J(S1) '−−−−→ Ω2S3

Here j2 denotes the inclusion map.

Proof. Suppose that the above diagram is homotopy commutative. Since F (C, 2) ' S1,
there is a non-zero element e1 ⊗ e21 ∈ H3(F (C, 2)×Σ2 (S1)2,Z/2) = Z/2 which represents
a generator. Using the above diagram, if we put α = (µ2)∗(e1 ⊗ e21), we have

0 6= Q1(e1) = (θ ◦ i2)∗(α) ∈ H3(Ω2S3,Z/2).

Since Q1(e1) ∈ H3(Ω2S3,Z/2) is primitive, and θ is an equivalence, the element (i2)∗α =
θ−1
∗(Q1(e1)) ∈ H3(Hol∗2,Z/2) = Z/2 is also primitive (the image of a primitive ele-

ment is primitive). By [8], (i2)∗ is injective, so α is primitive. Thus the generator of
H3(Hol∗2,Z/2) = Z/2 is indecomposable. On the other hand, because the universal cover
of Hol∗2 is homotopy equivalent to S2 and π1(Hol∗2) = Z, there is a fibration

S2 → Hol∗2 → BZ ' S1.

Consider the mod 2 Serre spectral sequence of this fibration. This collapses at the E2 level,
and the generator of H3(Hol∗2,Z/2) = Z/2 is decomposable. This is a contradiction. ¤

Remark: The above result implies that the C2-structure of Hol∗d and that of Ω2S3 are not
compatible (up to homotopy) at least when d = 2. This was also pointed out in [4].
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Department of Tokyo Institute of Technology for its hospitality. The application to C2-
operad structures is due to Professor F.R. Cohen. A gap in an earlier version of the proof
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