Optimal Control, Homework I.

Deadline: 30.11.2023. In the solutions, please make use of the theory of optimal control.

1. Prove that for any nonincreasing sequence $\left(x_{n}\right)_{n \geq 0}$ of positive numbers we have the inequality

$$
\sum_{n=0}^{\infty} \frac{x_{n}^{2}}{x_{n+1}} \geq 4 x_{0}
$$

and the constant 4 is the best possible.
2. Prove that for any nonnegative numbers $a_{1}, a_{2}, \ldots, a_{N}$ satisfying $x=a_{1}+a_{2}+\ldots+a_{N} \leq 1$ we have

$$
\frac{a_{1}}{1+a_{1}^{2}}+\frac{a_{2}}{1+a_{2}^{2}}+\ldots+\frac{a_{N}}{1+a_{N}^{2}} \leq \frac{N^{2} x}{N^{2}+x^{2}}
$$

3. Consider the problem

$$
\sup \mathbb{E}\left\{\sum_{m=1}^{N}\left(1-u_{m}\right) X_{m-1}\right\}
$$

where $X_{0}=1, u_{m} \in[0,1]$ and

$$
X_{m}=X_{m-1}+u_{m} X_{m-1}+\xi_{m}, \quad m=1,2, \ldots, N .
$$

Here $\left(\xi_{m}\right)_{m=1}^{N}$ is a sequence of independent random variables such that for any m, ξ_{m} has exponential distribution with parameter $1 / X_{m-1}$.

Compute the above supremum and identify the optimal controls.
4. Consider the optimal control problem

$$
\sup _{u} \mathbb{E} \sum_{m=1}^{\infty} \sqrt[3]{u_{m}},
$$

where the process $\left(X_{n}\right)_{n \geq 0}$ satisfies $X_{0}=1$ and

$$
X_{m}=\left(X_{m-1}-u_{m}\right) \xi_{m}, \quad m=1,2, \ldots
$$

Here $u_{m} \in\left[0, X_{m-1}\right]$ and $\left(\xi_{m}\right)_{m \geq 1}$ is a sequence of independent, identically distributed random variables, $\mathbb{P}\left(\xi_{m}=0\right)=3 / 4, \mathbb{P}\left(\xi_{m}=1\right)=1 / 4$.

Compute the above supremum and identify the optimal controls.

