
CHAPTER 1

Optimal Control in Deterministic Case

Our starting point is the discussion on the special, deterministic case of the
theory of optimal stochastic control. We start with the analysis of discrete-time
systems.

1. Discrete-time systems, �nite horizon

The main tool used in this case is the so-called dynamic programming, an algo-
rithm which enables to solve a certain class of problems, by an induction argument
which reduces them to simpler sub-problems. Or, to put it in the reverse direction,
the approach allows to tackle di�cult problems by solving simpler ones �rst and
relating these solutions to the harder context by intrinsic recurrence relations. It
plays an important role in computer science, as it can be used to construct e�ective
algorithms of polynomial complexity. Furthermore, the method is utilized in opti-
mal planning problems (e.g. in problems of the optimal distribution of resources
available, the theory of inventory management, replacement of equipment, etc.).

The basic idea can be formulated as follows. Suppose that a given system S,
taking values in some set E, is controlled with a procedure which consists of N
steps, where N is a �xed positive integer. At the beginning, the system is in some
state x0 ∈ E. At the m-th step of the procedure, there is a possibility of applying
a class of controls, each of which transforms the state xm−1 ∈ E obtained through
the previous operations into some new state xm ∈ E. Formally, if um denotes the
control applied at m-th step, then we have the identity

(1.1) xm = fm(xm−1, um)

for some fm (the �transition function associated with m-th step�). An important
feature of the method is the absence of after-e�ects, i.e. the controls selected for
a given step may only a�ect the state of the system at that moment. We also
emphasize that the class of controls applicable at m-th step may depend on the
value of xm−1: we have um ∈ U(xm−1) for some function U . As the result of the
whole procedure u1, u2, . . ., uN , the system is converted from the state x0 into the
�nal state xN . Now, given the initial state x0 and a �xed objective function

(1.2) JN (x0, u1, u2, . . . , uN ) =

N∑
m=1

gm(xm−1, um) + r(xN ),

there are two aspects worth investigating:

• to identify the controls u∗1, u
∗
2, . . ., u

∗
N (if exist), which yield the optimal

performance, i.e., such that we have

JN (x0, u
∗
1, u

∗
2, . . . , u

∗
N ) = sup

u1,u2,...,uN

JN (x0, u1, u2, . . . , uN ).

1
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• to compute the explicit value supu1,u2,...,uN
JN (x0, u1, u2, . . . , uN ).

Sometimes, depending on the context, we might be interesting in the analysis
of only one of the above aspects: we will illustrate this on some later examples.

Conventional methods of tackling such problems are often either inapplicable,
or involve lengthy and elaborate calculations. Dynamic programming allows to
solve the above problem by the following recursive formula.

Theorem 1.1. Under the above notation, de�ne measurable functions BN ,
BN−1, . . ., B0 on E by BN (x) = r(x) and the Bellman equation

(1.3) Bn−1(x) = sup
u∈U(x)

(
gn(x, u) +Bn(fn(x, u))

)
, n = N, N − 1, . . . , 1.

Then for any strategy u1, u2, . . ., uN we have JN (x0, u1, u2, . . . , uN ) ≤ B0(x0).
Furthermore, if for any n and any x ∈ E there is a control û = ûn(x) for which

Bn−1(x) = gn(x, û) +Bn(fn(x, û))
)
,

then the optimal strategy is given by u∗n = ûn(xn−1), n = 1, 2, . . . , N .

Proof. Consider the subsystem which starts at time n and then evolves ac-
cording to (1.1) for m = n+ 1, n+ 2, . . ., N . Introduce the truncated functional

JN
n (xn, un+1, un+2, . . . , uN ) =

N∑
m=n+1

gm(xm−1, um) + r(xN ).

Then, as we will show inductively, we have JN
n (xn, un+1, un+2, . . . , uN ) ≤ Bn(xn).

Indeed, we have JN
N (xN ) = r(xN ) = BN (xN ) and the induction step follows from

JN
n−1(xn−1, un, un+1, . . . , uN )

= gn(xn−1, un) + JN
n (fn(xn−1, un), un+1, . . . , uN )

≤ gn(xn−1, un) +Bn(fn(xn−1, un)) ≤ Bn−1(xn−1).

Plugging n = 1, we get the �rst part of the assertion. To get the second part, note
that for the above special controls u∗1, u

∗
2, . . ., u

∗
N , all the above inequalities become

equalities. □

Several helpful comments are in order.

I. It is worth to rewrite the proof of JN (x0, u1, u2, . . . , uN ) ≤ B0(x0) in the
form

B0(x0) ≥ g1(x0, u1) +B1(x1)

≥ g1(x0, u1) + g2(x1, u2)B2(x2)

≥ . . . ≥
n∑

m=1

gm(xm−1, um) +BN (xN ) = JN (x0, u1, u2, . . . , uN ).

II. It follows from the above proof that the Bellman sequence admits the al-
ternative de�nition

Bn(x) = sup
un+1,un+2,...,uN

{
JN
n (xn, un+1, un+2, . . . , uN )

∣∣xn = x
}

for n = 0, 1, 2, . . . , N . Thus in particular B0(x0) is the desired optimal value of
the function JN . As we will see later, writing down the above abstract formula for
Bn is a convenient start for the analysis.
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III. The above argumentation leads to the following optimality principle: given
x0, if there is an optimal strategy u∗1, u

∗
2, . . ., u

∗
N for JN , then

· for any n, the strategy u∗n+1, u
∗
n+2, . . ., u

∗
N must be optimal for the functional

JN
n (xn, un+1, un+2, . . . , uN ) (where xn comes from x0 by applying u∗1, u

∗
2, . . ., u

∗
n);

· for any n, the strategy u∗1, u∗2, . . ., u∗n must be optimal for the functional

Jn(x0, u1, u2, . . . , un) =

n∑
m=1

gm(xm−1, um) +Bn(xn).

IV. The above discussion concerns the case in which we are interested in the
largest value of JN . Sometimes one wants to minimize JN : then all the argumen-
tation works, we only need to replace suprema by in�ma in appropriate places.

V. The form of the Bellman equation (1.3) is strictly connected to the addi-
tive form of the functional. As we shall see later, the general approach extends
to the case of other functionals, for which the associated Bellman equations look
di�erently.

The above statements give a transparent method of handling the problem. We
solve the system (1.3) of functional equations, obtaining B0(x0), the value of the
optimal performance under the assumption that the system is initially in the state
x0. We also identify the optimal controls u∗1, u

∗
2, . . ., u

∗
N : these are the parameters

for which the suprema in (1.3) are attained. Speci�cally, having determined B0, B1,
. . ., BN (called the Bellman sequence in the sequel), we �nd u∗1 by the requirement

B0(x0) = g1(x0, u
∗
1) +B1(f1(x0, u

∗
1)).

Let x1 = f1(x0, u
∗
1) be the position of the system after the optimal �rst move. Then

we get the control u∗2 from the equation

B1(x1) = g2(x1, u
∗
2) +B2(f2(x1, u

∗
2)),

and so on. Summarizing, the approach rests on solving the initial problem by
embedding it into a class of similar sub-problems, the collection of which can be
treated, as a whole, by means of the recursive formulas. We should point out,
however, that still, in many cases, the analysis of the obtained setting can be
technically involved and require plenty of laborious computations.

In what follows, we will see the above reasoning in various disguises. We have
purposefully restrained ourselves from the discussion concerning the state space or
the class of feasible controls; this would probably complicate the above presentation,
as these objects can be multidimensional or change from step to step. Sometimes
it will be convenient to enumerate the steps by numbers 1, 2, . . ., N instead of
0, 1, . . ., N . Moreover, in many cases it will be more natural to work with the
reversed sequence BN , BN−1, . . ., B1 instead of B1, B2, . . ., BN (then the lower
index indicates the number of steps up to the termination of the process). However,
the main idea remains essentially unchanged.

Instead of exploring further the abstract description, we continue with the
analysis of several examples which will serve as an illustration of the above concepts.
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1.1. A warm up. Consider an investor, whose capital at n-th day is equal
to xn, n = 0, 1, 2, . . . , N . At m-th day, the investor consumes um of the capital
and invests the remaining part; the interest rate is equal to γ > 1. That is, the
sequence (xn)

N
n=0 is governed by the equation

xm = γ(xm−1 − um), m = 1, 2, . . . , N,

where um ≤ xm−1 for each m. Suppose that the purpose of the investor is to

maximize the functional J(x0, u1, u2, . . . , uN ) =
∑N

m=1 um. This can be easily
solved by the above approach. Introduce the Bellman sequence

Bn(x) = sup

{
N∑

m=n+1

um : xn = x

}
.

We have BN (x) = 0 and the Bellman equation gives

BN−1(x) = sup
u≤x

{
u+BN (γ(x− u))

}
= sup

u≤x
u = x.

(This is perfectly intuitive: �there is no tomorrow�, so the investor spends all the
money). Furthermore,

BN−2(x) = sup
u≤x

{
u+BN−1(γ(x− u))

}
= sup

u≤x

{
u+ γ(x− u)

}
= γx

(with supremum attained at zero),

BN−3(x) = sup
u≤x

{
u+BN−2(γ(x− u))

}
= sup

u≤x

{
u+ γ2(x− u)

}
= γ2x

(with supremum attained at zero), etc.: for any n = 0, 1, 2, . . . , N − 1 we have
Bn(x) = γN−n−1x and the appropriate control is equal to zero. This implies
that the investor should save the money for the last day, and then spend all the
capital. This answer is obvious: keeping the capital unchanged maximizes the pro�t
obtained via the interest rate.

1.2. Towards analytic applications. For a �xed N , we will compute the
quantity

sup

{
a1

a0 + a1
+

a2
a1 + a2

+ . . .+
aN

aN−1 + aN

}
,

where the supremum is taken over all positive numbers a0, a1, a2, . . ., aN . This
problem can be studied with the use of optimal control: consider the strategy u1,
u2, . . ., uN given by un = an. Then the sequence x0, x1, x2, . . ., xN given by
xn = an consists of positive numbers and satis�es (1.1) with fn(x, u) = u. Our goal
is to maximize the functional

JN (x0, u1, u2, . . . , uN ) =

N∑
m=1

um
xm−1 + um

,

which is of the form (1.2), with gm(x, u) = u/(x + u) and r(x) = 0. The Bellman
sequence is given by

Bn(x) = sup

{
an+1

xn + an+1
+

an+2

an+1 + an+2
+ . . .+

aN
aN−1 + aN

∣∣xn = x

}
,
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where x > 0 and the supremum is taken over all positive numbers an+1, an+2, . . .,
aN . By the Bellman equation, we see that for any x > 0 we have BN (x) = 0,

BN−1(x) = sup
u>0

{gN (x, u) +BN (fN (x, u))}

= sup
u>0

{
u

x+ u
+BN (u)

}
= sup

u>0

u

x+ u
= 1,

BN−2(x) = sup
u>0

{
u

x+ u
+BN−1(u)

}
= sup

u>0

{
u

x+ u
+ 1

}
= 2,

and so on,

B0(x) = sup
u>0

{
u

x+ u
+B1(u)

}
= sup

u>0

{
u

x+ u
+N − 1

}
= N.

This gives the answer to the problem: the supremum is equal to N . Note that the
optimal controls do not exist.

1.3. A probabilistic inequality. Next, we will prove that for any N ≥ 1
and any numbers a1, a2, . . ., aN ∈ [0, 1] we have

(1− a1)(1− a2) . . . (1− aN ) ≥ 1− a1 − a2 − . . .− aN .

The �rst step is to rewrite the inequality in the form

−a1 − a2 − . . .− aN − (1− a1)(1− a2) . . . (1− aN ) ≤ −1.

This �ts perfectly into the above scheme. We consider the strategy (u1, u2, . . . , uN ) =
(a1, a2, . . . , aN ) and de�ne the sequence x0, x1, x2, . . ., xN by x0 = 1 and

xn = xn−1 · (1− an).

Then the sequence takes values in [0, 1] and satis�es the evolution equation (1.1)
with fn(x, u) = x(1− u). We need to maximize the functional

J(x0, u1, u2, . . . , uN ) =

N∑
m=1

(−um)− xN ,

which is of the form (1.2) with gm(x, u) = −u and r(x) = −x. By the above
discussion, we introduce the Bellman sequence by

Bn(x) = sup

{
N∑

m=n+1

(−um)− xN
∣∣xn = x

}
, x ∈ [0, 1],

where the supremum is taken over all un+1, un+2, . . ., uN ∈ [0, 1]. By the very
de�nition, we have BN (x) = −x and, by the Bellman equation,

BN−1(x) = sup
u∈[0,1]

(
− u+BN (x(1− u))

)
= sup

u∈[0,1]

(
u(x− 1)− x

)
= −x,

where the supremum is attained for u = 0. The remaining functions BN−2, BN−3,
. . ., B0 are computed identically: we have B0(x) = B1(x) = . . . = BN (x) = −x for
all n and therefore

J(x0, u1, u2, . . . , uN ) ≤ B0(x0) = −1,

which is the claim. Note that equality holds if and only if all the controls are zero:
a1 = a2 = . . . = aN = 0.
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1.4. Modi�ed approach: AM-GM inequality. Now we will show how
dynamic programming yields one of the most fundamental inequalities.

Theorem 1.2. For any positive integer N and any nonnegative numbers a1,
a2, . . ., aN we have

a1 + a2 + . . .+ aN
N

≥ (a1a2 . . . aN )1/N .

Equality holds if and only if a1 = a2 = . . . = aN .

Proof. Although the inequality �ts into the scheme developed above (see
Remark 1.3 below), it is instructive to discuss a slightly di�erent approach. As
previously, we start with rephrasing the desired claim into the problem of the
optimization of some value function. This can be done as follows. Fix a nonnegative
number x and consider the quantity

sup

{
a1a2 . . . aN : a1, a2, . . . , aN ≥ 0, a1 + a2 + . . .+ aN = x

}
.

We need to show that for any x, the above supremum does not exceed (x/N)N .
Note that this problem is not of the form discussed at the beginning, since the
functional does not have the additive form. However, the general methodology
of �decomposing� the problem into simpler, similar sub-problems, which are then
connected via induction argument, applies. Again, the controls are the numbers
a1, a2, . . ., aN . The sequence x0, x1, x2, . . ., xN is given by x0 = x and

xn = xn−1 − an, n = 1, 2, . . . , N,

so that xn = an+1 + an+2 + . . .+ aN . The Bellman sequence is given by

Bn(x) = sup

{
an+1an+2 . . . aN

∣∣xn = x

}
, n = 0, 1, 2, . . . , N − 1.

The dynamic approach rests on writing the system of equations which govern the
evolution of the Bellman sequence. By the very de�nition, we have BN−1(x) = x,
and the version of Bellman equation is the following: for any n = 0, 1, . . . , N − 2
and any x ≥ 0 we have

(1.4) Bn(x) = sup
t∈[0,x]

{
Bn+1(x− t) · t

}
.

Indeed, if an+1, an+2, . . ., aN are arbitrary nonnegative numbers summing up to x
and we denote t = an+1 ∈ [0, x], then

an+1an+2 . . . aN = t · an+2an+3 . . . aN ≤ Bn+1(x− t) · t,
by the de�nition of Bn+1 and the fact that an+2 + an+3 + . . .+ aN = x− t. Taking
the supremum over all an+1, an+2, . . ., aN as above, gives the inequality �≤� in
(1.4). To get the reverse, we �x t ∈ [0, x] and nonnegative numbers an+2, an+3, . . .,
aN summing up to x − t. Then t + an+2 + an+3 + . . . + aN = x, so the de�nition
of Bn yields

t · an+2an+3 . . . an ≤ Bn(x).

Now, taking the supremum over an+2, an+3, . . ., aN as above gives tBn+1(x− t) ≤
Bn(x), and since t ∈ [0, x] was arbitrary, the identity (1.4) follows.

It remains to solve the recurrence. In general, this might be quite involved, but
here the conjecture for the formula for Bn is directly encoded in the problem:

(1.5) Bn(x) = (x/(N − n))N−n.
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This conjecture is easily con�rmed by induction. Let us brie�y present the cal-
culations, as they will be useful in the identi�cation of the optimal controls. For
n = N − 1 the hypothesis is true. Assuming the validity for a �xed n + 1 ∈
{2, 3, . . . , N − 1}, we derive that the expression

Bn+1(x− t) · t =
(

x− t

N − n− 1

)N−n−1

· t,

considered as a function of t, attains its maximum for t = x/(N − n) (only).
Furthermore, this maximal value is equal to (x/(N −n))N−n. This yields (1.5) and
the claim follows.

The above calculations encode, for any �xed x ≥ 0, the optimal controls a∗1,
a∗2, . . ., a

∗
N for B0(x). To see this, assume that x > 0 (for x = 0 there is nothing to

prove). We go back to the above proof of (1.4). We have

B0(x) = sup
t∈[0,x]

{
B1(x− t) · t

}
,

and the supremum is attained for the unique choice t = x/N . This necessarily
implies that a∗1 must be equal to x/N and a∗2 + a∗3 + . . . + a∗N = (N − 1)x/N . To
get a∗2, we make use of the following version of the optimality principle. We have

a∗1a
∗
2 . . . a

∗
N = B1(x) = B2

(
x− x

N

)
· x
N

= B2

(
x− x

N

)
· a∗1,

or, equivalently (recall that we have assumed x > 0)

a∗2a
∗
3 . . . a

∗
N = B2

(
x− x

N

)
.

This brings us to the same position as above, with the length of the unknown
extremal sequence decreased by 1 (and the required sum x replaced by x − x/N).
Repeating the arguments, we show that a∗2 = (x−x/N)/(N − 1) = x/N , a∗3 + a∗4 +
. . .+ aN = x− 2x/N , and the numbers a∗3, a

∗
4, . . ., a

∗
N satisfy

a∗3a
∗
4 . . . a

∗
N = B3

(
x− 2x

N

)
,

and so on. The procedure can be carried out until we get all the values of a∗1, a
∗
2,

. . ., a∗N : one easily checks by induction that a∗1 = a∗2 = . . . = a∗N = x/N is the
extremal sequence we have searched for. □

Remark 1.3. There is an alternative approach to the AM-GM estimate. Con-
sider the sequence x0 = 1, x1 = a1 and

xn =
nn

(n− 1)n−1
· xn−1 · an, n = 1, 2, . . . , N.

Then we have xn = nna1a2 . . . an and the inequality is equivalent to showing that
the functional

−a1 − a2 − . . .− aN + x
1/N
N

is nonpositive. This �ts into the scheme developed above.
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1.5. A higher-dimensional DP problem. We turn to the case in which
Bellman functions depend on more than one variable.

Theorem 1.4. For any nonnegative numbers a1, a2, . . ., aN , b1, b2, . . ., bN
we have

(1.6) (a1 + b1)(a2 + b2) . . . (aN + bN ) ≥ ((a1a2 . . . aN )1/N + (b1b2 . . . bN )1/N )N .

Proof. We may assume that all numbers ai and bj are non-zero (otherwise,
the claim is obvious). For any x, y > 0, consider the function

Bn(x, y) = inf

{
(a1 + b1)(a2 + b2) . . . (an + bn)

}
,

where the in�mum is taken over all sequences a1, a2, . . . , an, b1, b2, . . ., bn of
positive numbers such that a1a2 . . . an = x and b1b2 . . . bn = y. Clearly, we have
B1(x, y) = x+ y, and Bellman equation becomes

(1.7) Bn+1(x, y) = inf

{
(s+ t)Bn(x/s, y/t)

}
,

where the in�mum is taken over all s, t > 0. One easily shows by induction that the
solution to this recurrence is given by Bn(x, y) = (x1/n + y1/n)n, and the in�mum
in (1.7) is attained for s, t such that y/x = (t/s)n+1. This establishes the desired
inequality; furthermore, we obtain that the optimal controls a∗1, a

∗
2, . . ., a

∗
N , b∗1, b

∗
2,

. . ., b∗N satisfy

a∗1a
∗
2 . . . a

∗
n+1

b∗1b
∗
2 . . . b

∗
n+1

=

(
a∗n+1

b∗n+1

)1/(n+1)

, n = 1, 2, . . . , N − 1,

i.e., the equality in (1.6) is attained if and only if a1/b1 = a2/b2 = . . . = aN/bN . □

2. Discrete system, in�nite horizon

Now we turn our attention to the case in which we are interested in the control
evolving in an in�nite number of sets. There are essentially two types of approaches,
it is best to present them on a concrete example.

Theorem 1.5. Prove that for an in�nite sequence (an)
∞
n=1 ⊂ R+ we have

∞∏
n=1

an ≤
∞∑

n=1

a2
n

n

2n
,

provided the product makes sense.

Proof, the first approach. The idea is to make use of the method for the
�nite horizon, and then let the horizon go to in�nity. More precisely, for any N ≥ 1,
introduce the Bellman functions BN : R+ → R by

BN (x) = sup

{
a1a2 . . . aN :

N∑
n=1

a2
n

n

2n
= x

}
.

We have B1(x) =
√
2x and the Bellman equation reads

BN (x) = sup

{
aBN−1

(
x− a2

N

2N

)}
,
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where the supremum is taken over all a such that a2
N

/2N ≤ x. This recurrence
is not di�cult to solve: after some lengthy, but rather straightforward calculations
we compute that

BN (x) =

(
x

1
2 + 1

4 + . . .+ 1
2N

) 1
2+

1
4+...+ 1

2N

.

It remains to perform a limiting argument: for any sequence (an)n≥1 as in the
statement, we have

a1a2 . . . aN ≤ BN

(
N∑

n=1

a2
n

n

2n

)
.

This becomes the desired estimate in the limit. □

Sometimes the �rst approach fails. It happens quite often that the Bellman
sequence is extremely di�cult (or impossible) to compute explicitly, however, its
limit version can be handled e�ciently. Here are the details.

Proof, the second approach. We introduce the single Bellman function
B : R+ → R given by

B(x) = sup

{ ∞∏
n=1

an :

∞∑
n=1

a2
n

n

2n
= x

}
.

Now the key is that the Bellman equation becomes a functional equation for B.
Take any sequence (an)n≥1 and note that

∞∏
n=1

an = a1

∞∏
n=2

an,

∞∑
n=1

a2
n

n

2n
=
a1
2

+

∞∑
n=2

a2
n

n

2n
=
a1
2

+
1

2

∞∑
n=1

(a2n+1)
2n

2n
.

Therefore, we see that

B(x) = sup
a∈[0,

√
2x]

{
a ·
√
B(2x− a2)

}
.

Now the analysis splits into two steps. First we need to solve the above equation,
and then check rigorously that it does yield the desired estimate.

I. Search for B. Note that the above equation does not have unique solution:
for example, B ≡ 0 satis�es it. To �nd the formula for B, or rather guess it, we look
at the abstract de�nition. Note that the supremum in the de�nition of B is taken

over all sequences (an)n≥1 with
∑∞

n=1
a2n

n

2n = x. If we multiply an by λ1/2
n

, then
the total sum multiplies by λ (and hence it is equal to λx). On the other hand, the
product multiplies by λ1/2+1/4+... = λ, and hence we must have B(λx) = λB(x).
This implies that B should be a linear function: B(x) = cx. Let us go back to the
Bellman equation:

cx = sup
a
a
√
c(2x− a2).

We easily check that the supremum is attained for a =
√
x, so c = 1. This gives us

the candidate for the Bellman function: B(x) = x.
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II. Veri�cation. From the above construction, we know that B(x) = x satis�es
the Bellman equation. Therefore, for any sequence (an)n≥1,

∞∑
n=1

a2
n

n

2n
= B

(
a21
2

+
a42
4

+
a83
8

+ . . .

)

≥ a1

√
B

(
a42
2

+
a83
4

+
a164
8

+ . . .

)

≥ a1

√√√√a22

√
B

(
a83
2

+
a164
4

+
a325
8

+ . . .

)

= a1a2
4

√
B

(
a83
2

+
a164
4

+
a325
8

+ . . .

)
and so on; after a �nite (say, N) number of steps, the sequence (an) stabilizes at 1,
so the arguments inside B become equal to 1. We thus obtain

∞∑
n=1

a2
n

n

2n
≥ a1a2 . . . aN ,

which is the desired claim. □

We conclude with another instructive example.

Theorem 1.6. For any sequence a1, a2, . . ., an of numbers belonging to [0, 1],
we have

n∏
k=1

(1− ak) ≤ 1−
n∑

k=1

ak +
1

2

(
n∑

k=1

ak

)2

.

Proof. We rewrite the inequality in the form∏n
k=1(1− ak)

1−
∑n

k=1 ak + 1
2 (
∑n

k=1 ak)
2 ≤ 1

and write down the associated Bellman function

B(x, y) = sup

{
x
∏n

k=1(1− ak)

1− (y +
∑n

k=1 ak) +
1
2 (y +

∑n
k=1 ak)

2

}
,

the supremum taken over all n. We want to show that B(1, 0) ≤ 1.
The next step is to write the Bellman equation. We see that picking a1 makes

x go to x(1− a1) and y go to y + a1: hence

B(x, y) = sup
a>0

B(x(1− a), y + a).

Now, as previously, we need to �nd the solution of this equation, and we start
with guessing. By the very de�nition of B, we have B(x, y) = xB(1, y) =: xφ(y).
Furthermore, if we plug a = 0, the supremum is attained: therefore,

−xBx(x, y) +By(x, y) =
d

da
B(x(1− a), y + a)

∣∣∣∣
a=0

≤ 0.

In the language of φ, this means −xφ(y) + xφ′(y) ≤ 0, or φ′(y) ≤ φ(y). Assume
equality: we obtain φ(y) = Key. Thus we have constructed the candidate B(x, y) =
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Kxey. It is easy to check that it satis�es the Bellman equation: xey ≥ x(1−a)ey+a

is equivalent to e−a ≥ 1− a. Now, if we put K = 1, then B(1, 0) = 1; furthermore,
we have B(x, y) ≥ x/(1− y + y2/2) (a simple veri�cation). Therefore,

1 = B(1, 0) ≥ B(1− a1, a1) ≥ B((1− a1)(1− a2), a1 + a2) ≥ . . .

≥ B((1− a1) . . . (1− aN ), a1 + . . .+ aN ) ≥
∏n

k=1(1− ak)

1−
∑n

k=1 ak + 1
2 (
∑n

k=1 ak)
2 .

This gives the desired claim. □

We will continue the discussion on the case of in�nite horizon in the next
section.

3. Problems

1. Prove the AM-GM inequality following the approach from Remark 1.3.

2. Prove that for any n ≥ 1 and any real numbers a1, a2, . . ., an we have

a1a2 . . . an ≤ a21
2

+
a42
4

+
a83
8

+ . . .+
a2

n

n

2n
+

1

2n
.

3. Show that for any n ≥ 2 and any positive numbers a1, a2, . . ., an we have
n∑

k=1

1

1 + ak
≥ min

{
1,

n

1 + (a1a2 . . . an)1/n

}
.

4. Write down the abstract Bellman functions for the problems below and
identify the corresponding Bellman equations.

a) For any positive numbers a1, a2, . . ., aN we have

(1 + a1)(1 + a2) . . . (1 + aN ) ≥ (1 + (a1a2 . . . aN )1/N )N .

b) For any real numbers a1, a2, . . ., aN we have

n∑
k=1

(
a1 + a2 + . . .+ ak

k

)
≤

(
2n−

n∑
k=1

1

k

)1/2( n∑
k=1

a2k

)1/2

.

c) Prove that if a1 < a2 < . . . < an and b1 < b2 < . . . < bn, then

(a1 + a2 + . . .+ an)(b1 + b2 + . . .+ bn) < n(a1b1 + a2b2 + . . .+ anbn).

d) Prove that if x1, x2, . . . , xn > 0 satisfy x1 + x2 + . . .+ xn ≤ 1
2 , then

(1− x1)(1− x2) . . . (1− xn) ≥
1

2
.

e) Prove that for any a1, a2, . . ., aN > 0 with

1

a1
+

1

a2
+ . . .+

1

aN
= N

we have

a1 +
a22
2

+
a33
3

+ . . .+
aNN
N

≥ 1 +
1

2
+ . . .+

1

N
.

f) For any positive integer N and any nonnegative numbers a1, a2, . . ., aN , b1,
b2, . . ., bN , we have

N∑
n=1

n(bn − 1)(a1a2 . . . an)
1/n +N(a1a2 . . . aN )1/N ≤

N∑
n=1

anb
n
n.
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g) Let 1 < p < ∞. Then for any positive numbers a1, a2, . . . and λ1, λ2, . . .
we have the inequality

∞∑
n=1

λn

(
λ1a1 + λ2a2 + . . .+ λnan

λ1 + λ2 + . . .+ λn

)p

≤
(

p

p− 1

)p ∞∑
n=1

λna
p
n.

h) For any positive numbers a1, a2, . . .,
∞∑

n=1

(
a1 + a2 + . . .+ an

n

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn.

5. Prove that for any positive numbers a1, a2, . . ., an satisfying a1+ a2+ . . .+
an < 1 we have

a1a2 . . . an
(
1− (a1 + a2 + . . .+ an)

)
(a1 + a2 + . . .+ an)(1− a1)(1− a2) . . . (1− an)

≤ 1

nn+1
.

6. Prove that for any positive numbers a1, a2, . . ., an satisfying a1a2 . . . an = 1
we have

1

n− 1 + a1
+

1

n− 1 + a2
+ . . .+

1

n− 1 + an
≤ 1.

7. Prove that for any positive numbers a1, a2, . . ., an we have(
1 +

1

a1

)(
1 +

1

a2

)
. . .

(
1 +

1

an

)
≥
(
1 +

n

a1 + a2 + . . .+ an

)n

.

8. Prove that for any positive numbers a1, a2, . . ., an, b1, b2, . . ., bn we have(
a1 + a2 + . . .+ an
b1 + b2 + . . .+ bn

)2

≤
(
a1
b1

)2

+

(
a2
b2

)2

+ . . .+

(
an
bn

)2

.

9. Prove that for any positive numbers a1, a2, . . ., an with a1+a2+. . .+an = x
we have

1 + x ≤ (1 + a1)(1 + a2) . . . (1 + an) ≤ ex.

10. Prove the following form of planar isoperimetry: for any polygon of perime-

ter p, its area is not bigger than
p2

4π
.



CHAPTER 2

Optimal Control, Stochastic Case

1. Finite horizon

We start with a simple model, which will be modi�ed and complicated later
on. Suppose that N is a given time horizon and ξ1, ξ2, . . ., ξN is a sequence
of independent, identically distributed random variables taking values in some set
(S,S). Let (E, E) be a �xed measure space (state space), let (U,U) be the set of
controls and let F : E × U × S → E be a given measurable function. We assume
that X0 is a random variable taking values in E and the model is evolving according
to the equation

Xm = F (Xm−1, um, ξm), m = 1, 2, . . . , N.

Here u = (um)Nm=1 is a strategy (a sequence of controls): we assume that for each
m, the function um = um(x0, x1, x2 . . . , xm−1) is a measurable map from Em to
U . Sometimes, to indicate the dependence of X on the strategy, we will use the
notation Xu. If needed, we may also assume that the process X starts at time n
from some prescribed position Xn, which may be random or non-random.

As in the deterministic case, we introduce the functional

JN (X0, u) = E

{
N∑

m=1

gm
(
Xu

m−1, um(Xu
0 , X

u
1 , . . . , X

u
m−1)

)
+ r(Xu

N )

}
,

which will be subject to optimization (we will restrict ourselves to maximization;
for minimization, the argumentation goes along the same lines). Here gm and r are
measurable functions. Here we see the �rst important di�erence in comparison to
the deterministic case: the functional JN involves the expectation. Again, there
are two problems for the investigation: (i) to compute the value supu J

N (X0, u)
explicitly, and (ii) to identify the controls u∗1, u

∗
2, . . . , u

∗
N which yield this optimal

performance.
In the case of �nite horizon, the dynamic programming turns out to be the

key approach again. For the further discussion, it is convenient to distinguish the
auxiliary operator Tu, which acts on bounded functions h : E → R by

Tuh(x) = Eh(F (x, u, ξ0)) = E
(
h(Xn) |Xn−1 = x, un = u

)
.

This action makes sense also for unbounded functions, even in�nite, as long as the
expectation makes sense. Observe that if u is an arbitrary strategy, then

(2.1) ETunh(Xu
n−1) = Eh(Xu

n).

Theorem 2.1. Under the above notation, introduce the Bellman sequence BN ,
BN−1, . . ., B0 by BN (x) = r(x) and the Bellman equation

Bn−1(x) = sup
u∈U(x)

(
gn(x, u) + TuBn(x)

)
, n = N, N − 1, . . . , 1,

13
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where U(x) is the class of controls permitted when the system is at the state x.
Then for any strategy u we have JN (X0, u) ≤ EB0(X0). Furthermore, if there
exist measurable maps û1, û2, . . ., ûN such that for all x and n,

Bn−1(x) = gn(x, ûn(x)) + T ûn(x)Bn(x),

then the strategy u∗m(X0, X1, . . . , Xm−1) = ûm(Xm−1), m = 1, 2, . . . , N , is optimal
and JN (X0, u

∗) = EB0(X0).

Proof. Fix an arbitrary strategy u. We have

EBn−1(X
u
n−1) ≥ E

{
gn(X

u
n−1, un) + TunBn(X

u
n−1)

}
= Egn(Xu

n−1, un)+EBn(X
u
n).

Consequently,

EB0(X0) ≥ Eg1(Xu
0 , u1) + EB1(X

u
1 ) + E

(
g1(X

u
0 , u1) + g2(X

u
1 , u2)

)
+ EB2(X

u
2 )

≥ . . . ≥ E

{
N∑

m=1

gm(Xu
m−1, um)

}
+ EBN (Xu

N ) = JN (X0, u).

The second part of the theorem follows from the fact that if the controls û1, û2,
. . . , ûN exist, then all the intermediate estimates above become equalities. □

As in the deterministic case, some comments are in order.

I. It follows directly from the above proof that the Bellman sequence is

Bn(x) = sup
u

E
{ N∑

m=n+1

gm
(
Xu

m−1, um(Xu
n , X

u
n+1, . . . , X

u
m−1)

)
+ r(Xu

N )

}
,

where it is assumed that Xn = x and the controls u are restricted to the time set
{n+ 1, n+ 2, . . . , N}.

II. We have the following variant of the optimality principle: suppose that u∗1,
u∗2, . . ., u

∗
N is an optimal strategy for

JN (X0, u) = E

{
N∑

m=1

gm
(
Xu

m−1, um(Xu
0 , X

u
1 , . . . , X

u
m−1)

)
+ r(Xu

N )

}
.

Let us split the time set {0, 1, 2, . . . , N} into two parts: {0, 1, 2, . . . ,M} and {M +
1,M+2, . . . , N}. Then u∗M+1, u

∗
M+2, . . ., u

∗
N is optimal for the truncated functional

JN
M (XM , u) = E

{
N∑

m=M+1

gm
(
Xu

m−1, um(Xu
0 , X

u
1 , . . . , X

u
m−1)

)
+ r(Xu

N )

}

and the optimal value is equal to EBM (XM ). The remaining part u∗1, u
∗
2, . . ., u

∗
M

of the strategy is optimal for the modi�ed functional

Jn(X0, u) = E

{
M∑

m=1

gm(Xu
m−1, um) +BM (XM )

}
.
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1.1. An example. Consider the following system: X0, X1, . . ., Xn is given
by X0 = 1 and at m-th step, the control um ∈ {0, 1} acts as follows. If um = 0,
then Xm = 2Xm−1; if um = 1, then Xm is equal to 0 or X2

m with probability 1/2.
We will compute the value supu EXN and identify the optimal strategy.

To express the problem in the above language, let ξ1, ξ2, . . ., ξN be a sequence of
independent random variables with the distribution P(ξj = 0) = P(ξj = 1) = 1/2.
We let

Xm = F (Xm−1, um, ξm), m = 1, 2, . . . , N,

where F (x, 0, s) = 2x and F (x, 1, s) = sx2. We see that the optimized functional is
of the above form, with gm = 0 and r(x) = x. Hence, we may make use of the above
machinery; note that X takes values in E = {0, 2, 4, 8, . . .}, and in the calculations
below we assume that x belongs to this set. Take the Bellman sequence (Bn)

N
n=0,

setting BN (x) = x and

Bn−1(x) = max
u∈{0,1}

TuBn(x), n = N, N − 1, . . . , 1,

where

T 0h(x) = h(2x), and T 1h(x) =
1

2
h(0) +

1

2
h(x2).

We start the computations. We have T 0BN (x) = 2x and T 1BN (x) = x2/2, so

BN−1(x) = max{2x, x2/2} =

{
2x if x ≤ 4,

x2/2 if x ≥ 4.

To �nd BN−2 we proceed analogously, checking that

T 0BN−1(x) = BN−1(2x) =

{
4x if 2x ≤ 4,

2x2 if 2x ≥ 4

and

T 1BN−1(x) =
1

2
BN−1(0) +

1

2
BN−1(x

2) =

{
x2 if x2 ≤ 4,
x4

4 if x2 ≥ 4.

Hence

BN−2(x) = max{T 0BN−1(x), T
1BN−1(x)} =

{
4x if x ≤ 2,
x4

4 if x > 2.

Arguing similarly, we compute that

Bn−1(x) = max{T 0Bn(x), T
1Bn(x)} =

{
2N−n+1x if x ≤ 2,

x2N−n+1

2N−n+1 if x > 2,

the maximal value coming from T 0Bn(x) for x ≤ 2 and from T 1Bn(x) for x > 2.
Consequently, we see that supu EXN is equal to EB0(X0) = 2N and the optimal
control is given as follows: as long as the process does not exceed 2, use the control
0; otherwise, apply the control 1.
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1.2. Another example. Let ξ1, ξ2, . . ., ξN be a sequence of independent
random variables with the distribution given by P(ξj = 0) = P(ξj = 8) = 1/2.
Suppose that (Xn)

N
n=0 is a sequence satisfying X0 = 1 and

Xm = umξm ·Xm−1, m = 1, 2, . . . , N,

where um ∈ [0, 1] is a control at m-th step. Assume that we are interested in the
supremum

sup
u
J(X0, u) = E

{ N∑
m=1

2−m+1
√

(1− um)Xm−1 + 2−N
√
2XN

}
.

We start with the de�nition of the operator Tu. For any function h : [0,∞) →
[0,∞), we have

Tuh(x) = Eh(F (x, u, ξ1)) = Eh(uξ1x) =
1

2
h(0) +

1

2
h(8ux).

We are ready to study the associated Bellman sequence. We let BN (x) = 2−N
√
2x

and, for any 1 ≤ n ≤ N ,

Bn−1(x) = sup
u∈[0,1]

(
gn(x, u) + TuBn(x)

)
= sup

u∈[0,1]

(
2−n+1

√
(1− u)x+ TuBn(x)

)
.

Hence,

BN−1(x) = sup
u∈[0,1]

(
2−N+1

√
(1− u)x+

1

2
· 2−N

√
16ux

)
= 2−N+1

√
x sup

u∈[0,1]

(√
1− u+

√
u
)
= 2−N+1

√
2x,

the supremum attained for u = 1/2. Generally, we prove by a simple induction,

using the same calculations as above, that Bn(x) = 2−n
√
2x. Therefore, by the

above theorem, JN (X0, u) ≤ EB0(X0) =
√
2. Equality holds if and only if u1 =

u2 = . . . = uN = 1/2.

1.3. Yet another example. Let η1, η2, . . ., ηN be a sequence of indepen-
dent random variables such that ηn has the uniform distribution on [0, un], n =
1, 2, . . . , N . The purpose is to �nd optimal controls uj which maximize the expec-
tation

E
{
max{η1, η2, . . . , ηN} − 1

2
(u1 + u2 + . . .+ uN )

}
.

To analyze this problem, we modify the variables so that they have the same dis-
tribution: let ξj = ηj/uj ∼ U(0, 1). Next, let X0 = 0 and set

Xm = max{Xm−1, umξm}, m = 1, 2, . . . , N.

Then the problem is to analyze supu E
{
− 1

2 (u1+u2+ . . .+uN )+XN

}
, which falls

into the scope of the above approach. The associated operator Tu is given by

Tuh(x) = Eh(max{x, uξm}) = 1

u

∫ u

0

h(max{x, s})ds.

We are ready to introduce the Bellman sequence. Put BN (x) = x and

Bn−1(x) = sup
u

{
− u

2
+ TuBn−1(x)

}
.
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We check that

TuBN (x) = Emax{x, uξ1} =
1

u

∫ u

0

max{x, s}ds =

{
x if u ≤ x,
u2+x2

2u if u > x

and hence the function

−u
2
+ TuBn−1(x) =

{
x− u

2 if u ≤ x,
x2

2u if u > x

is decreasing on (0,∞). Consequently, the supremum de�ning BN−1(x) is attained
in the limit u → 0 and BN−1(x) = x. Repeating the calculations, we obtain that
Bn(x) = x for all n, and hence in particular

sup
u

E
{
− 1

2
(u1 + u2 + . . .+ uN ) +XN

}
≤ EB0(X0) = 0.

Clearly, we have equality here: it su�ces to take small controls u1, u2, . . ., uN to
obtain quantities as close to zero as we wish.

Remark 2.2. Theorem 2.1 can be generalized in many directions. Let us
discuss brie�y two possibilities here.

(i) It is easy to extend the approach to the case in which the variables ξj do
not have the same distribution: this forces the operator Tu to depend also on the
number of the step.

(ii) Another important example concerns the case in which (ξn)n≥0 is a time-
homogeneous Markov process. Then all one needs is to consider the larger governing
process (Xn, ξn)n≥0: all the remaining arguments are the same (the role of ξ0 is
to provide the initial distribution). That is, one considers the larger state space

Ê = E × S and introduces the operator Tu acting via

Tuh(x, s) = E(h(Xn, ξn) |Xn−1 = x, un = u, ξn = s).

Then the theorem above remains valid, one just needs to replace x with (x, s) in
all the relevant places.

1.4. An example. Consider the Markov chain ξ on {0, 1}, starting from 0,
with the transition matrix given by

P =

[
3/4 1/4
1/4 3/4

]
.

Let (Xn)
N
n=0 be given by X0 = 1 and evolving according to

Xm = umXm−1ξm + (1− um)Xm−1(1− ξm),

where the controls um are arbitrary numbers from [0, 1]. We will study the quantity

sup
u

E
(
XN + ξN

)
.

Our starting observation is that we need to enrich the state space: the controlled
process must be taken to be ((Xn, ξn))

N
n=0 ∈ R× {0, 1}. The Bellman sequence is

Bn(x, s) = sup
u

{
E(XN + ξN ) : (Xn, ξn) = (x, s)

}
, n = 0, 1, 2, . . . , N.

We clearly have BN (x, s) = x+ s and the following recurrence holds:

Bn−1(x, s) = sup
u
TuBn(x, s), n = 1, 2, . . . , N.
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Note that

Tuh(x, s) = E
[
h(uxξ1 + (1− u)x(1− ξ1), ξ1)

∣∣ ξ0 = s
]

=

{
3
4h((1− u)x, 0) + 1

4h(ux, 1) if s = 0,
1
4h((1− u)x, 0) + 3

4h(ux, 1) if s = 1.

Thus we compute that

TuBN (x, 0) =
3

4
(1− u)x+

1

4
(ux+ 1), TuBN (x, 1) =

1

4
(1− u)x+

3

4
(ux+ 1),

and hence

BN−1(x, 0) =
3

4
x+

1

4
, BN−1(x, 1) =

3

4
x+

3

4
,

and the optimal controls are uN = 0 and uN = 1, respectively. A similar calculation
shows that

BN−2(x, 0) =

(
3

4

)2

x+
6

16
, BN−2(x, 1) =

(
3

4

)2

x+
10

16
,

and the optimal controls are uN−1 = 0 and uN−1 = 1, respectively. The above
formulas suggest that

Bn(x, 0) =

(
3

4

)N−n

x+ an, Bn(x, 1) =

(
3

4

)N−n

x+ bn,

for some sequences (an)
N
n=0 and (bn)

N
n=0 to be found. Assuming this form for n and

arguing as above, we compute that

Bn−1(x, 0) =

(
3

4

)N−n+1

x+
3

4
an +

1

4
bn

and

Bn−1(x, 1) =

(
3

4

)N−n+1

x+
1

4
an +

3

4
bn

(with optimal controls equal to 0 and 1, respectively), so that an−1 = 3
4an + 1

4bn
and bn−1 = 1

4an + 3
4bn. We have the initial conditions aN = 0 and bN = 1, so

solving the above recurrence gives

an =
1

2
−
(
1

2

)N−(n−1)

, bn =

(
1

2

)N−(n−1)

+
1

2
.

Thus, the supremum we are interested in, is equal to

B0(1, 0) =

(
3

4

)N+1

+
1

2
−
(
1

2

)N+1

.

The optimal strategy is as follows: for any n, if we have (Xn, ξn) = (x, s), then the
control un+1 is equal to s.

Remark 2.3. As the above examples show, the only relevant information for
the solution is carried in the family (Tu)u∈U of operators.
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2. In�nite horizon

Now we will turn our attention to the case in which the controlled process
consists of in�nite number of variables. The �rst natural approach to this type of
problems is to consider the truncated, �nite-horizon version, and then let with the
size of the horizon to in�nity. For the sake of convenience, let us start with applying
Theorem 2.1 to the special functional

(2.2) JN (X0, u) = E

{
N∑

m=1

γm−1q(Xm−1, um) + γNr(XN )

}
,

where γ ≥ 0 and q : E × U → R+, r : E → R+ are measurable functions. Then
the assertion can be expressed in a simpler manner. De�ne the auxiliary operator
A acting via

(2.3) Ah(x) = sup
u∈U(x)

(
q(x, u) + γTuh(x)

)
when JN is subject to maximization, and

(2.4) Ah(x) = inf
u∈U(x)

(
q(x, u) + γTuh(x)

)
otherwise. In what follows, Aj will stand for the j-th iteration of A, and we set A0

to be the identity operator.

Theorem 2.4. The Bellman sequence (Bn)
N
n=0 is given by

Bn(x) = γnAN−nr(x), n = 0, 1, 2, . . . , N.

Furthermore, if (ûn)
N
n=1 is a sequence of measurable functions from E to U such

that for any n and any x ∈ E we have ûn(x) ∈ U(x) and

AN−nr(x) = q(x, ûn(x)) + γT ûn(x)AN−(n+1)r(x),

then the strategy (û1(x0), û2(x1), . . . , ûN (xN−1)) is optimal.

We are ready to discuss the optimal control for the in�nite horizon. Let us
describe the setup. We keep the notation from the beginning of the case of �nite
horizon; the evolution of the sequence X is given by

Xm = F (Xm−1, um, ξm), m = 1, 2, . . . .

We are interested in the optimization of the functional

J(X0, u) = J∞(X0, u) = E
∞∑

m=1

γm−1q(Xu
m−1, um(Xu

0 , X
u
1 , X

u
2 , . . . , X

u
m−1)),

where q : E × U → R+ is measurable and un's stand for the strategy. Let us em-
phasize here that q is a nonnegative function, which does not depend on m. A little
thought reveals that this time-homogeneity condition is plausible: without it, one
should not expect any regularity of the problem. As we shall see, this will imply
the following intuitive fact: the terms of the strategy u = (u(x0), u(x1), . . .) will not
depend on time. In contrast to the case of �nite horizon, the arguments for mini-
mizing and maximizing J∞ will be a little di�erent: because of the nonnegativity
of q (which is needed in our considerations), the situation is not symmetric.

Recall the operators A given by (2.3) and (2.4), recall also that

Tuh(x) = Eh(F (x, u, ξ0))
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makes sense also for h taking in�nite values, as long as the expectation is well-
de�ned. The initial observation is that the operators A are monotone: for any
h1, h2 : E → R+ ∪ {∞} with h1 ≤ h2 we have Ah1 ≤ Ah2. Let 0 denote the
function on E identically equal to zero. Since q is nonnegative, the functional
sequence (An(0))n≥0 is monotone and hence the pointwise limit

b∞(x) = lim
n→∞

An(0)(x), x ∈ E,

exists. Let us emphasize here that b∞ is allowed to take in�nite values. The use of
function 0 is clear: the truncation of J∞ is

JN (X0, u) = E

{
N∑

m=1

γm−1q(Xm−1, um)

}
,

which is (2.2) with r = 0. The basic results are formulated in two theorems below.

Theorem 2.5. Suppose that J∞ is the cost functional (i.e., it is subject to
minimization). Then for any x ∈ E and any strategy u we have

b∞ ≤ Ab∞(x), b∞(x) ≤ J∞(x, u).

Furthermore, if for any x ∈ E we have

b∞(x) = Ab∞(x) = q(x, u∞(x)) + γTu∞(x)b∞(x),

then the strategy u∗ = (u∞(x0), u∞(x1), . . .) is optimal.

Proof. We have An(0) ≤ b∞ and hence, by the monotonicity of A, we get
An+1(0) ≤ Ab∞. This yields b∞ ≤ Ab∞, by passing to the limit. Next, using
Theorem 2.4, for any strategy u and any starting point x we have

E
∞∑

m=1

γm−1q(Xu
m−1, um(Xu

0 , . . . , X
u
m−1))

≥ E
N∑

m=1

γm−1q(Xu
m−1, um(Xu

0 , . . . , X
u
m−1)) ≥ AN (0)(x).

This gives J∞(x, u) ≥ AN (0)(x) and hence, letting N → ∞, we get b∞(x) ≤
J∞(u, x). To show the second half of the theorem, note that

JN (x, u∗) = E
N∑

m=1

γm−1q(Xu∗

m−1, u∞(Xu∗

m−1))

≤ E

{
N∑

m=1

γm−1q(Xu∗

m−1, u∞(Xu∗

m−1)) + γNb∞(Xu∗

N )

}
= ANb∞(x) = b∞(x),

since Ab∞ = b∞. Letting N → ∞ gives J∞(x, u∗) ≤ b∞ and hence equality holds
(we proved the reverse estimate a moment before). This proves the optimality of
the strategy. □

Theorem 2.6. Suppose that we are interested in maximizing J∞. Then for
any x ∈ E and any strategy u we have

b∞(x) = Ab∞(x), b∞(x) ≥ J∞(x, u).
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Furthermore, if for any x ∈ E we have

b∞ = Ab∞(x) = q(x, u∞(x)) + γTu∞(x)b∞(x)

for some strategy u∗ = (u∞(x0), u∞(x1), . . .), then this strategy is optimal, provided

(2.5) lim
N→∞

EγNb∞(Xu∗

N ) = 0.

Proof. We �rst show the equality b∞ = Ab∞. Note that b∞ ≤ Ab∞, by the
monotonicity of A (see the proof of the previous theorem), and hence it is enough
to establish the reverse bound. To this end, note that

An+1(0) = sup
u∈U(x)

(
q(x, u) + γTuAn(0)(x)

)
≥ q(x, u) + γTuAn(0)(x)

for any x ∈ E and any u ∈ U(x). Hence, passing to the limit (and using Lebesgue's
monotone convergence theorem) we get b∞(x) ≥ q(x, u) + γTub∞(x). Take the
supremum over u to obtain b∞ ≥ Ab∞.

Next, we will prove that for any strategy u we have b∞ ≥ J∞(x, u). This
follows from the �nite horizon: for any N and any starting point x ∈ E we have

E
N∑

m=1

γm−1q(Xu
m−1, um(Xu

0 , . . . , X
u
m−1)) ≤ AN (0)(x) ≤ b∞(x),

and letting N → ∞ gives the claim. Finally, to show the optimality of the strategy
u in the statement, it is enough to prove that J∞(x, u) = b∞(x) for all x ∈ E.
Consider the modi�ed functional

J̃N (x, u) = E

{
N∑

m=1

γm−1q(Xu
m−1, um) + γNb∞(Xu

N )

}
.

By (2.5), we have J∞(x, u) = limN→∞ J̃N (x, u). However, Theorem 2.4 combined

with Ab∞ = b∞ yields J̃N (x, u) = b∞(x). Plugging this into the preceding equation
gives the assertion. □

Remark 2.7. The following example shows that the equality Ab∞ = b∞
need not hold in general; the example below concerns the case of cost functional.
Consider a Markov process on the state space E = {(j, k) : k = 1, 2, . . . , j =
1, 2, . . . , k} and let U = {2, 3, . . .}. The transition probabilities are given by

pu((1, 1), (1, u)) =
1

u
, pu((1, 1), (1, 1)) = 1− 1

u
,

and pu((k, k), (k, k)) = 1, pu((j, k), (j + 1, k)) = 1 for k ≥ 2 and j ≤ k − 1. For
x = (j, k) ∈ E and u ∈ U , let

q(x, u) = q((j, k), u) =

{
1 if j < k,

0 if j = k.

Furthermore, we assume that the discount factor γ is equal to 1. We compute
directly that

An(0)(1, k) = min{n, k − 1} for k ≥ 2, n = 1, 2, . . .

and

An(0)(1, 1) = 0, n = 1, 2, . . . .
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This implies b∞(1, k) = k − 1 for k ≥ 2 and b∞(1, 1) = 0. On the other hand,

Ab∞(1, 1) = inf
u≥2

u− 1

u
=

1

2
̸= b∞(1, 1).

To solve the problem, note that for any strategy u we have

J∞((1, 1), u) =
1

u0
(u0 − 1) +

(
1− 1

u0

)
· 1

u1
(u1 − 1) + . . .

=

(
1− 1

u0

)
+

(
1− 1

u0

)(
1− 1

u1

)
+ . . . ,

which is minimal (and equal to 1) for u0 = u1 = u2 = . . . = 2.

The second method of handling the in�nite horizon is to search directly for the
optimal value of the functional

J∞(X0, u) = E

{ ∞∑
m=1

γm−1q(Xu
m−1, um(Xu

m−1))

}
.

Suppose that we are interested in the maximal value of J∞. Then we introduce the
Bellman function b(x) = supu J

∞(x, u) and apply the standard recursive argument
to obtain the equation

(2.6) b(x) = Ab(x) = sup
u

{
q(x, u) + γTub(x)

}
(note that this equation appears in both Theorems 2.5 and 2.6 above). Now a
natural idea is to search for the solution of this equation; once we �nd it, we may
hope that it is indeed the desired extremal value of J∞(x, u), and the optimal
controls are those for which equation in (2.6) holds. However, there are some
drawbacks: as we have already seen in the deterministic case, the solution to (2.6)
may not be unique. In practice, having constructed some solution, we need to prove
rigorously that this candidate does coincide with the Bellman function in question.
Here is the idea. Suppose that some function b̃ satis�es the equation

b̃(x) = Ab̃(x) = sup
u

{
q(x, u) + γTub̃(x)

}
.

Then for any strategy u = (um)m≥1, with um = um(X0, X1, . . . , Xm−1) (note that
now we allow the dependence of um on the past values of the process!) we have

b̃(Xu
m−1) ≥ q(Xu

m−1, um)) + γE(b̃(Xu
m)|Xm−1),

which gives

E
{
γm−1b̃(Xu

m−1)− γmb̃(Xu
m)
}
≥ E

{
γm−1q(Xm−1, um)

}
.

Consequently, for any N we obtain

Eb̃(X0) ≥ γNEb̃(Xu
N−1) + JN (X0, u).

In addition, the above inequality may be as close to equality as we wish, by a proper
choice of controls. If for any such optimal, or almost-optimal strategy u the �rst
expectation on the right converges to zero as N → ∞ (compare this to (2.5)), we
obtain

Eb̃(X0) ≥ J∞(X0, u),

and equality is attained asymptotically.

Let us consider concrete examples.
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2.1. Example. We will solve the optimal control problem

sup
u

E
∞∑

m=1

√
um,

where the system is driven by the process (Xn)n≥0 satisfying X0 = 1 and

Xm = (Xm−1 − um)ξm, m = 1, 2, . . . .

Here um ∈ [0, Xm−1] and ξ1, ξ2, . . . is a sequence of independent, identically dis-
tributed random variables with P(ξm = 0) = P(ξm = 1) = 1/2.

We will present two possible approaches to this problem.

Method I. Approximation. Consider the associated operator

Ah(x) = sup
u∈[0,x]

{
√
u+ Eh((x− u)ξ)} = sup

u∈[0,x]

{√
u+

1

2
h(0) +

1

2
h(u− x)

}
.

We compute that

A(0)(x) = sup
u∈[0,x]

√
u =

√
x

and

A2(0)(x) = sup
u∈[0,x]

{√
u+

1

2

√
x− u

}
=

√
5

2

√
x,

with equality attained for u = 4x/5. This suggests that An(0)(x) = an
√
x for

some deterministic sequence (an)n≥0, with a0 = 0, a1 = 1. Repeating the above
argumentation, we check that this is indeed the case and (an)n≥0 satis�es the
recurrence

an+1 =

√
1 +

a2n
4
, n = 0, 1, 2, . . . .

A straightforward analysis shows that this sequence increases to 2/
√
3 in the limit;

hence, we have b∞(x) = 2√
3

√
x. It follows from Theorem 2.6 that

b∞(x) = Ab∞(x) = sup
u∈[0,x]

{√
u+

1

2
b∞(x− u)

}
,

and by the above calculation, equality is attained for the control u = 3x/4. For
this control, we easily check that the condition (2.5) holds (we have XN ↓ 0 almost

surely) and hence Eb∞(1) = 2/
√
3 is the desired optimal value of the functional.

Method II. A direct search for the Bellman function. The starting point is the
abstract formula

b(x) = sup
u

E

[ ∞∑
m=1

√
um : X0 = x

]
and the associated equation

(2.7) b(x) = Ab(x) = sup
u∈[0,x]

{√
u+

1

2
b(0) +

1

2
b(x− u)

}
.

By the very de�nition, we have b(0) = 0, so the equation reduces to

(2.8) b(x) = sup
u∈[0,x]

{√
u+

1

2
b(x− u)

}
.
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How to �nd a solution to this equation? They key is to go back to the abstract
de�nition of b. In principle, there are two possible methods. The �rst rests on
exploitation of some inner homogeneity hidden in b. In our case, observe that there
is a one-to-one correspondence between sequences X starting from x and controlled
by u, and sequences X̃ starting from λx and controlled by λu: all that is needed,
is to divide/multiply the sequence and controls by λ. Consequently, by the very
de�nition of b, we obtain

b(λx) =
√
λb(x),

so that b(x) = α
√
x for some parameter α ≥ 0 to be found. Plugging this into the

Bellman equation (2.7), we see that α = 2/
√
3.

It remains to verify rigorously that b is the desired optimal performance of the
functional. We have

b(Xm−1) ≥
√
um + E(b(Xm)|Xm−1),

with equality for um = 3Xm−1/4. Hence Eb(Xm−1)− Eb(Xm) ≥ √
um, so

b(1) = Eb(X0) ≥ Eb(XN ) +

N∑
m=1

√
um.

Letting N → ∞ we get b(1) ≥ J∞(X0, u). It follows from the above considerations
that equality holds for the strategy (3X0/4, 3X1/4, 3X2/4, . . .).

The second method of the search for b is to guess directly the optimal control, or
at least the shape of the optimal control. In our case, is seems plausible to assume
that the optimal controls um are given by βXm−1 for some (unknown) constant
β ∈ (0, 1): it is best to obtain Xm by �cutting o�� the same proportion of Xm−1.
For such strategy, we have Xm = (1− β)Xm−1ξm and Xm = x(1− β)mξ1ξ2 . . . ξm
for each m. Then

E
√
um = (βx)1/2(1− β)(m−1)/2(E

√
ξ1)

m−1 = (βx)1/2
(
1− β

4

)(m−1)/2

and the value of the Bellman function at x is
∞∑

m=1

(βx)1/2
(
1− β

4

)(m−1)/2

=

√
βx

1−
√
(1− β)/4

.

The largest value of this expression is attained for β = 3/4. Pugging this choice
above, we get the conjecture

b(x) =
2√
3

√
x.

Having obtained the candidate, we need to check that it works: this is done by
showing (2.8) and repeating the above argumentation.

2.2. Another example. The following deterministic problem may serve as a
warning. We will study the quantity

sup
u

∞∑
m=1

2−m · Xm−1 + um
2

,

where X0 = 1 and Xm = Xm−1 − um, m = 1, 2, . . .. Here the controls um are
arbitrary real numbers. Obviously, the above supremum is equal to in�nity: we
may take um = −Xm−1 + 2m for all m, which makes the sum divergent.
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On the other hand, the Bellman equation reads

b(x) = sup
u∈R

{
x+ u

2
+

1

2
b(x− u)

}
.

Note that b(x) = x solves this equation; arguing as above, we obtain

21−mb(Xm−1)− 2−mb(Xm) ≥ 21−m · Xm−1 + um
2

,

which leads to

1 = b(1) = b(X0) ≥ 2−Nb(XN ) + 2JN (X0, u) = 2−NXN + 2JN (X0, u).

The point is that there is no argument which would allow to discard the term
2−NXN and let N go to in�nity; there is no control over the sign of Xn.

For didactic reasons, let us modify the above problem, allowing um to belong
to [0, Xm−1]; this will make the sequence (Xn) decreasing and nonnegative. Then
the limiting argument clearly works and gives J∞(X0, u) ≤ 1/2 for any u. Actually,
equality holds for any strategy: indeed,

∞∑
m=1

2−m · Xm−1 + um
2

=

∞∑
m=1

2−m · 2Xm−1 −Xm

2

=
1

2

∞∑
m=1

(
21−mXm−1 − 2−mXm

)
=

1

2
.

2.3. An inequality for Rademacher variables. Suppose that ε1, ε2, . . .
is a sequence of independent Rademachers. We will show that for any random
variables a1, a2, . . ., with am depending on ε1, ε2, . . ., εm−1, we have

E

∣∣∣∣∣
N∑

n=1

anεn

∣∣∣∣∣ ≤ E
N∑

n=1

a2n +
1

4
, N = 0, 1, 2, . . . .

To this end, we put the problem into the framework developed above. Let Xm =∑m
n=1 anεn; thus, (Xn)n≥0 is governed by the conditionsX0 = 0 andXm = Xm−1+

amεm, and (am)m≥1 is a strategy to be optimized. We rewrite the inequality in the
form

inf
a
E

{
N∑

n=1

a2n − |XN |

}
≥ −1

4
.

Because of the appearance of the term |XN |, we should try to solve this problem
using the �nite horizon approach. So, �x N and de�ne the associated Bellman
sequence

Bm(x) = inf
a
E

[
N∑

n=m+1

a2n − |XN |
∣∣∣Xm = x

]
, m = 0, 1, 2, . . . .

Then BN (x) = −|x| and we have the Bellman equation

Bn−1(x) = inf
a

{
a2 + E(Bn(Xn)|Xn−1 = x)

}
= inf

a

{
a2 +

1

2
Bn(x− a) +

1

2
Bn(x+ a)

}
.
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The drawback is that the computations become involved: one checks that

BN−1(x) =

{
− 1

4 if |x| ≤ 1/4,

−|x| if |x| ≥ 1/4,

in general, Bn is a piecewise linear function, with quite a complicated formula.
It turns out that the in�nite horizon approach works e�ciently here. We start

with the Bellman equation

(2.9) b(x) = inf
a

{
a2 +

1

2
b(x− a) +

1

2
b(x+ a)

}
and search for b (or rather, for a candidate for this function). This search might
be informal, as the obtained candidate will be rigorously analyzed later. As in
the deterministic setting, we write down the in�nitesimal version of this condition.
Namely, for any a we must have

b(x) ≤ a2 +
1

2
b(x− a) +

1

2
b(x+ a),

or equivalently,

0 ≤ 1 +
b(x− a) + b(x+ a)− 2b(x)

2a2
.

Letting a → 0 (and assuming that b is of class C2), we see that b must satisfy
b′′(x)+2 ≥ 0. Assuming equality and noting the obvious symmetry of the function
b, we see that b(x) = −x2 + c for some constant c. This is our desired candidate.

We start the veri�cation. Regardless of the value of c, the function b evidently
satis�es (2.9): the expression in the parentheses is constant as a function of a.
Therefore, for any n we have

b(Xn−1) ≤ a2n + E(b(Xn)|Xn−1),

so Eb(Xn−1)− Eb(Xn) ≤ Ea2n and

c = b(0) = Eb(X0) ≤ Eb(XN ) + E
N∑

n=1

a2n.

However, we have the pointwise inequality b(x) = −x2 + c ≤ −|x| + 1
4 + c, which

plugged above yields

c ≤ −E|XN |+ E
N∑

n=1

a2n +
1

4
+ c.

This is the claim.

3. Problems

1. We roll a dice at most four times; at each time we may take the number we
have just obtained and stop. Find the strategy which yields the largest expectation.

2. The urn contains N black balls and three white balls. We draw balls without
replacement, one at a time, and after each draw we may decide to stop. Having
stopped the procedure, we obtain the reward, which is equal to 0 if we picked a
white ball during the process; if we only drew black balls, then the reward is equal
to the number of black balls. Find the strategy which maximizes the expected
reward.
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3. We have a four-faced dice, with numbers 0, 1, 2 and 3 on its faces. We roll it
N times; before each time, we decide (control) whether the outcome we will obtain
will be added, or multiplied by the number collected so far. Find the strategy which
yields optimal expected return.

4. A farmer annually produces Xk units of a certain crop and stores (1 −
uk+1)Xk units of his production, where 0 ≤ uk+1 ≤ 1, and invests the remaining
uk+1Xk units, thus increasing the next year production to a level Xk+1 given by

Xk+1 = Xk +Wk+1uk+1Xk, k = 0, 1, . . . , N − 1.

The scalarsWk are bounded independent random variables with identical probabil-
ity distributions that depend neither on Xk nor on uk. Furthermore, EWk = w̄ > 0.
The problem is to �nd the optimal policy that maximizes the total expected product
stored over N years:

E

{
XN +

N∑
m=1

(1− um)Xm−1

}
.

5. Consider the problem

supE

{
−δ exp(−γXN )−

N∑
m=1

exp(−γum)

}
,

where un are controls taking values anywhere in R, δ and γ are given positive
numbers, and where

Xn+1 = 2Xn − un+1 + Vn+1, X0 given.

Here Vn+1, n = 0, 1, 2, ..., N − 1, are identically and independently distributed, and
K := E exp(−γVn+1) <∞.

6. Solve the problem

supE

{
N∑

m=1

2
√
um + aXN

}
,

where un ≥ 0, a > 0, X0 > 0 and Xn+1 = Xn − un+1 with probability 1/2,
Xn+1 = 0 with probability 1/2.

7. Solve the problem

supE

{
N∑

m=1

(1− um)Xm−1

}
, X0 = 1,

where un ∈ [0, 1] and

Xn+1 = Xn + un+1Xn + Vn+1,

where Vn+1 ≥ 0 is exponentially distributed with parameter λ.

8. Consider the problem

supE

{
N∑

m=1

{(1− um)X2
m−1 − um}+ 2X2

N

}
,

subject to

Xn+1 = un+1XnVn+1, u ∈ [0, 1],

where Vn+1 = 2 with probability 1/4, Vn+1 = 0 with probability 3/4.
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9. The capital of the investor at time n is equal to Xn. At each time, the
investor splits its capital, devoting cn ∈ [0, Xn] to consumption and investing the
remaining Xn − cn using two types of instruments. First, he puts bn(Xn − cn) into
the bank, with the return interest equal to 1+r; for the remaining (1−bn)(Xn−cn),
he buys risky shares, for which the return is random and equals 1+ ξn. We assume
that ξ1, ξ2, . . ., ξN are independent and identically distributed random variables,
with P(ξ ≥ −1) = 1. Maximize the functional

E

{
N−1∑
n=0

γncαn + γNwXα
N

}
,

where γ, α ∈ [0, 1] and w > 0 are given parameters.

10. Solve the problem

supE

{ ∞∑
m=1

γm(−u2m −X2
m−1)

}
,

where um ∈ R, γ ∈ (0, 1) and (Xn)n≥0 is governed by the recurrence

Xm = Xm−1 + um + ξm, m = 1, 2, . . . .

Here ξ1, ξ2, . . . is a sequence of independent identically distributed random variables
with Eξm = 0 and Eξ2m = σ2.

11. Solve the problem

supE

{ ∞∑
m=1

βm(lnum + lnXm−1)

}
,

where X0 > 0, Xm = (Xm−1 − um)ξm, um ∈ (0, Xm−1), β ∈ (0, 1) and ξ1, ξ2,
. . . is a sequence of independent, identically distributed random variables satisfying
|E ln ξm| <∞.

12. At time n, a salesman has Xn ∈ [0, 1] tons of sugar; let ξn denote
the demand for the sugar at that time. At time n, the salesman places the or-
der un+1 for the sugar, which is realized at time n + 1; we assume that un+1 ∈
[−max{Xn− ξn, 0}, 1−max{Xn− ξn, 0}]. The cost at time n consists of two parts:
the insu�ciency cost max{ξn −Xn, 0} and the storage cost cXn. Find the optimal
strategy for the �nite and in�nite horizon, with the discount factor γ ∈ (0, 1).

13. Consider a Markov chain (Xn)n≥0 on {0, 1}, starting from 0. We assume
that for each n, the transities are given by

P(Xn = 1|Xn−1 = 0) = 1, P(Xn = 0|Xn−1 = 1) = un = 1− P(Xn = 1|Xn−1 = 1.

For a given γ ∈ (0, 1), �nd the strategy u which minimizes the cost functionals

E
∞∑

n=1

γn−1√un1{Xn−1=1}, E
∞∑

n=1

γn−1(
√
un + 1)1{Xn−1=1}.

14. A king moves randomly across the chessboard of dimension N×N ; it starts
at the upper-left corner and stops at the down-right corner. At each step, we may
decided whether the king moves vertically or horizontally (having determined the
direction, the king moves, picking the neighboring �elds with equal probability).
Find the strategy which minimizes the average number of moves.
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15. Consider the symmetric random walk X over integers, starting from 0.
At each time n, we may perform an action un ∈ {0, 1}; the choice un = 0 does
nothing, while un = 1 forces the walk to decrease by 1. For a given γ ∈ (0, 1), �nd
the strategy which minimizes the functional

∞∑
n=1

γn−1
(
un + 1{max0≤k≤n−1 Xk≥1}

)
.





CHAPTER 3

Optimal Stopping Theory

1. Martingale approach: description

In the optimal stopping theory, one distinguishes two techniques: the mar-
tingale approach and the Markovian approach, the purpose of this section is to
describe the �rst of them.

Suppose that (Ω,F ,P) is a given probability space, equipped with a �ltration
(Fn)n≥0, i.e., a nondecreasing family of sub-σ-algebras of F . Let X = (Xn)n≥0

be an adapted sequence of random variables, i.e., we assume that for each n ≥ 0
the random variable Xn is measurable with respect to Fn. Our objective will be
to stop this sequence so that the expected return is maximized. The stopping
procedure is described by a random variable τ : Ω → {0, 1, 2, . . .}, which returns
the value of the time when the sequence (Xn)n≥0 should be stopped. Clearly, a
reasonable procedure decides whether to stop the sequence at time n is based on
the observations up to time n; this means that for each n we have

{τ = n} ∈ Fn for each n ≥ 0.

The random variable τ satisfying the above condition will be called a stopping time.
Let us put the discussion into a more precise framework. The optimal stopping

problem concerns the study of

(3.1) V0 = sup
τ

EXτ ,

where the supremum is taken over a certain family of adapted stopping times τ
(which depends on the problem). We should point out that the study consists of
two parts: (i) to compute the value V0 as explicitly as possible; (ii) to identify the
optimal stopping time τ∗ (or the family of almost-optimal stopping times) for which
the supremum V0 is attained.

The �rst problem we encounter concerns the existence of EXτ , to overcome
which we need to impose some additional assumptions on X and τ . For example,
if

(3.2) E sup
n≥0

|Xn| <∞,

then the expectation EXτ is well de�ned for all stopping times τ . Another possi-
bility is to restrict in (3.1) to those τ , for which the expectation exists. One way
or another, we should emphasize that in general, this obstacle is just a technicality
which is easily removed by some straightforward arguments (which might depend
on the problem under the study). For the sake of simplicity and the clarity of
the statements, we will assume that the condition (3.2) is satis�ed, but it will be
evident how to relax this requirement in other contexts.

31
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So, let us assume that the supremum in (3.1) is taken over the family M of all
stopping times τ . A successful treatment of this problem requires the introduction,
for each n ≤ N , the smaller family

MN
n = {τ ∈ M : n ≤ τ ≤ N}.

We will also write MN = MN
0 and Mn = M∞

n . These families give rise to the
related value functions

(3.3) V N
n = sup

τ∈MN
n

EXτ ,

and we will use the notation V N = V N
0 , Vn = V∞

n and V = V∞
0 . The primary

goal of this section is to present the solution to (3.3) with the use of martingale
approach.

Before we proceed, let us mention that the above problem can be put into the
general framework of optimal control: we observe the sequence (Xn)n≥0, term by
term, and at each time we can perform two actions (controls): stop the observation
and take the last variable, or continue. Perhaps the new feature is the lack of any
additional structure of the sequence (Xn)n≥0 (which was previously expressed in
terms of the evolution function F ).

1.1. Martingale approach: �nite horizon. If N < ∞ (the case of ��nite
horizon�), then the problem (3.3) can be easily solved by means of the backward
induction. Indeed, let us �x a nonnegative integer N and try to inspect the value
functions as n decreases from N to 0. If n = N , then the class MN

n consists of
one stopping time τ ≡ N only and hence the optimal gain is equal to XN (and
V N
N = EXN ). If n = N −1, then we have two choices for the stopping time: we can

either stop at time N − 1 or continue and stop at time N . In the �rst case our gain
is XN−1; in the second case we do not know what the random variable XN will
be, so we can only say that on average, we will obtain E(XN |FN−1). Therefore, if
XN−1 ≥ E(XN |FN−1), we should stop immediately; otherwise, we should continue.
For smaller values of n we proceed similarly. More precisely, de�ne recursively the
sequence (BN

n )0≤n≤N , representing the optimal gains at times 0, 1, 2, . . ., N , as
follows:

BN
N = XN ,

BN
n = max

{
Xn,E(BN

n+1|Fn)
}
, n = N − 1, N − 2, . . . .

(3.4)

The above discussion also suggests to consider the family of stopping times

(3.5) τNn = inf
{
k ∈ {n, n+ 1, . . . , N} : BN

k = Xk

}
,

for n = 0, 1, 2, . . . , N .

Theorem 3.1. Suppose that N is a �xed integer and the sequence X = (Xk)
N
k=n

satis�es Emaxn≤k≤N |Xk| < ∞. Consider the optimal stopping problem (3.3) and
the sequence (BN

k )Nk=n, de�ned by (3.4).
(i) The sequence (BN

k )Nk=n is the smallest supermartingale majorizing (Xk)
N
k=n.

In addition, the stopped sequence
(
BN

τN
n ∧k

)N
k=n

is a martingale.

(ii) For any 0 ≤ n ≤ N we have, with probability 1,

BN
n ≥ E(Xτ |Fn) for any τ ∈ MN

n ,(3.6)

BN
n = E(XτN

n
|Fn).(3.7)
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(iii) The stopping time τNn is optimal in (3.3) and any other optimal stopping
time τ∗ satis�es τ∗ ≥ τNn almost surely.

Proof. (i) The supermartingale property and the majorization follow directly
from the de�nition of the sequence (BN

n )Nn=0. If (B̄
N
n )Nn=0 is another supermartingale

majorizing (Xk)
N
k=n, then the desired inequality BN

k ≤ B̄N
k almost surely, k =

n, n+1, N+2, . . . , N , can be proved by backward induction. Indeed, the estimate
is trivial for k = N (we have BN

N = XN ≤ B̄N
N , by the majorization property of B̄),

and assuming its validity for k, we see that

B̄N
k−1 ≥ max{Xk−1,E(B̄N

k |Fk−1)} ≥ max{Xk−1,E(BN
k |Fk−1)} = BN

k−1.

So, it remains to prove the martingale property of the stopped process
(
BN

τN
n ∧k

)N
k=n

.

We compute directly that

E
[
BN

τN
n ∧(k+1) | Fk

]
= E

[
BN

τN
n ∧(k+1)1{τN

n ≤k} | Fk

]
+ E

[
BN

τN
n ∧(k+1)1{τN

n >k} | Fk

]
= E

[
BN

τN
n ∧k1{τN

n ≤k} | Fk

]
+ E

[
BN

k+11{τN
n >k} | Fk

]
= BN

τN
n ∧k1{τN

n ≤k} + 1{τN
n >k}E

[
BN

k+1 | Fk

]
.

However, on the set {τNn > k} we have BN
k > Xk and hence BN

k = E(BN
k+1|Fk).

This shows the identity E
[
BN

τN
n ∧(k+1) | Fk

]
= BN

τN
n ∧k1{τN

n ≤k}+1{τN
n >k}B

N
k = BN

τN
n ∧k

and part (i) is established.

(ii) This follows at once from (i) and Doob's optional sampling theorem.

(iii) Taking the expectations in (3.6) and (3.7) gives EXτ ≤ EBN
n = EXτN

n
for

all τ ∈ MN
n , showing that τNn is indeed the optimal stopping time. Suppose that τ∗

is another optimal stopping time. Then BN
τ∗ = Xτ∗ almost surely, since otherwise

we would have

EXτ∗ < EBN
τ∗ ≤ EBN

n = EXτN
n
,

where the second inequality follows from Doob's optional sampling theorem and
the supermartingale property of the sequence (BN

k )Nk=n. The contradiction shows
that Bτ∗ and Xτ∗ must coincide, and clearly τNn is the smallest stopping time which
has this property. □

Thus we see that in the case of �nite horizon, the solution to the optimal
stopping problem is algorithmic. We write down the recursive formula for the
Bellman sequence (BN

n )Nn=0 and note that V N = EBN
0 .

1.2. Martingale approach: in�nite horizon. The above method required
N to be a �nite integer, since we have needed the variable XN to start the backward
recurrence. In the case N = ∞ one could try to use approximation-type arguments
(of the form V∞

n = limN→∞ V N
n ), but these do not necessarily work in general, so

we will proceed in a di�erent manner. By (3.6) and (3.7) it seems tempting to write

BN
n = sup

τ∈MN
n

E(Xτ |Fn).

However, two problems arise. The �rst is that (3.6) and (3.7) hold true on a set of
full measure only which might depend on the stopping time, so the above identity
might fail to hold. A second obstacle is that the supremum on the right need not be
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even measurable. To overcome these di�culties, a typical argument in the theory
of optimal stopping is to introduce the concept of essential supremum.

Definition 3.1. Let (Zα)α∈I be a family of random variables. Then there is
a countable subset J of I such that the random variable Z = supα∈J Zα satis�es
the following two properties:

(i) P(Zα ≤ Z) = 1 for each α ∈ I,

(ii) if Z̃ is another random variable satisfying (i) in the place of Z, then

P(Z ≤ Z̃) = 1.

The random variable Z is called the essential supremum of (Zα)α∈I and is denoted
by ess supα∈I Zα. In addition, if {Zα : α ∈ I} is upwards directed in the sense that
for any α, β ∈ I there is γ ∈ I such that max{Zα, Zβ} ≤ Zγ , then the countable
set J = {α1, α2, . . .} can be chosen so that Zα1

≤ Zα2
≤ . . . and ess supα∈I Zα =

limn→∞ Zαn
.

Now we see that (3.6) and (3.7) give the identity

(3.8) BN
n = ess sup

τ∈MN
n

E(Xτ |Fn)

with probability 1. A nice feature of this alternative characterization of the sequence
(BN

n )Nn=0 is that it extends naturally to the setting of in�nite horizon (i.e., for
N = ∞) and, as we shall prove now, provides the desired solution.

So, consider the optimal stopping problem (3.3) for N = ∞:

(3.9) Vn = sup
τ≥n

EXτ .

For n = 0, 1, 2, . . ., introduce the random variable

(3.10) Bn = ess sup
τ≥n

E(Xτ |Fn)

and the stopping time

(3.11) τn = inf{k ≥ n : Bk = Xk},

with the usual convention inf ∅ = ∞. In the literature, the sequence (Bn)n≥0 is
often referred to as the Snell envelope of X.

We will establish the following analogue of Theorem 3.1.

Theorem 3.2. Suppose that the sequence (Xn)n≥0 satis�es E supn≥0 |Xn| <∞
and consider the optimal stopping problem (3.9). Then the following statements hold
true.

(i) For any n ≥ 0 we have the recurrence relation

Bn = max(Xn,E(Bn+1|Fn)).

(ii) We have P(Bn ≥ E(Xτ |Fn)) = 1 for all τ ∈ Mn and, if the stopping time
τn is �nite almost surely, then P(Bn = E(Xτn |Fn)) = 1.

(iii) If P(τn < ∞) = 1, then τn is optimal in (3.9). Furthermore, if τ∗ is
another optimal stopping time for (3.9), then τn ≤ τ∗ almost surely.

(iv) The sequence (Bk)k≥n is the smallest supermartingale which majorizes
(Xk)k≥n. Moreover, the stopped process (Bτn∧k)k≥n is a martingale.
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Proof. We will only establish (i), the other parts can be shown with the
argumentation similar to that used in the proof of Theorem 3.1. We need to show
two inequalities to prove the identity. Take τ ∈ Mn and let τ ′ = τ ∨ (n+1). Then
τ ′ ∈ Mn+1 and since {τ ≥ n+ 1} ∈ Fn, we may write

E(Xτ |Fn) = E(Xτ1{τ=n}|Fn) + E(Xτ1{τ≥n+1}|Fn)

= 1{τ=n}Xn + 1{τ≥n+1}E(Xτ ′ |Fn)

= 1{τ=n}Xn + 1{τ≥n+1}E
[
E(Xτ ′ |Fn+1)|Fn

]
≤ 1{τ=n}Xn + 1{τ≥n+1}E(Bn+1|Fn)

≤ max{Xn,E(Bn+1|Fn)}.

This proves the inequality �≤�. To show the reverse, observe that the family
{E(Bτ |Fn+1) : τ ∈ Mn+1} is upwards directed. Indeed, if α, β ∈ Mn+1 and
we set γ = α1A + β1Ω\A, where A = {E(Xα|Fn+1) ≥ E(Xβ |Fn+1)}, then γ is a
stopping time belonging to Mn+1 and

E(Xγ |Fn+1) = E(Xα1A +Xβ1Ω\A|Fn+1)

= 1AE(Xα|Fn+1) + 1Ω\AE(Xβ |Fn+1)

= max
{
E(Xα|Fn+1),E(Xβ |Fn+1)

}
.

Therefore, there is a sequence {σk : k ≥ 1} in Mn+1 such that

ess sup
τ∈Mn+1

E(Xτ |Fn+1) = lim
k→∞

E(Xσk
|Fn+1)

and E(Xσ1
|Fn+1) ≤ E(Xσ2

|Fn+1) ≤ . . . with probability 1. Now we can write, by
Lebesgue's monotone convergence theorem,

E(Bn+1|Fn) = E

(
ess sup
τ∈Mn+1

E(Xτ |Fn+1)

∣∣∣∣Fn

)

= E
(

lim
k→∞

E(Xσk
|Fn+1)

∣∣∣∣Fn

)
= lim

k→∞
E
(
E(Xσk

|Fn+1)|Fn

)
= lim

k→∞
E(Xσk

|Fn) ≤ Bn.

Since Bn ≥ Xn (which can be trivially obtained by considering τ ≡ n in the
de�nition of Bn), we get the desired identity. □

In the remaining part of this subsection, let us inspect the connection between
the contexts of �nite and in�nite horizons. One easily checks that the random
variables BN

n and τNn do not decrease as we increase N . Consequently, the limits

B∞
n := lim

N→∞
BN

n and τ∞n := lim
N→∞

τNn

exist on a set of full measure. Furthermore, we also see that the sequence (V N
n )∞N=n

is nondecreasing, so the quantity V∞
n = limN→∞ V∞

n is well-de�ned. Now it follows
directly from (3.5), (3.8), (3.10) and (3.11) that

(3.12) B∞
n ≤ Bn and τ∞n ≤ τn

almost surely. Moreover, we also have

(3.13) V∞
n ≤ Vn.
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Theorem 3.3. Suppose that E supn≥0 |Xn| <∞ and consider the optimal stop-
ping problems (3.3) and (3.9). Then equalities hold in (3.12) and (3.13).

Proof. Letting N → ∞ in the recurrence relation (3.4) yields

B∞
n = max{Xn,E(B∞

n+1|Fn)}, n = 0, 1, 2, . . . ,

by Lebesgue's monotone convergence theorem. Consequently, (B∞
n )n≥0 is an adapted

supermartingale dominating (Xn)n≥0. Thus B∞
n ≥ Bn for each n, by the fourth

part of the preceding theorem. This shows the identity B∞ = B almost surely, and
the remaining equalities follow immediately. □

Example 3.4. Strict inequalities may hold in (3.12) and (3.13) if the integra-
bility condition on supn≥0 |Xn| is not imposed. To see this, let ε0, ε1, ε2, . . . be
a sequence of independent Rademacher variables and set Xn = ε0 + ε1 + . . .+ εn.
Then the process (Xn)n≥0 is a martingale with respect to the natural �ltration, so
V N
n = 0, BN

n = Xn and τNn = n for all 0 ≤ n ≤ N < ∞. Consequently, these
identities are preserved in the limit: V∞

n = 0, B∞
n = Xn and τ∞n = n for all n. On

the other hand, it is well-known that for any positive integer a, the stopping time
σn = inf{k ≥ n : Xk = a} is �nite almost surely and hence Vn ≥ EXσn = a. Since
a was arbitrary, we get Vn = ∞, Bn = ∞ and τn = ∞ with probability 1.

In comparison to the �nite-horizon case, the solution in the in�nite case is no
longer algorithmic. One typically applies the following procedure, already known to
us from the general theory of optimal control. Namely, basing on some structural
properties of the problem, or simply by guessing the optimal stopping time, we
come up with the candidate Bn for the Bellman sequence. Then all that needs to
be done, is the identity Bn = Bn. The estimate Bn ≥ Bn follows directly from
the construction (if Bn is based on a guess for the optimal stopping time), and the
reverse bound is established by checking that (Bn)n≥0 is indeed a supermartingale
majorant of a given sequence X. It is best to explain this idea on a concrete
example.

1.3. An example. Let ξ0, ξ1, ξ2, . . . be i.i.d. random variables following the
Exp(1) law, and let c > 0 be a �xed constant. We will solve the optimal stopping
problem

V = sup
τ∈M

E
[
max{ξ0, ξ1, ξ2, . . . , ξτ} − cτ

]
.

For the sake of clarity, we will split the reasoning into three separate steps. To put
this problem into the general framework of the optimal stopping theory, we set

Xn = max{ξ0, ξ1, ξ2, . . . , ξn} − cn.

Then V = supτ∈M ξτ and we may proceed.

Step 1. Guessing the optimal stopping rule and the associated

expectation. This is an informal step and it requires some thought and experi-
mentation. It seems reasonable to conjecture that the optimal stopping rule should
be of the following threshold type:

τa = inf{n : ξn ≥ a}
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for some unknown constant a. To �nd a, let us �rst compute the corresponding
expectation

(3.14) E
[
max{ξ0, ξ1, ξ2, . . . , ξτa} − cτa

]
.

Note that τa has the geometric distribution with parameter P(ξ0 ≥ a) and hence

Eτa =
P(ξ0 < a)

P(ξ0 ≥ a)
=

1− e−a

e−a
= ea − 1.

Furthermore, we have

Emax{ξ0, ξ1, ξ2, . . . , ξτa} = Eξτa = E(ξ0|ξ0 ≥ a)

=
1

P(ξ0 ≥ a)

∫
{ξ0≥a}

ξ0dP

= ea
(
ae−a + 1 · e−a

)
= a+ 1

and hence the expectation (3.14) equals a + 1 − c(ea − 1). We want to maximize
this expectation (over all possible stopping times, and so, in particular, over τa):
we easily check that

max
a

{
a+ 1− c(ea − 1)

}
=

{
1 if c ≥ 1 (maximum attained at a∗ = 0),

c− ln c if c < 1 (maximum attained at a∗ = − ln c).

Let us denote the right-hand side by Ṽ . This is the candidate for the value of our
optimal stopping problem.

Step 2. Guessing the Snell envelope. Actually, the computation from
the previous step easily yields the corresponding candidate for the Snell envelope.
From the general theory, we know that

Bn = esssup
τ≥n

E(Xτ |Fn).

Take τ = τa∗ ∨n (the additional maximum with n is to enforce the estimate τ ≥ n):
by the above computations, for this special stopping time, we have

E(Gτ |Fn) =

{
max{ξ0, ξ1, . . . , ξn} − cn if max{ξ0, ξ1, . . . , ξn} ≥ a∗,

Ṽ − c(n+ 1) if max{ξ0, ξ1, . . . , ξn} < a∗.

Let us denote the right-hand side by B̃n: this is our candidate for the Snell envelope
of (Gn)n≥0. By the very de�nition, we have B̃n ≤ Bn.

Step 3. Verification of the properties of B̃. Now we will check that
(B̃n)n≥0 is a supermartingale majorizing (Gn)n≥0. Then by the general theory we

will obtain the reverse estimate B̃n ≥ Bn, which will show that B̃ coincides with
the Snell envelope and the stopping time τa∗ is optimal.

We start with the majorization. On the set {max{ξ0, ξ1, . . . , ξn} ≥ a∗} we have

B̃n = Gn. On the other hand, on {max{ξ0, ξ1, . . . , ξn} < a∗} (which is nonempty
i� a∗ > 0, i.e., c < 1), the majorization is equivalent to

Ṽ − c(n+ 1) ≥ max{ξ0, ξ1, . . . , ξn} − cn

or − ln c ≥ max{ξ0, ξ1, . . . , ξn}: but this is trivial, since − ln c = a∗.

It remains to check the supermartingale property of B̃n:

(3.15) E(B̃n+1|Fn) ≤ B̃n, n = 0, 1, 2, . . . .
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On the set {max{ξ0, ξ1, . . . , ξn} ≥ a∗} ∈ Fn we automatically have the bound
max{ξ0, ξ1, . . . , ξn+1} ≥ a∗ and hence

E(B̃n+1|Fn) = E
(
max{ξ0, ξ1, . . . , ξn+1} − c(n+ 1)|Fn

)
.

Now, consider the random variable ξ = max{ξ0, ξ1, . . . , ξn}. But for any a > a∗,

E
(
max{a, ξn+1} − c(n+ 1)

)
≤ a− cn

(this is equivalent to e−a ≤ c and holds true, since e−a∗ ≤ c). Hence

E
(
max{ξ0, ξ1, . . . , ξn+1} − c(n+ 1)|Fn

)
= E

(
max{a, ξn+1} − c(n+ 1)

)∣∣∣∣
a=ξ

≤ ξ − cn = B̃n.

Next, we analyze (3.15) on the set {max{ξ0, ξ1, . . . , ξn} < a∗} (which is nonempty
i� a∗ > 0, i.e., c < 1). On this set, we have the identity

B̃n+1 =

{
ξn+1 − c(n+ 1) if ξn+1 ≥ a∗,

Ṽ − c(n+ 2) if ξn+1 < a∗,

which is independent of Fn. Consequently, the conditional expectation E(B̃n+1|Fn)
is equal to the average of the right-hand side above, i.e., to

E
[
(ξn+1 − c(n+ 1))1{ξn+1≥a∗} + (Ṽ − c(n+ 2))1{ξn+1<a∗}

]
= Eξn+11{ξn+1≥a∗} − c(n+ 1) + (Ṽ − c)P(ξn+1 < a∗)

= e−a∗(a∗ + 1)− c(n+ 1) + (Ṽ − c)(1− e−a∗) = V − c(n+ 1) = B̃n,

where we have used the identity a∗ = − ln c.
This completes the proof of (3.15) and �nishes the analysis of the optimal

stopping problem.

2. Markovian approach

Throughout this section, we assume that X = (X0, X1, X2, . . .) is a Markov
family de�ned on (Ω,F , (Fn)n≥0, (Px)x∈E), taking values in some topological space
(E,B(E)). For the sake of simplicity, we will assume that E = Rd for some d ≥ 1,
though the reasoning remains essentially the same for other topological spaces. As
usual, we assume that for each x ∈ E, we have X0 ≡ x Px-almost surely. Let us
also introduce the transition operator T of X, which acts by the formula

Tf(x) = Exf(X1) for x ∈ E,

on the class I of all measurable functions f : E → R such that f(X1) is Px-integrable
for all x ∈ E.

Suppose that N is a nonnegative integer and let G : E → R be a measurable
function satisfying

(3.16) Ex

(
sup

0≤n≤N
|G(Xn)|

)
<∞ for all x ∈ E.

Consider the associated �nite-horizon optimal stopping problem

(3.17) V N (x) = supExG(Xτ ),
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where x ∈ E and the supremum is taken over all τ ∈ MN . Obviously, if we
de�ne Gn = G(Xn) for n = 0, 1, 2, . . ., then for each separate x this problem is
of the form considered in the preceding sections (with P and E replaced by Px and
Ex). However, the joint study of the whole family of optimal stopping problems
depending on the initial value x enables the exploitation of the additional Markovian
structure of the sequence (Xn)n≥0.

For a given x, let us consider the random variables BN
n and the stopping times

τNn , n = 0, 1, 2, . . . , N , de�ned by (3.4) and (3.5). We also introduce the sets

Cn = {x ∈ E : V N−n(x) > G(x)},
Dn = {x ∈ E : V N−n(x) = G(x)},

for n = 0, 1, 2, . . . , N ; we will call these the continuation and stopping regions,
respectively. Finally, de�ne the stopping time

τD = inf{0 ≤ n ≤ N : Xn ∈ Dn}.
Since V 0 = G, by the very de�nition (3.17), we see that XN ∈ DN and hence the
stopping time τD is �nite (it does not exceed N).

Theorem 3.5. Assume that the function G satis�es the integrability condition
(3.16) and consider the optimal stopping problem (3.17).

(i) For any n = 0, 1, 2, . . . , N we have BN
n = V N−n(Xn).

(ii) The function x 7→ V n(x) satis�es the Wald-Bellman equation

(3.18) V n(x) = max{G(x), TV n−1(x)}, x ∈ E,

for n = 1, 2, . . . , N .
(iii) The stopping time τD is optimal in (3.17). If τ∗ is another optimal stopping

time, then τD ≤ τ∗ Px-almost surely for all x ∈ E.
(iv) For each x ∈ E, the sequence (V N−n(Xn))

N
n=0 is the smallest Px-supermar-

tingale majorizing (G(Xn))
N
n=0, and the stopped sequence

(
V N−n∧τD (Xn∧τD )

)N
n=0

is a Px-martingale.

Proof. We only need to establish (i) and (ii); the remaining parts follow at
once from Theorem 3.1. To verify (i), recall that

BN
n = Ex

[
G(XτN

n
)|Fn

]
for all n = 0, 1, 2, . . . , N . This shows the claim for n = 0, by the very de�nition
of V N (x). On the other hand, for n ≥ 1 we apply the Markov property to get

BN
n = Ey

[
G(XτN−n

0
)
] ∣∣∣∣

y=Xn

= V N−n(y)
∣∣
y=Xn

= V N−n(Xn).

(ii) We apply the de�nition of the sequence (BN
n )Nn=0 and part (i) to obtain

that Px-almost surely,

V N (x) = V N (X0) = BN
0 = max{G(X0),Ex(B

N
1 |F0)}

= max{G(x),Ex(V
N−1(X1)|F0)}

= max{G(x), TV N−1(x)}. □

Part (ii) above gives the following iterative method of solving (3.17). De�ne
the operator Q acting on f ∈ I by the formula

Qf(x) = max{G(x), Tf(x)}, x ∈ E.
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Corollary 3.6. We have V N (x) = QNG(x) for all x ∈ E and all integers N .

Let us illustrate the above considerations by analyzing the following simple
example.

Example 3.7. Let (Sn)n≥0 be a symmetric random walk over the space E =
{−2,−1, 0, 1, 2} stopped at {−2, 2}. Clearly, (Sn)n≥0 is a Markov family on E. Set
G(x) = x2(x+ 2) and consider the optimal stopping problem

V N (x) = sup
τ≤N

ExG(Sτ ), x ∈ E.

To treat the problem successfully, we compute the sequence V 0, V 1, V 2, V 3, . . ..
Directly from (3.18), we have

V n(x) = max{G(x), TV n−1(x)}

=

max{G(x), V n−1(x)} if x ∈ {−2, 2},

max

{
G(x), 12

(
V n−1(x− 1) + V n−1(x+ 1)

)}
if x ∈ {−1, 0, 1}.

For notational simplicity, let us identify a function f : E → R with the sequence of
its values f(−2), f(−1), f(0), f(1), f(2). Using the above recurrence, we compute
that

V 0 = G : 0, 1, 0, 3, 16,
V 1 : 0, 1, 2, 8, 16,
V 2 : 0, 1, 4 1

2 , 9, 16,
V 3 : 0, 2 1

4 , 5 10 1
4 , 16,

V 4 : 0, 2 1
2 , 6 1

4 , 10 1
2 , 16,

. . .

and so on. Suppose that we want to solve the problem

V 4(x) = sup
τ≤4

ExG(Sτ ), x ∈ E.

The value function V 4 has been derived above; to describe the optimal stopping
strategy, let us write down the continuation and stopping regions Ci and Di, i =
0, 1, 2, 3, 4. Directly from the above formulas for V i, we see that

C0 = {−1, 0, 1}, D0 = {−2, 2},
C1 = {−1, 0, 1}, D1 = {−2, 2},
C2 = {0, 1}, D2 = {−2,−1, 2},
C3 = {0, 1}, D3 = {−2,−1, 2},
C4 = ∅ D4 = {−2,−1, 0, 1, 2}.

The optimal strategy is to wait for the �rst step n at which we visit the correspond-
ing stopping set Dn; then we stop the process ultimately.

We turn our attention to the case of in�nite horizon, i.e., we consider the
optimal stopping problem (or rather a family of optimal stopping problems)

(3.19) V (x) = supExG(Xτ ), x ∈ E,

where the supremum is taken over the classM of all adapted stopping times. Recall
that the class I consists of all measurable functions f : E → R such that f(X1)
is Px-integrable for all x ∈ E. The following notion will be crucial in our further
considerations.
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Definition 3.2. The function f ∈ I is called superharmonic (or excessive) if
we have

Tf(x) ≤ f(x) for all x ∈ E.

We have the following simple observation.

Lemma 3.8. The function f ∈ I is superharmonic if and only if (f(Xn))n≥0 is
a supermartingale under each Px, x ∈ E.

Proof. If f is superharmonic, then by Markov property,

Ex(f(Xn+1)|Fn) = Eyf(X1)
∣∣
y=Xn

= Tf(Xn) ≤ f(Xn),

for each n. To show the reverse implication, observe that if (f(Xn))n≥0 is a super-
martingale under each Px, then in particular

Tf(x) = Ex(f(X1)|F0) ≤ f(x). □

To formulate the main theorem, we introduce the corresponding continuation
set C and stopping set D by

C = {x ∈ E : V (x) > G(x)},
D = {x ∈ E : V (x) = G(x)}.

Moreover, we de�ne the stopping time τD = inf{n : Xn ∈ D}. In contrast to the
case of �nite horizon, this stopping time need not be �nite (which will force us to
impose some additional assumptions: see the statement below).

Theorem 3.9. Consider the optimal stopping problem (3.19) and assume that

(3.20) Ex sup
n≥0

|G(Xn)| <∞, x ∈ E.

Then the following holds.
(i) The function V satis�es the Wald-Bellman equation

(3.21) V (x) = max{G(x), TV (x)}.
(ii) If τD is �nite Px-almost surely for all x ∈ E, then τD is the optimal stopping

time. If τ∗ is another optimal stopping time, then τ∗ ≥ τD Px-almost surely.
(iii) The value function V is the smallest superharmonic function which ma-

jorizes the gain function G on E.
(iv) The stopped sequence (V (XτD∧n))n≥0 is a Px-martingale for every x ∈ E.

Proof. This follows immediately from the case of �nite horizon and the limit
Theorem 3.3. □

Let us make here an important comment on the uniqueness of the solutions to
the Wald-Bellman equations (3.18) and (3.21). Clearly, in the case of �nite horizon
there is only one solution: indeed, the starting function V 0 coincides with G and
the formula (3.18) produces a unique sequence V 1, V 2, . . . , V N . In the case of
in�nite horizon, the situation is less transparent. For instance, if G is a constant
function, say, G ≡ c, then any constant function V ≡ c′ for some c′ ≥ c satis�es
the Wald-Bellman equation. However, any solution to (3.21) is a superharmonic
function majorizing G, so part (iii) of Theorem 3.9 immediately yields the following
�minimality principle�.

Corollary 3.10. The value function V is the minimal solution to (3.21).
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Example 3.11. Let us provide solution to the in�nite-horizon version of Ex-
ample 3.7. Under the notation used there, we study the optimal stopping problem

V (x) = sup
τ∈M

EG(Sτ ), x ∈ E.

The function G is bounded, so the integrability assumption of Theorem 3.9 is
satis�ed. Thus, we know that V is the least superharmonic function which majorizes
G: here the superharmonicity means that

V (x) ≥ 1

2

(
V (x− 1) + V (x+ 1)

)
, for x ∈ {−1, 0, 1}.

In other words, we search for the smallest concave function on {−2,−1, 0, 1, 2}
majorizing the function G. One easily checks that the function x 7→ 4(x + 2) is
concave (since it is linear), majorizes G and coincides with G at the endpoints ±2.
Thus it is the smallest majorant of G and hence it must be equal to the value
function V .

Example 3.12. Let ξ1, ξ2, . . . be a sequence of i.i.d. random variables with
the distribution given by P(ξi = 1) = p, P(ξi = −1) = q, where p+q = 1 and p < q.
For a given integer x, de�ne Sn = x+ ξ1 + ξ2 + . . .+ ξn, n = 0, 1, 2, . . .. Then the
sequences (Sn)n≥0 (with varying x) form a Markov family. Consider the optimal
stopping problem

V (x) = sup
τ∈M

ExS
+
τ , x ∈ E.

One easily checks the integrability assumption (3.20) (with G(x) = x+) is satis�ed.
This follows from the well-known fact that

(3.22) P
(
sup
n≥0

(ξ1 + ξ2 + . . .+ ξn) ≥ k
)
=

(
p

q

)k

, k = 0, 1, 2, . . . .

Thus, we need to �nd the least superharmonic majorant ofG: V is the least function
on Z satisfying

V (x) = max
{
x+, pV (x+ 1) + qV (x− 1)

}
, x ∈ Z.

To identify this object, let us try to inspect the properties of the continuation set
C and the stopping region D. A little thought suggests that these sets should be
of the form C = {. . . , b − 2, b − 1}, D = {b, b + 1, . . .} for some positive integer b
(possibly in�nite). While this is more or less clear by some intuitive argumentation,
we should point out here that this can also be shown rigorously. Indeed, pick x ∈ Z−
and take the stopping time τ ≡ −x+ 1. Then V (x) ≥ ExS

+
τ = p−x+1 > 0 = G(x),

so in particular C contains all nonpositive integers. Furthermore, if x > 0 lies in
C, then so does x− 1. To see this, note that for any a ∈ Z we have

(x+ a)+ − x+ ≤ (x− 1 + a)+ − (x− 1)+

(which is equivalent to the trivial bound (x + a)+ ≤ (x − 1 + a)+ + 1) and hence
for any stopping time τ , if we plug a = ξ1 + ξ2 + . . .+ ξτ ,

ExS
+
τ −G(x) ≤ Ex−1S

+
τ −G(x− 1).

This yields

(3.23) 0 < V (x)−G(x) ≤ V (x− 1)−G(x− 1)
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and thus x− 1 ∈ C, as we have claimed. This shows that C and D are of the form
postulated above and hence, by the general theory,

V (x) =

{
x if x ≥ b,

pV (x+ 1) + qV (x− 1) if x < b.

Let us �rst identify V on C. Solving the linear recurrence, we check that

V (x) = α+ β

(
q

p

)x

, x < b,

for some constants α, β ∈ R. It follows from (3.22) that V (x) → 0 as x → −∞
(simply use the estimate ExS

+
τ ≤ Ex supn≥0 S

+
n ): this implies α = 0 and β ≥ 0.

This also shows that b < ∞. Indeed, otherwise V (x) would explode exponentially
as x→ ∞, but on the other hand, by (3.23), for x > 0 we would have

V (x) ≤ G(x) + V (0)−G(0) = x+ V (0)−G(0).

It remains to �nd β and the boundary b. First, exploiting the Wald-Bellman equa-
tion, we see that V (b − 1) = pV (b) + qV (b − 2). This implies V (b) = β(q/p)b and
hence

V (x) = b

(
q

p

)x−b

for x ≤ b.

Secondly, again by Wald-Bellman equation, we see that V (b) ≥ pV (b+1)+qV (b−1),
which is equivalent to b ≥ p/(q − p). Finally, observe that if x > b, then

V (x) = x = px+ qx > p(x+ 1) + q(x− 1) = pV (x+ 1) + qV (x− 1).

Therefore, if b satis�es the inequality b ≥ p/(q − p), then the function

V(x) =

{
x if x ≥ b,

b (q/p)
x−b

if x < b.

is excessive. Let us now check for which b the inequality V ≥ G holds. This
majorization is clear on {b, b + 1, b + 2, . . .}. Since the function x 7→ (q/p)x−b is
nonnegative, convex and coincides with G at x = b, it su�ces to check whether it
is bigger than G at x = b − 1. The latter bound is equivalent to b < q/(q − p) =
p/(q − p) + 1. This actually forces us to take b = ⌈p/(q − p)⌉: this is the only
choice for the parameter such that the resulting function V is superharmonic and
majorizes G. Summarizing, we have shown that

V (x) =

{
x if x ≥ ⌈p/(q − p)⌉,
⌈p/(q − p)⌉ (q/p)x−⌈p/(q−p)⌉

if x < ⌈p/(q − p)⌉.

Observe that by (3.22), the stopping time

τ = inf

{
n : Sn ≥ ⌈p/(q − p)⌉

]}
is in�nite with positive probability. Therefore, there is no optimal stopping time
τ∗ which would be �nite Px-almost surely for all x. Hence, the value function is
attained asymptotically at the stopping times

τ (M) = inf

{
n : Sn /∈

[
M, ⌈p/(q − p)⌉

]}
,

as M → −∞.
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We proceed to the analysis of further examples, which will be useful in our later
considerations.

Example 3.13. Let X1, X2, . . . be a sequence of independent and identically
distributed random variables satisfying P(Xi = −1) = 2

3 = 1 − P(Xi = 2), and
set S0 = 0, Sn = X1 +X2 + . . . +Xn for n = 1, 2, . . .. We will solve the optimal
stopping problem

(3.24) V = sup
τ∈L1

E
(
|Sτ | −

1

2
τ

)
.

It is convenient to split the analysis into several separate steps.

Step 1. Dimension reduction. At the �rst glance, the problem is two-dimensional,
i.e., it involves the stopping of the two-dimensional process (Sn, n). It is possible
to reduce the dimension to one, by the following simple observation. Namely, note
that the processes (Sn)n≥0 and (S2

n − 2n)n≥0 are martingales. This is evident for
the �rst process, to check the second we compute that

E
[
S2
n+1 − 2(n+ 1)

∣∣∣Fn

]
= S2

n − 2n+ E(2SnXn+1 +X2
n+1 − 2|Fn)

= S2
n − 2n+ E(X2

n+1 − 2) = S2
n − 2n,

since E(Xn+1|Fn) = EXn+1 = 0 and EX2
n+1 = 2. Consequently, by Doob's optional

sampling theorem, for any τ ∈ L1 we have

(3.25) ES2
τ∧n = 2E(τ ∧ n).

The right-hand side is uniformly bounded in n and converges to Eτ , by Lebesgue's
monotone convergence theorem. Therefore, the martingale (Sτ∧n)n≥0 is bounded in
L2, and hence also L2-convergent. Thus, letting n→ ∞ in (3.25) gives ES2

τ = 2Eτ
and hence we may rewrite (3.24) as

V = sup
τ∈L1

E
(
|Sτ | −

S2
τ

4

)
.

Now the right-hand side depends on the process S only.

Step 2. General theory. To put the above problem into the general framework,
we set G(x) = |x| − x2/4 and note that the problem reads

V = sup
τ∈L1

EG(Sτ ).

The process S extends to a Markov family on E = Z, with the transity function
determined by pn,n−1 = 2/3 and pn,n+2 = 1/3 for all n ∈ Z. Let V : Z → R be
given by

V (x) = sup
τ∈L1

ExG(Sτ ).

In order to apply the general theory, we need to check the condition E supn≥0G(Sn) <
∞. This is a little technical, so we take the opportunity to present a di�erent ap-
proach. Namely, we will construct the least excessive majorant of the function G,
and then exploit its properties to solve rigorously the problem under consideration.

Step 3. On the search of the excessive majorants. Let U be the least excessive
majorant of G. In our setting, excessiveness amounts to

U(n) ≥ 2

3
U(n− 1) +

1

3
U(n+ 2) for all n ∈ Z.
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So, if a function is concave on Z, then it is automatically excessive; as we shall see
during the analysis, the reverse implication does not hold in general (which might
be a little surprising at the �rst glance). A quick look at the graph of G shows that
the function

H(x) =

{
G(x) if |x| ≥ 2,

1 if |x| ≤ 2

is concave and majorizes G. Thus, we have H ≥ U on Z. On the other hand, we
have U(x) ≥ G(x) = H(x) for |x| ≥ 2: this shows that U(x) = G(x) for |x| ≥ 2.
Next, observe that

U(1) ≥ 2

3
U(0) +

1

3
U(3) =

2

3
U(0) +

1

3
· 3
4
,

U(0) ≥ 2

3
U(−1) +

1

3
U(2) =

2

3
U(−1) +

1

3
,

U(−1) ≥ 2

3
U(−2) +

1

3
U(1) =

2

3
+

1

3
U(1).

Combining these estimates, we get

U(1) ≥ 2

3
U(0) +

1

4
≥ 2

3

(
2

3
U(−1) +

1

3

)
+

1

4

≥ 4

9

(
2

3
+

1

3
U(1)

)
+

17

36
=

4

27
U(1) +

83

108
,

or U(1) ≥ 83/92. Plugging this above, we get U(−1) ≥ 267/276 and U(0) ≥ 45/46.
Assuming equalities, we obtain the excessive function U ; furthermore, one veri�es
directly that such U majorizes G at −1, 0, 1. Hence U is an excessive majorant of
G.

Step 4. Coming back to the optimal stopping problem. Suppose that τ is an
arbitrary and integrable stopping time. The function U constructed above is ex-
cessive, so the process (U(Sn))n≥0 is a P0-supermartingale. Furthermore, since
U ≥ G, Doob's optional sampling theorem gives

EG(Sτ∧n) ≤ EU(Sτ∧n) = EU(0) =
45

46
,

that is,

E
(
|Sτ∧n| −

S2
τ∧n

4

)
≤ 45

46
.

However, as we have proved in Step 1 above, the process (Sτ∧n)n≥0 is an L2-
bounded supermartingale. Thus, letting n→ ∞ yields

E
(
|Sτ | −

1

2
τ

)
≤ 45

46
.

Directly from the analysis in Step 3, the equality is attained for the stopping time
τ = inf{n : |Sn| ≥ 2}.

The next example is more �continuous� in nature.

Example 3.14. Suppose that ξ1, ξ2, . . . and ε1, ε2, . . . are independent random
variables, such that ξn has exponential law with parameter λ > 0 and P(εn = 1) =
p = 1 − P(εn = 0), n = 1, 2, . . .. For a given parameter x > 0, we de�ne the
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sequence (Xn)n≥0 by X0 ≡ x and Xn+1 = εn+1(Xn + ξn+1), n = 0, 1, 2, . . . .
Finally, we �x c > 0 and consider the optimal stopping problem

(3.26) V = sup
τ

E(Xτ − cτ),

where the supremum is taken over all integrable stopping times τ .

Step 1. We start by putting the problem into the general framework developed
above. It is easy to see that (Xn)n≥0 is a time-homogeneous Markov process with
the transition function given by

P (x, 0) = 1− p and P (x, x+A) = p

∫
A

λe−λada for A ⊆ [0,∞).

Actually, for the problem (3.26) we need to consider the space-time version (n,Xn),
which is also a Markov process (this time on the state space N× [0,∞)). We extend
it to the Markov family and, as usual, denote the corresponding initial probabilities
by Pn,x. For any (n, x), we consider the auxiliary optimal stopping problem

V (n, x) = sup
τ

En,xG(τ,Xτ ),

where the supremum is taken over all �nite stopping times τ and G(n, x) = x− cn.

Step 2. Now we will reduce the dimension of the problem, by observing a certain
homogeneity-type condition on V . Namely, the identity G(n, x) = G(0, x) − cn
immediately gives

V (n, x) = sup
τ

En,xG(τ,Xτ ) = sup
τ

E0,xG(τ,Xτ )− cn = V (0, x)− cn

and hence it is enough to identify the function f(x) := V (0, x).

Step 3. We introduce the continuation and the stopping sets C and D by

C = {(n, x) : V (n, x) > G(n, x)}, D = {(n, x) : V (n, x) = G(n, x)}.

Here is some initial analysis of the stopping domain D. Namely, we will show that
if (0, x) ∈ D and x′ > x, then necessarily (0, x′) ∈ D. To this end, note that for
any stopping time τ , we have

E0,x′(Xτ − cτ)− E0,x(Xτ − cτ) ≤ x′ − x.

Indeed, one can couple the trajectories of X under P(0,x) and P(0,x′) in such a way
that their di�erence is equal to x − x′, until they both drop to zero and coincide
from that time. Since x′ − x = G(0, x′)−G(0, x), we obtain

V (0, x′)−G(0, x′) ≤ V (0, x)−G(0, x) = 0,

which gives (0, x′) ∈ D. By the homogeneity established in Step 2, this gives the
aforementioned property of the set D. Actually, we see that D must be of the form

D = {(n, x) : x ≥ b},

for some unknown parameter b (to be found).

Step 4. It follows from the general theory that V is the least excessive majorant
of the function G. Here the excessiveness means

V (n, x) ≥ (1− p)V (n+ 1, 0) + p

∫ ∞

0

V (n+ 1, x+ a) · λe−λada,



2. MARKOVIAN APPROACH 47

or, by the homogeneity proved in Step 2 above,

f(x)− cn ≥ (1− p)(f(0)− c(n+ 1)) + p

∫ ∞

0

(f(x+ a)− c(n+ 1)) · λe−λada.

This is equivalent to the inequality

(3.27) f(x) + c ≥ (1− p)f(0) + p

∫ ∞

0

f(x+ a) · λe−λada.

This allows us to write the corresponding system of requirements: the so-called
boundary value problem for V (or rather, for f). Namely,

f(x) = x for x ≥ b,(3.28)

f(x) + c = (1− p)f(0) + p

∫ ∞

0

f(x+ a) · λe−λada for x < b.(3.29)

Step 5. Let us try to �nd the candidate for the solution to the above system.
A direct di�erentiation of (3.29) yields

f ′(x) = p

∫ ∞

0

f ′(x+ a) · λe−λada = −pλf(x) + pλ

∫ ∞

0

f(x+ a) · λe−λada,

where the last passage follows from the integration by parts. We apply (3.29) again,
obtaining

f ′(x) = −pλf(x) + λ(f(x) + c− (1− p)f(0)) = λ(1− p)
[
f(x) +

c

1− p
− f(0)

]
.

This can be solved directly: we get

f(x) = f(0)− c

1− p
+ αeλ(1−p)x x < b,

for some parameter α. Plugging x = 0, we get α = c/(1− p) and hence

f(x) =

{
f(0) + c

1−p

(
eλ(1−p)x − 1

)
if x < b,

x if x ≥ b.

It is plausible to conjecture that f is continuous at b: this implies

f(0) = b− c

1− p

(
eλ(1−p)b − 1

)
and we �nally obtain

f(x) =

{
b+ c

1−p

(
eλ(1−p)x − eλ(1−p)b

)
if x < b,

x if x ≥ b.

Step 6. It remains to �nd the boundary point b. To accomplish this, we verify
the excessiveness inequality (3.27) on [b,∞). Since f(x) = x on this interval, the
inequality reads

x+ c ≥ (1− p)

(
b− c

1− p

(
eλ(1−p)b − 1

))
+ p

(
x+

1

λ

)
.

This requirement is most restrictive for smallest x, i.e., for x = b. For this particular
choice, the estimate becomes

(3.30) exp(λ(1− p)b) ≥ p

λc
.
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If p/(λc) ≤ 1, then this estimate holds for all b ≥ 0. In other words, the identity
function f(x) = x leads to the excessive function V (n, x) = x− cn. In this case, we
have V = G and the optimal stopping rule is to stop instantaneously.

If p/(λc) > 1, then assuming equality in (3.30), we obtain

b =
1

λ(1− p)
ln

p

λc

and

f(x) =

{
1

λ(1−p) ln
p
λc +

c
1−pe

λ(1−p)x − p
1−p if x < b,

x if x ≥ b.

Step 7. We need to emphasize that the analysis in Step 6 was informal: we
obtained the candidate for V (or rather, for f) under a number of additional as-
sumptions. It remains to check that V satis�es all the necessary requirements.
Namely, it actually follows from the above analysis that V is excessive. The ma-
jorization V ≥ G is equivalent to the estimate f(x) ≥ x on [0, b]; since both sides
are equal for x = b and f is strictly convex on [0, b], it is enough to verify that
f ′(b−) ≤ 1. This is equivalent to the estimate

cλ · p
λc

≤ 1,

which holds trivially. Finally, let us show that V is the smallest excessive majo-
rant. Assume conversely that this is not the case: the optimal function Ṽ satis�es
Ṽ (n, x) < V (n, x) for some (n, x). Then Ṽ satis�es the identity Ṽ (n, y) = f̃(y)−cn
for some function f̃ on [0,∞), and we have f̃(x) < f(x). We have f̃(y) ≥ y for all
y, and hence we must necessarily have x < b By the excessiveness condition (3.27),
we get

f̃(x)− f(x) ≥ p

∫ ∞

0

(f̃(x+ a)− f(x+ a)) · λe−λada.

Now suppose that x0 = sup{t : f̃(t)−f(t) ≤ f̃(x)−f(x)}: clearly x0 is �nite, since
f̃ and f coincide on [b,∞). Then f̃(u)− f(u) > f̃(x)− f(x) on (x0,∞) and hence
we obtain

f̃(x)− f(x) ≥ p

∫ ∞

0

(f̃(x0 + a)− f(x0 + a)) · λe−λada ≥ p(f̃(x)− f(x)),

which implies f̃(x) > f(x), a contradiction.
We conclude the analysis with the comment that the optimal stopping rule is

given by τ∗ = inf{n : Xn ≥ b}.

3. Problems

1. Let G1, G2, . . . be a sequence of independent random variables, each of
which has the uniform distribution on [0, 1]. Solve the optimal stopping problems

V N = sup
τ∈MN

EGτ and V0 = sup
τ∈M

EGτ ,

where N is an arbitrary integer.

2. We �ip a coin at most �ve times, at each point we may decide whether to
stop or not (in particular, we are allowed to stop at the very beginning, without
�ipping the coin even once). Having stopped, we look at the outcomes we have
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obtained. We get 1 if there are no heads and get 2 if we obtained at least three
heads. What is the strategy which yields the largest expected gain?

3. Solve the optimal stopping problem

sup
0≤τ≤N

E
(
Y 2
τ − τ),

where Y0 = 10, Yn+1 = Yn + ξn+1, and

P(ξn = 1) = 1/(4n) = 1− P(ξn = 0), n = 1, 2, . . . , N.

4. Solve the secretary problem.

5. Solve the optimal stopping problem V = supτ∈M E
(
ατXτ

)
, where α ∈

(0, 1), X0 = 0,
Xn+1 = (Xn + 1)Vn+1, n = 0, 1, 2, . . . ,

and V1, V2, . . . is a sequence of independent random variables with the distribution
P(Vj = 0) = P(Vj = 1) = 1/2.

6. We �ip a coin in�nitely many times. For n ≥ 1, let Gn = n2n/(n + 1) of
there were no tails in the �rst n �ips, and Gn = 0 otherwise. Solve the optimal
stopping problem

V = sup
τ∈M

EGτ .

7. Suppose that (Gn)n≥0 is an adapted sequence of random variables satisfying
E supn≥0 |Gn| < ∞ and let (Bn)n≥0 be the associated Snell envelope. Prove the
identity

sup
τ∈M

EGτ = sup
τ∈M

EBτ .

8. We toss a fair coin and for each n ≥ 0, we denote by Xn the length of the
current sequence of consecutive tails after n �ips:

n �ips︷ ︸︸ ︷
. . . H TT . . . T︸ ︷︷ ︸

Xn

.

Solve the optimal stopping problem

V = sup
τ∈M

E
(
Xτ − 1

16
τ

)
.

9. A pawn moves over the set {1, 2, . . . , n}, according to the following rules.
If at some time it is located at the point k, then at the next step it jumps, in-
dependently from its evolution in the past, to one of the points k, k + 1, . . ., n
(each choice has the same probability). Let Xj be the location of the pawn at the
time j. Assuming that X0 = 1, describe the stopping time τ which maximizes the
expectation EG(Xτ ), where G(x) = x1{x<n}.

10. Let ε1, ε2, . . . be the sequence of independent Rademacher variables and
set S0 ≡ 0 and Sn = ε1 + ε2 + . . .+ εn for n = 1, 2, . . .. Find the smallest constant
C such that for any stopping time τ adapted to the natural �ltration of X we have

ES4
τ ≤ CEτ2.





CHAPTER 4

Deterministic continuous case

Now we turn our attention to the case in which the observed process is indexed
by nonnegative numbers; then the role of the evolution is played by an appropriate
di�erential equation.

We start with the necessary background. Assume that the state of the system is
described by a vector in Rn, and hence the observed process is x = (x(t))t≥0 ⊂ Rn.
Next, we will assume that the controls are given as a function u = (u(t))t≥0 with
values in Rm (or more generally, in some �xed subset U of Rm): this function will
be assumed to be piecewise continuous. The evolution equation is given by

ẋ = f(t, x(t), u(t)),

with the initial condition x(0) = x0. Here f : Rn+m+1 → Rn is a continuous
function. As in the discrete-time case, we may consider the more general situation
in which the starting time is an arbitrary number s ≥ 0 and the initial position is
equal to y. Sometimes, to emphasize the fact that x is obtained via the control u
and starts at s from y, we will use the notation xu(·; s, y).

We are ready to formulate the optimal control problem. Let T > 0 be a �xed
parameter (the horizon) and let q : Rn+m+1 → R, r : Rn → R be two given
functions. Suppose we are interested in the supremum

(4.1) B := sup
u
J(x0, u),

where the functional J is given by

J(x0, u) =

∫ T

0

q(s, xu(s), u(s))ds+ r(x(T )).

As usual, two problems arise:

· Find the value of (4.1).

· �nd the optimal control u∗ maximizing (4.1).

As previously, an e�ective way of handling the above questions is to extend
the problem to the case of arbitrary initial positions. That is, we assume that the
starting time 0 is replaced by t and the initial position is y, and set

B(t, y) = sup
u

{∫ T

t

q(s, xu(s; t, y), u(s))ds+ r(x(T ; t, y))

}
,

where the supremum is taken over all controls u on [t, T ]. Then we have the
following two facts.

Lemma 4.1. Fix (t, y) and an arbitrary control u on [t, T ]. Then the function
s 7→ B(s, xu(s; t, y)) +

∫ s

t
q(w, xu(w; t, y), u(w))dw is nonincreasing on [t, T ].

51
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Proof. Pick arbitrary two points w, w′ ∈ [t, T ] satisfying w < w′ and let
ε > 0. Furthermore, set z = xu(w′; t, y). Then, by the very de�nition of B(w′, z),
there is a control ũ : [w′, T ] → Rk for which

B(w′, z) <

∫ T

w′
q(s, xũ(s;w′, z), ũ(s))ds+ r(xũ(T ;w′, z)) + ε.

Let us modify the control u given in the statement according to ũ: set

û(s) =

{
u(s) if t ≤ s < w′,

ũ(s) if w′ ≤ s ≤ T.

Treating (w, xu(w)) as the initial position, we get, again by the de�nition of B,

B(w, xu(w)) ≥
∫ T

w

q(s, xû(s;w, xu(w)), u(s))ds+ r(xû(T ;w, xu(w)))

≥
∫ w′

w

q(s, xû(s;w, xu(w)), u(s))ds+B(w′, z)− ε

=

∫ w′

w

q(s, xu(s;w, xu(w)), u(s))ds+B(w′, xu(w′))− ε.

Since ε was arbitrary, the claim follows. □

Lemma 4.2. The function t 7→ B(t, x∗(t)) +
∫ t

0
q(s, x∗(s), u∗(s))ds is constant.

Proof. By the previous lemma, we have

B(0, x0) ≥ B(t, x∗(t)) +

∫ t

0

q(s, x∗(s), u∗(s))ds

≥ B(T, x∗(T )) +

∫ T

0

q(s, x∗(s), u∗(s))ds

= r(x∗(T )) +

∫ T

0

q(s, x∗(s), u∗(s))ds.

It remains to note that the �rst and the last expressions are equal, because of the
optimality of x∗. Hence equalities hold throughout above. □

Observe that both lemmas remain valid if we assume that the controls belong
to some speci�c subsets of Rk; the only condition we need is that the �modi�cation
procedure� (u, ũ) 7→ û exploited above does not lead outside the class of permitted
controls. It is easy to check that the statement below also remain valid.

We note an important consequence, which follows from the two lemmas above
by a direct di�erentiation. In what follows, By is the gradient of B with respect to
the variables y1, y2, . . ., yn.

Corollary 4.3. Suppose that the value function B is of class C1. Then we
have

(4.2) Bs(s, y) +By(s, y) · f(s, y, v) + q(s, y, v) ≤ 0 for all v ∈ U.

Furthermore, if x∗, u∗ is an optimal pair for (s, y), then B satis�es the Hamilton-
Jacobi-Bellman equation

Bs(s, x
∗(s)) +By(s, x

∗(s)) · f(s, x∗(s), u∗(s+)) + q(s, x∗(s), u∗(s+)) = 0.
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We also record here the following statement, known as the maximum principle.
Here fx is the matrix of dimension n×n, whose columns are the partial derivatives
of f with respect to x1, x2, . . . , xn.

Theorem 4.4. Consider the above optimal control problem and suppose that
the value function B is of class C2, q is of class C1. Then there exists a C1

function p : (0,∞) → Rn, such that for almost all t > 0 (except for a �nite number
of points),

(i) u∗(t) maximizes u 7→ p(t) · f(t, x∗(t), u) + q(t, x∗(t), u);
(ii) we have ṗ(t) = −p(t) · fx(t, x∗(t), u∗(t))− qx(t, x

∗(t), u∗(t)).

Proof. Let p(s) = By(s, x
∗(s)): note that this is a vector-valued, C1 function.

Then (i) follows at once from the previous corollary. To show the second part, �x
t ∈ [0, T ] and apply (4.2) to obtain

Bs(t, y) +By(t, y) · f(t, y, u∗(t+)) + q(t, y, u∗(t+)) ≤ 0

for all y, with equality for y = x∗(t). Consequently, di�erentiating with respect to
y at x∗(t), we get

Bsy(t, x
∗(t)) +Byy(t, x

∗(t))f(t, x∗(t), u∗(t+)) +By(t, x
∗(t))fx(t, x

∗(t), u∗(t+))

+ qy(t, y, u
∗(t)) = 0.

It remains to note that p(t) ·f(t, x∗(t), u∗(t)) = By(t, x
∗(t)) ·fx(t, x∗(t), u∗(t+)) and

ṗ(t) = Bsy(t, x
∗(t)) +Byy(t, x

∗(t))ẋ∗(t)

= Bsy(t, x
∗(t)) +Byy(t, x

∗(t))f(t, x∗(t), u∗(t))

for almost all t. □

Remark 4.5. There is a nice interpretation of (ii). Consider the associated
Hamiltonian H : [0,∞)× Rn × Rm × Rn → R, given by

H(t, x, u, p) = p · f(t, x, u) + q(t, x, u).

Then the optimal solution satis�es ẋ∗ = Hp(t, x
∗, u∗, p) and ṗ = −Hx(t, x

∗, u∗, p).

Example 4.6. Suppose that a particle with given initial position and velocity
x1(0), x2(0) is to be brought to rest at position 0 in minimal time. This is to
be done using the control force u satisfying |u| ≤ 1, with dynamics ẋ1 = x2 and
ẋ2 = u. That is, in the matrix form, we have

ẋ(t) =
d

dt

(
x1
x2

)
=

(
x2
u

)
= f(t, x, u)

and we want to maximize the functional

J(x0, u) = −
∫ T

0

1ds,

where T is the �rst time the function x reaches (0, 0). The problem is to identify
T and the optimal control.

In the light of the above considerations, the Hamiltonian equals

H(t, x, u, p) = p · (x2, u)− 1 = p1x2 + p2u− 1.

By Theorem 4.4, the optimal control u∗(t) maximizes u 7→ H(t, x∗(t), u, p(t)), so
u = sgn(p2(t)). By the second part of this theorem, we get ṗ1 = 0, ṗ2 = −p1. This
implies that p1 ≡ α and p2(t) = −p1t+const; let us write p2(t) = −α(t − T ) + β.
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Therefore, the solution is of the following form: there is at most one change of sign
of p2 on the optimal path; u is maximal in one direction and then possibly maximal
in the other. Adding/subtracting constant if necessary, we may and assume that
H = 0; then computing H at time T (and recalling that x2(T ) = 0), we obtain
|β| = 1. Suppose that β = 1 (the case β = −1 is considered similarly).

· If α ≥ −1/T , then p2 > 0 for all t, so u2 = 1, x2(t) = t − T and x1(t) =
(t − T )2/2. We have x1(0) = T 2/2 and x2(0) = −T , so (x1, x2) moves along the
�left half� of the parabola x = y2.

· If α < −1/T , then p2 < 0 for t < T + 1/α and p2 > 0 for t > T + 1/α, so the
optimal control is

u∗(t) =

{
−1 for [0, T + 1/α),

1 for [T + 1/α, T ].

Now, since ẋ2 = u and x2(T ) = 0, we check that

x2(t) =

{
−t+ T + 2/α for [0, T + 1/α),

t− T for [T + 1/α, T ],

and hence

x1(t) =

{
−(−t+ T + 2/α)2/2 + 1/α2 for [0, T + 1/α),

(t− T )2/2 for [T + 1/α, T ].

See Figure 4.6.

Figure 1. The graph of the function x1 = −x2|x2|/2 (bold) splits
the phase portrait into two parts. The upper region corresponds
to the choice u = −1, while the lower part corresponds to u = 1.

The above reasoning might seem a little informal, so we will present now a
rigorous analysis of the problem, basing on the above calculations. We have x1(0) =
−(x2(0))

2/2 + 1/α2, which allows us to compute α and T . We have

1

α
= −

√
x1(0) +

x22(0)

2
, T = x2(0) + 2

√
x1(0) +

x22(0)

2
.
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The same computations would apply if the starting time was equal to t and the
initial position was x1 = x1(t), x2 = x2(t) (simply replace 0 with t and T with
T − t). Therefore, we are led to the following candidate for the Bellman function:

B̃(t, x1, x2) =

{
−x2 − 2

√
x1 + x22/2 in the upper region,

x2 − 2
√
−x1 + x22/2 in the lower region.

Now we check that �the Bellman property�: we �x arbitrary x1(0), x2(0) and some

control u, and prove that the function ζ(t) = B̃(t, x1, x2) − t is nonincreasing on
[0, T ], where T is the �rst time (x1, x2) reaches (0, 0). This is straightforward: for
example, in the upper region, we compute that

ζ ′(t) = −ẋ2 − 1− ẋ1 + x2ẋ2√
x1 + x22/2

= −(u+ 1)

(
1 +

x2√
x1 + x22/2

)
.

Since u ∈ [−1, 1], this is nonpositive. Indeed, if x2 ≥ 0 there is nothing to prove,
and if x2 < 0, then we use the fact that x1 > x22/2. Consequently, we have

ζ(T ) ≤ ζ(0), which is equivalent to −T ≤ B̃(0, x1(0), x2(0)). Equality is obtained
for the examples studied above. Actually, the same analysis can be carried out
if the starting position is (t, x1, x2) instead of (0, x1(0), x2(0)): then we obtain

B(t, x1, x2) ≤ B̃(t, x1, x2), and the reverse follows from the fact that B̃ is based on
the concrete examples.

Now we will show how the optimal control theory leads to Hardy inequalities.

Example 4.7. Let 1 < α < ∞ be a �xed constant. We will identify the best
constant Cα in the estimate∫ ∞

0

∣∣∣∣1t
∫ t

0

f(s)ds

∣∣∣∣α dt ≤ Cα

∫ ∞

0

|f(t)|αdt.

Note that we may restrict ourselves to nonnegative f : the passage from f to |f |
does not change the right-hand side and may only increase the left (making the
claim harder). By standard density arguments, we may and do assume that f is
piecewise continuous. In addition, by a straightforward limiting argument, it is
enough to study the localized estimate∫ T

0

∣∣∣∣1t
∫ t

0

f(s)ds

∣∣∣∣α dt ≤ Cα

∫ T

0

|f(t)|αdt.

Step 1. Abstract Bellman function. Let us �rst put the problem into an appro-
priate framework. We rewrite the estimate in the form

sup

{∫ T

0

(
1

t

∫ t

0

f

)α

− Cαf
α(t)dt

}
≤ 0,

the supremum taken over all f as above. This suggests that the control should be
the function f ; furthermore, looking under the integral, it seems natural to take∫ t

0
f as the controlled process. Thus, we are ready to introduce the associated

Bellman function

B(s, y) = sup

{∫ s

0

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt :

∫ s

0

f = y

}
,
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where C > 0 is a �xed constant. Our goal is to identify the least choice of C for
which B ≤ 0.

Step 2. Homogeneity. The function B depends on two variables; however, as
we will see in a moment, it satis�es two homogeity-type conditions, which actually
reduces the problem of �nding B to a single real number. First, suppose that f is
an arbitrary function on [0, s] satisfying

∫ s

0
f = y. Then obviously

∫ s

0
λf = λy for

any constant λ > 0 and thus

B(s, λy) ≥ λα
∫ s

0

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt.

Taking the supremum over all f as above, we get

(4.3) B(s, λy) ≥ λαB(s, y), λ > 0.

Now plug y := λ−1y to obtain

B(s, y) ≥ λαB(s, λ−1y).

Substituting λ := λ−1, we obtain the reverse to (4.3): thus, equality holds here.
The second homogeneity is a little more involved. Namely, suppose again that

f is an arbitrary function on [0, s] satisfying
∫ s

0
f = y. Take µ > 0 and consider

the dilated function f̃(t) = f(t/µ) on [0, µs]. Then∫ µs

0

f̃dt =

∫ µs

0

f(t/µ)dt = µ

∫ s

0

f = µy,

so that

B(µs, µy) ≥
∫ µs

0

((
1

t

∫ t

0

f̃

)α

− Cf̃α(t)

)
dt = µ

∫ s

0

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt.

Taking the supremum over all f as above, we get

B(µs, µy) ≥ µB(s, y),

and substituting s := µ−1s, y := µ−1y and then µ := µ−1 shows that we actually
have equality here. Putting all these facts together, we see that

(4.4) B(s, y) = sB(1, y/s) = s · (y/s)αB(1, 1) = −κyαs1−α,

where κ = −B(1, 1). In particular, we see that B is of class C∞ (provided it is
�nite).

Step 3. Bellman equation. Now we will study the Bellman monotonicity con-
dition. To this end, �x s > 0, ε > 0 and any nonnegative, piecewise continuous
function f on [0, s] with

∫ s

0
f = y. We extend this function to f̃ : [0, s+ ε] → [0,∞)

putting f̃(t) = a for t ∈ (s, s + ε]; here a is some arbitrary nonnegative number
(�control�). Then we have ∫ s+ε

0

f̃ = y + εa
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and hence

B(s+ ε, y + εa)

≥
∫ s+ε

0

((
1

t

∫ t

0

f̃

)α

− Cf̃α(t)

)
dt

=

∫ s

0

((
1

t

∫ t

0

f̃

)α

− Cf̃α(t)

)
dt+

∫ s+ε

s

((
1

t

∫ t

0

f̃

)α

− Cf̃α(t)

)
dt

=

∫ s

0

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt+

∫ s+ε

s

(
1

tα

(∫ s

0

f + a(t− s)

)α

− Caα
)
dt

=

∫ s

0

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt+

∫ s+ε

s

(
1

tα
(y + a(t− s))

α − Caα
)
dt

Taking the supremum over all f as above, we get

B(s+ ε, y + εa) ≥ B(s, y) +

∫ s+ε

s

(
1

tα
(y + a(t− s))

α − Caα
)
dt.

Now move B(s, y) to the left, divide throughout by ε and let ε→ 0, obtaining

(4.5) Bs(s, y) + aBy(s, y) ≥ (y/s)α − Caα.

By (4.4), this simpli�es to

−κ(1− α)(y/s)α − κaα(y/s)α−1 ≥ (y/s)α − Caα,

or
Cbα − αbκ+ κ(α− 1)− 1 ≥ 0,

where b = as/y. This estimate is supposed to hold for any b ≥ 0; optimizing over
this parameter, we see that the left-hand side is minimized for b = (κ/C)1/(α−1).
Assuming equality for this choice of b, we obtain

(4.6) −κα/(α−1)

C1/(α−1)
+ κ =

1

α− 1
.

This leads us to the following candidate: if C is a �xed parameter, then we let κ
be the solution to the above equation and then we apply (4.4).

Step 4. Choice for C. The above analysis leads to the following question: for
which C there is a solution to (4.6)? The left-hand side converges to −∞ as κ→ ∞,
so we actually ask for those C, for which the maximum of the left-hand side is at
least 1/(α − 1). A direct di�erentiation shows that the maximum is attained for

κ = C ·
(
α−1
α

)α−1
, and it is equal to

C

(
α− 1

α

)α−1

· 1
α
.

In other words, the solution to (4.6) exists if and only if C ≥
(

α
α−1

)α
. Now we

guess that the optimal constant is Cα =
(

α
α−1

)α
. Then we are forced to take

κ = α/(α− 1). Reviewing all the above calculations, we see that the function

B̃(s, y) = − α

α− 1
yαs1−α
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satis�es (4.5), with equality for

(4.7) a = by/s =
(α− 1)y

sα
.

Step 5. Veri�cation. Now we pick an arbitrary nonnegative, piecewise con-
tinuous function f on [0, s] satisfying

∫ s

0
f = y. By a direct di�erentiation, the

function

(4.8) u 7→ B̃

(
u,

∫ u

0

f

)
+

∫ s

u

((
1

t

∫ t

0

f

)α

− Cfα(t)

)
dt

is nondecreasing: this is precisely (4.5), with s = u, y =
∫ u

0
f and a = f(u). Thus

B̃

(
u,

∫ u

0

f

)
+

∫ s

u

((
1

t

∫ t

0

f

)α

− Cαf
α(t)

)
dt ≤ B̃

(
s,

∫ s

0

f

)
≤ 0

and letting u→ 0 we get∫ s

0

((
1

t

∫ t

0

f

)α

− Cαf
α(t)

)
dt ≤ 0,

so the inequality holds with the constant Cα. To see that this constant is optimal,
we inspect (4.7) and (4.8): the function in (4.8) will be constant if f satis�es

f(u) =
α− 1

α
· 1
u

∫ u

0

f

for all u. This happens for f(u) = cu−1/α (c is some constant), but this function
does not have the appropriate integrability:

∫ s

0
fα = ∞. Anyhow, we might expect

that the optimality of Cα will be obtained asymptotically. Take β > α−1 and

consider the function f(u) = u−β . Then f ∈ Lα(0, s), we have 1
t

∫ t

0
f = (1−β)−1f ,

and ∫ s

0

(
1
t

∫ t

0
f
)α

dt∫ s

0
fαdt

= (1− β)−α → Cα,

as β → α−1. This proves the desired sharpness.

Example 4.8. Now we will present an enhanced analysis of the estimate∫ ∞

0

∣∣∣∣1t
∫ t

0

f(s)ds

∣∣∣∣α dt ≤ Cα

∫ ∞

0

|f(t)|αdt,

which is much more �exible. As previously, we start with noting that we may
assume that f is nonnegative: the passage from f to |f | does not change the right-
hand side and may only increase the left (making the claim harder). We will restrict
ourselves to piecewise continuous f .

Step 1. An abstract Bellman function. The �rst step of the analysis is to
investigate the more general estimate∫ T

0

(
1

t

∫ t

0

f(s)ds

)α

dt ≤ Cα

∫ T

0

f(t)αdt.
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Instead of formal putting this problem into the appropriate framework, we prefer
to proceed with the direct analysis. For a given f as above, consider the functions

x1(t) =

∫ t

0

f(s)ds, x2(t) =

∫ t

0

f(s)αds, t ∈ [0, T ],

and let

B(t, y1, y2) = sup

{∫ t

0

s−αxα1 (s)ds : x1(t) = y1, x2(t) = y2

}
.

Note that y1 ≤ y
1/α
2 t1−1/α: B is de�ned on a non-trivial subdomain of R3

+. Actually,

if y1 = y
1/α
2 t1−1/α, then there is only one function satisfying the integral conditions:

f ≡ y1/t. Then s 7→ 1
s

∫ s

0
f ≡ y1/t and therefore, B(t, y1, y2) = yα1 t

1−α.
We will �nd the explicit formula for B.

Step 2. Homogeneity. Now we will present the dimension reduction: the func-
tion B depends on three variables, but enjoys certain homogeneity, which allows for
a signi�cant simpli�cation. First, suppose that f is an arbitrary function on [0, t]

satisfying
∫ t

0
f = y1,

∫ t

0
fα = y2. Then obviously

∫ t

0
λf = λy1,

∫ t

0
(λf)α = λαy2 for

any constant λ > 0 and thus

B(t, λy1, λ
αy2) ≥ λα

∫ t

0

(
1

s

∫ s

0

f

)α

ds.

Taking the supremum over all f as above, we get

(4.9) B(t, λy1, λ
αy2) ≥ λαB(t, y1, y2), λ > 0.

Now plug y1 := λ−1y1, y2 := λ−αy2 to obtain

B(t, y1, y2) ≥ λαB(t, λ−1y1, λ
−αy2).

Substituting λ := λ−1, we obtain the reverse to (4.9): thus, equality holds here.
The second homogeneity is a little more involved. Namely, suppose again that

f is an arbitrary function on [0, t] satisfying
∫ t

0
f = y1,

∫ t

0
fα = y2. Take µ > 0 and

consider the dilated function f̃(s) = f(s/µ) on [0, µt]. Then∫ µt

0

f̃ds =

∫ µt

0

f(s/µ)ds = µ

∫ t

0

f = µy1,

∫ µt

0

f̃αds = µ

∫ t

0

fα = µy2,

so that

B(µt, µy1, µy2) ≥
∫ µt

0

(
1

s

∫ s

0

f̃

)α

ds

= µ

∫ t

0

(
1

µs

∫ µs

0

f̃

)α

ds = µ

∫ t

0

(
1

s

∫ s

0

f

)α

ds.

Taking the supremum over all f as above, we get

B(µt, µy1, µy2) ≥ µB(t, y1, y2),

and substituting t := µ−1t, y1 := µ−1y1, y2 := µ−1y2 and then µ := µ−1 shows
that we actually have equality here. Putting all these facts together, we see that

B(t, y1, y2) = tB
(
1,
y1
t
,
y2
t

)
= t

(y1
t

)α
B

(
1, 1,

y2
t
· t

α

yα1

)
=

yα1
tα−1

B

(
1, 1,

y2t
α−1

yα1

)
,
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that is, we have

(4.10) B(t, y1, y2) =
yα1
tα−1

φ

(
y2t

α−1

yα1

)
for some unknown function φ : [1,∞) → [0,∞) satisfying φ(1) = 1 (for the domain
of φ and the initial condition, see the above discussion on the domain of B).

Step 3. Candidate. What is the Bellman monotonicity property? Pick arbitrary
t > 0, ε > 0 and any nonnegative, piecewise continuous function f on [0, t] with∫ t

0
f = y1,

∫ t

0
fα = y2. Extend it to f̃ : [0, t + ε] → [0,∞) putting f̃(s) = u for

s ∈ (t, t + ε]; here a is some arbitrary nonnegative number (�control�). Then we
have ∫ t

0

f̃ = y1 + εa,

∫ t

0

f̃α = y2 + εaα

and hence

B(t+ ε, y1 + εa, y2 + εaα) ≥
∫ t+ε

0

(
1

s

∫ s

0

f̃

)α

ds

=

∫ t

0

(
1

s

∫ s

0

f̃

)α

ds+

∫ t+ε

t

s−α

(∫ t

0

f̃ +

∫ s

t

f̃

)α

ds

=

∫ t

0

(
1

s

∫ s

0

f

)α

ds+

∫ t+ε

t

s−α

(∫ t

0

f + a(s− t)

)α

ds

=

∫ t

0

(
1

s

∫ s

0

f

)α

ds+

∫ t+ε

t

s−α (y1 + a(s− t))
α
ds.

Taking the supremum over all f as above, we get

B(t+ ε, y1 + εa, y2 + εaα) ≥ B(t, y1, y2) +

∫ t+ε

t

s−α (y1 + a(s− t))
α
ds.

Now let us assume that B is of class C1. Because of this assumption, we are no
longer permitted to use the letter B: we will write B̃ instead. Putting B̃(t, y1, y2)
on the left, dividing throughout by ε and letting ε→ 0 yields

(4.11) B̃t(t, y1, y2) + aB̃y1
(t, y1, y2) + aαB̃y2

(t, y1, y2) ≥ (y1/t)
α.

Now, recall (4.10): we have, for u = y2t
α−1/yα1 ,

B̃t(t, y1, y2) = (1− α)
(y1
t

)α
(φ̃(u)− uφ̃′(u)) ,

B̃y1
(t, y1, y2) = α

(y1
t

)α−1

(φ̃(u)− uφ̃′(u))

and B̃y2(t, y1, y2) = φ̃′(u). Plugging this above, and substituting b = at/y1 gives

(φ̃(u)− uφ̃′(u)) (1− α+ αb) + bαφ̃′(u) ≥ 1.

This inequality must hold for all controls b. We minimize the left-hand side over b:
the direct di�erentiation shows that the minimum is attained for

b =

(
uφ̃′(u)− φ̃(u)

φ̃′(u)

)1/(α−1)

.

Plugging this above, we obtain

(α− 1)

[
1−

(
uφ̃′(u)− φ̃(u)

φ̃′(u)

)1/(α−1)
]
(uφ̃′(u)− φ̃(u)) ≥ 1.
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We assume equality: if we manage to solve this equation, we will claim that the
function B̃ obtained via (4.10) is the candidate for the Bellman function.

Step 4. Solution to the di�erential equation. We will now show that there is an
increasing continuous function φ : [1,∞) → R, satisfying the di�erential equation

(4.12) (α− 1)

[
1−

(
uφ̃′(u)− φ̃(u)

φ̃′(u)

)1/(α−1)
]
(uφ̃′(u)− φ̃(u)) = 1

for u ∈ (1,∞) and the initial condition φ(1) = 1. Furthermore,

(4.13) φ(u) ≤
(

α

α− 1

)α

u for u ≥ 1.

Consider the function ψ : [1,∞) → R given by

(4.14) ψ(s) = s

(
1− 1

α
+

1

αs

)α

.

One easily veri�es that this function is smooth, strictly increasing and maps [1,∞)
onto itself. Let φ be the inverse to ψ; then φ(1) = 1 and we have

(4.15) s =

(
1− 1

α
+

1

αφ(s)

)α

φ(s).

This, by a direct di�erentiation, yields

1 = φ′(s)

(
1− 1

α
+

1

αφ(s)

)α

− φ′(s)

φ(s)

(
1− 1

α
+

1

αφ(s)

)α−1

,

or, equivalently,

(4.16)
1

φ′(s)
=
α− 1

α

(
1− 1

α
+

1

αφ(s)

)α−1(
1− 1

φ(s)

)
.

Multiply both sides by φ(s) and subtract the obtained equality from (4.15). We
get

(4.17) s− φ(s)

φ′(s)
=

(
1− 1

α
+

1

αφ(s)

)α−1

and hence (4.16) can be rewritten in the form

1

φ′(s)
= (α− 1)

(
s− φ(s)

φ′(s)

)[
1−

(
s− φ(s)

φ′(s)

)1/(α−1)
]
,

which is the desired di�erential equation (4.12). To show (4.13), note that(
φ(s)

s

)′

=
φ′(s)s− φ(s)

s2
≥ 0,

where the latter bound comes from (4.17) (and the estimate φ′(s) > 0, which is a
consequence of the strict monotonicity of ψ). Thus, (4.13) follows at once from

lim
s→∞

φ(s)

s
= lim

s→∞

s

ψ(s)
=

(
α

α− 1

)α

.

This �nishes the proof.
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Step 5. B = B̃. Pick an arbitrary t and an arbitrary nonnegative piecewise

continuous function f on [0, t] with
∫ t

0
f = y1 and

∫ t

0
fα = y2. Then the function

(4.18) s 7→ B̃

(
s,

∫ s

0

f,

∫ s

0

fα
)
+

∫ t

s

(
1

r

∫ r

0

f

)α

is nondecreasing, by (4.11). Consequently, for any s ≤ t we have∫ t

s

(
1

r

∫ r

0

f

)α

≤ B̃

(
s,

∫ s

0

f,

∫ s

0

fα
)
+

∫ t

s

(
1

r

∫ r

0

f

)α

≤ B̃

(
t,

∫ t

0

f,

∫ t

0

fα
)

and hence, by Fatou's lemma,
∫ t

0

(
1
s

∫ s

0
f
)α ≤ B̃ (t, y1, y2) . Taking the supremum

over f gives B ≤ B̃. To show the reverse, it is enough to prove that B̃(t, y1, y2) is
obtained as the evaluation of the functional on speci�c functions. One can extract
from the above proof that the functions of the form f(s) = asb, for appropriately
chosen a and b, do the job.

1. Problems

1. Solve the optimal control problem

sup
u

{∫ T

0

√
u(t)dt+

√
x(T )

}
,

where x(0) = x0 > 0 and ẋ = −u < 0.

2. Solve the problem

sup

{
x2(1)−

1

2
(x1(1))

2

}
,

where ẋ = (ẋ1, ẋ2) = (u, u) (u ∈ R) and (x1(0), x2(0)) = (0, 0).

3. Consider the system of ODEs

ẋ1 = x1 + u, ẋ2 = −u2,
with the initial condition x1(0) = 1, x2(0) = 0, where u ∈ R. Solve the problem

sup
u

{
− x1(T )

2 + x2(T )
}
.

4. Solve the problem

sup
u

{
−
∫ 1

0

u2dt+ x(1)

}
,

where ẋ = u > 0 , x(0) = x0 > 0.

5. Solve the problem

sup
u

∫ 1

0

(1− u)xdt,

where ẋ = u ∈ [0, 1] and x(0) = 1/2.

6. Prove that for any f : [0,∞) → R we have∫ ∞

0

|f(t)|dt ≤
√
π

(∫ ∞

0

f2(u)du

)1/4(∫ ∞

0

f2(u)u2du

)1/4

.



CHAPTER 5

Stochastic continuous case: optimal control of

di�usions

We turn our attention to the stochastic setting. The rough idea is that the
di�erential equation

ẋ = f(t, x(t), u(t)), t ≥ 0,

which in the previous chapter governed the evolution of the deterministic system,
may be continuously in�uenced by stochastic disturbances. This additional prob-
abilistic ingredient is expressed in terms of (stochastic integrals of) Brownian mo-
tion. For the sake of completeness of the presentation, we will discuss some basic
properties of stochastic calculus and stochastic di�erential equations, referring the
interested reader to the monograph [6] for the more detailed and systematic study.

1. Some background on stochastic integration

Assume that (Ω,F ,P) is a complete probability space: here by completeness
we mean that for any A ∈ F of probability zero and any B ⊂ A we have B ∈ F .
We equip the space with a �ltration, i.e., a nondecreasing family (Ft)t≥0 of sub-σ-
�elds of F . For technical reasons, we assume that the �ltration satis�es the usual
conditions, that is, it is right-continuous (we have

⋂
s≥t Fs = Ft for all t ≥ 0) and

F0 contains all the events of probability zero.

The following process will be fundamental in our further considerations.

Definition 5.1. A real-valued adapted process W = (Wt)t≥0 is a Wiener
process (Brownian motion), if it satis�es the following conditions.

(i) We have W0 = 0 almost surely.

(ii) The process W has independent increments: for any 0 ≤ t0 < t1 < t2 <
. . . < tn, the variablesWt0 ,Wt1−Wt0 ,Wt2−Wt1 , . . .,Wtn−Wtn−1

are independent.

(iii) For any 0 ≤ s < t, the random variableWt−Ws has the normal distribution
of mean zero and variance t− s.

(iv) The process W has continuous trajectories.

A Wiener process W in Rn is the collection (W (1),W (2), . . . ,W (n)) of indepen-
dent one-dimensional Wiener processes W (1), W (2), . . ., W (n).

We will describe now some background on stochastic di�erential equations with
respect to Brownian motion. The idea is to modify the equation

(5.1) ẋ = b(t, xt)

by adding a stochastic component: the equation will take the form

dx

dt
= b(t, xt) + σ(t, xt)Wt, t ≥ 0,

63



64 5. STOCHASTIC CONTINUOUS CASE: OPTIMAL CONTROL OF DIFFUSIONS

or rather

(5.2) dxt = b(t, xt)dt+ σ(t, xt)dWt, t ≥ 0.

HereW can be interpreted as the �white noise� inserted into (5.1). One of the main
problems is that formally, the right-hand side above does not make sense: with
probability one, the trajectories of Brownian motion are nowhere di�erentiable and
hence dWt is meaningless. To overcome this di�culty, one rewrites (5.2) in the
integral form

xt = x0 +

∫ t

0

b(s, xs)ds+

∫ t

0

σ(s, xs)dWs, t ≥ 0,

reducing the problem to that of giving sense to the latter integral. Again, this
cannot be done pointwise by means of Stjeltjes integrals: it can be shown that
almost surely, Brownian motion has an in�nite variation on any subinterval of
[0,∞). It turns out that the problem can be tackled by referring to the L2 isometry
argument. More speci�cally, suppose that H is a �xed process and assume that we

are interested in de�ning the integral (H ·W )t =
∫ t

0
HsdWs. Assume �rst that H

is �very simple�, that is, we have

H = ξ1{0} for some F0-measurable random variable ξ

or, for some 0 ≤ s ≤ t,

H = ξ1(s,t] for some Fs-measurable random variable ξ.

Then for any r, we de�ne ∫ r

0

HudWu = 0

in the �rst case, and ∫ r

0

HudWu = ξ(Wr∧t −Ws∧t)

in the second case. By linearity, this de�nition extends to integrals of simple in-
tegrands H (linear combinations of very simple integrands). By a beautiful L2-
limiting argument, one can de�ne the stochastic integrals, with respect to X, of
locally bounded predictable processes H. The key property which enables the exten-
sion is the identity

E
(∫ t

0

HsdWs

)2

= E
∫ t

0

H2
sds,

provided H is a simple integrand.
One of the fundamental statements in the theory of stochastic integration is

the following Itô's formula, which will be stated for Brownian motion only. Namely,
for any C2 function on [0,∞)× R, we have

F (t,Wt) = F (0, 0) +

∫ t

0

Ft(s,Ws)ds+

∫ t

0

Fx(s,Ws) · dWs +
1

2

∫ t

0

Fxx(s,Ws)ds

= F (0, 0) +

∫ t

0

(
Ft(s,Ws) +

1

2
Fxx(s,Ws)

)
ds+

∫ t

0

Fx(s,Ws) · dWs.



1. SOME BACKGROUND ON STOCHASTIC INTEGRATION 65

In the n-dimensional case, the formula is slightly more complicated: for any C2

function on [0,∞)× Rn, we have

F (t,Wt)

= F (0, 0, . . . , 0) +

∫ t

0

Ft(s,Ws)ds+

n∑
k=1

∫ t

0

Fxk
(s,Ws)dW

(k)
s +

1

2

∫ t

0

∆F (s,Ws)ds

= F (0, 0, . . . , 0) +

∫ t

0

(
Ft(s,Ws) +

1

2
∆F (s,Ws)

)
ds+

n∑
k=1

∫ t

0

Fxk
(s,Ws)dW

(k)
s ,

where W = (W (1),W (2), . . . ,W (n)) and ∆F stands for the Laplacian of F .

We return to the context of the stochastic di�erential equation

(5.3) dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≥ 0,

with the initial condition X0 = x0, where x0 is a given F0-measurable random
variable. Here we assume that b and σ are piecewise and right-continuous in t and
Lipschitz in x, uniformly in t (there is a constant K such that for any t, x and y
we have |b(x, t)− b(y, t)| ≤ K|x− y|). One of fundamental questions concerns the
existence and uniqueness of the solution.

Theorem 5.1. Assume that b and σ are piecewise and right continuous in t
and Lipschitz continuous in x uniformly in t, and that σ(t, x0) and b(t, x0) are
functions bounded by some constant. Then there is a unique adapted solution Xt

of (5.3) on [0,∞), continuous in t and locally square-integrable.

Sometimes the processes satisfying (5.3) are called di�usions. The statement of
the theorem remains valid if b and σ are assumed to be adapted processes: b(t, x, ω),
σ(t, x, ω). Furthermore, the formulation is still true in the n-dimensional context,
in which b is a function with values in Rn, σ is a function which takes values in the
set of n× n matrices and W is replaced by an n-dimensional Brownian motion W.

All the above discussion concerned the case in which the starting time is equal to
0 and the starting position is a given random variable x0. However, the statements
extend immediately to the context in which the starting time is some parameter
s > 0, and the initial variable is equal to xs (which can be random or deterministic).
For the sake of convenience, we distinguish the family of probability measures Ps,x

(and the corresponding expectations Es,x), where the index s indicates the starting
time, while x stands for the deterministic starting position equal to x.

Before we proceed, we mention an importance consequence of Itô's formula.
Suppose that f is of class C2 on R+ × Rn and X satis�es (5.3). Then

lim
ε→0

Es,xf(s+ ε,Xs+ε)− f(s, x)

ε

= ft(s, x) +
〈
∇xf(s, x), b(s, x)

〉
+

1

2

〈
D2f(s, x)σ(s, x), σ(s, x)

〉
,

where∇x denotes the gradient with respect to x-variables, ⟨·, ·⟩ is the scalar product
in Rn and D2f is the Hessian matrix of f .
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2. Optimal control

Suppose that the n-dimensional di�usion Xt is governed by the controlled sto-
chastic di�erential equation

dXt = b(t,Xt, u(t,Xt))dt+ σ(t,Xt, u(t,Xt))dWt, X0 = x0.

Here the control u(t,Xt) is a function taking values in a given set U and is subject
to choice. The functions b, σ and x0 are given, with σ being an n × m matrix
with entries σi,j(t, x, u), and Wt is a vector of m given independent Brownian
motions. We assume that the coordinates/entries of b and σ are piecewise and
right-continuous in t, and uniformly Lipschitz continuous in (x, u). For any given
(s, x) in [0, T ]× Rn, de�ne the functional

J(s, x, u) = Es,x

[∫ T

s

g(t,Xt, u(t,Xt))dt+ r(T,XT )

]
,

where g and r are given functions and T is a �xed time horizon (in case T = ∞,
the function r is assumed to be zero). Suppose we are interested in the problem

(5.4) B := supJ(0, x0, u),

where the supremum is taken over all controls u with values in U . As usual, two
questions arise:

· to identify the control u∗ (if exists), which yields the optimal performance,
i.e., such that we have

J(0, x0, u
∗) = sup

u
J(0, x0, u).

· to compute the explicit value of B.

In (5.4), we consider only the controls of the form u(t, x), so-called Markov
controls, taking values in U . It is possible to allow more general control func-
tions u(t, ω) that are dependent on past values of W; however, in most cases the
supremum is achieved in the Markovian case.

As previously, the successful treatment of the above problem rests on extending
it to general starting positions. De�ne the associated Bellman (or value) function
B : [0, T ]× Rn → R by the formula

B(s, x) = sup
u
J(s, x, u).

Clearly, B satis�es the initial (or rather terminal) condition B(T, x) = r(T, x) for
all x. For t < T , the values of B(t, x) are governed by an appropriate version of
Hamilton-Jacobi-Bellman equation (HJB). Let us present a rough reasoning which
leads to this statement. Fix a point (s, x) and a small positive number ε, and take
a look at the de�nition of B(s, x). Assume that B is of class C2 and consider the
following control. First, on the time interval [s, s+ ε], we take u ≡ a, where a is an
arbitrarily chosen element of U : hence we have

Xu
s+ε = x+

∫ s+ε

s

b(t,Xt, a)dt+

∫ s+ε

s

σ(t,Xt, a)dWt.

Second, depending on where the di�usion is located at time s + ε, we apply the
corresponding (almost) optimal control coming from B(s + ε,Xu

s+ε). The control
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u we have just constructed leads to the inequality

B(s, x) ≥ J(s, x, u)

= Es,x

[∫ s+ε

s

g(t,Xt, a)dt+

∫ T

s+ε

g(t,Xt, u(t,Xt))dt+ r(T,XT )

]
,

or

B(s, x) ≥ Es,x

[∫ s+ε

s

g(t,Xt, a)dt

]
+ Es,xB(s+ ε,Xs+ε).

We move B(s, x) to the left, divide both sides by ε and let ε→ 0, obtaining

0 ≥ g(s, x, a) + LB(s, x)

= g(s, x, a) +Bs(s, x) +Bx(s, x)b(s, x, a) +
1

2
Bxx(s, x)σ

2(s, x, a).

Furthermore, we might hope that if a is chosen in an optimal manner, then equality
will hold above. This is the aforementioned Hamilton-Jacobi-Bellman equation

Bs(s, x) + sup
a∈U

{
g(s, x, a) +Bx(s, x)b(s, x, a) +

1

2
Bxx(s, x)σ

2(s, x, a)

}
= 0.

In the n-dimensional context, the formula is analogous, though a little more com-
plicated:

Bs(s, x) + sup
a∈U

{
g(s, x, a) + ⟨∇xB(s, x), b(s, x, a)⟩

+
1

2

〈
∆xB(s, x)σ(s, x, a), σ(s, x, a)

〉}
= 0,

(5.5)

where ⟨·, ·⟩ is the scalar product in Rn.

More precisely, we have the following two statements.

Theorem 5.2 (Necessary Conditions). Suppose that B is twice continuously
di�erentiable on (0, T ) × Rn and continuous on [0, T ] × Rn. Then B satis�es the
HJB equation (5.5) in (0, T ) × Rn, together with B(T, x) = r(T, x). Moreover, if
u∗ is an optimal control, then a = u∗(s, x) maximizes the right-hand side of (5.5).

Theorem 5.3 (Su�cient Conditions). Suppose that B̃ is a function that is
continuous on [0, T ] × Rn, is twice continuously di�erentiable in (0, T ) × Rn, and

satis�es (5.5) on (0, T )×Rn, together with the boundary condition B̃(T, x) = r(T, x)
for all x. Assume that for every pair (t, x), u0(t, x) is the value of u ∈ U that yields
the maximum in the right hand side of (5.5). Then u0 is the optimal control.

Example 5.4. Consider the problem

sup
u

E

[∫ T

0

−u2dt−X2
T

]
,

where dXt = udt+ σdWt, X0 = x0; here σ > 0 and x0 ∈ R are given numbers.

We introduce the Bellman function

B(s, y) = sup
u

E

[∫ T

s

−u2dt−X2
T

]
,
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where X satis�es the same SPDE as above, with Xs = y. The Bellman equation
takes the form

Bs(t, x) + sup
a∈R

{
−a2 +Bx(t, x)u+

1

2
Bxx(t, x)σ

2

}
= 0.

The supremum is attained for a = Bx(t, x)/2, plugging this control above gives

(5.6) 0 = Bs(t, x) +
Bx(t, x)

2

4
+
Bxx(t, x)σ

2

2
.

Furthermore, the terminal condition reads B(T, x) = −x2. To solve the above PDE,
we search for some homogeneity-type property of B which enables the reduction to
the ordinary di�erential equation. Suppose that u is an arbitrary control and X is
the process starting from y. Next, pick a di�erent starting point ỹ and change the
control to ũ = u+ c, where c is a parameter. Then we have

X̃t = ỹ +

∫ T

s

ũdt+ σWT = ỹ − y + c(T − s) +XT .

Hence

B(s, ỹ) ≥ E

[∫ T

s

−ũ2dt− X̃2
T

]

= E
[ ∫ T

s

−u2dt− 2c

∫ T

s

udt− c2(T − s)

−X2
T − 2(ỹ − y + c(T − s))

(
y +

∫ T

s

udt

)
− (ỹ − y + c(T − s))2

]
.

Now suppose that ỹ − y + c(T − s) = −c. Then the integral
∫ T

s
u cancels out and

we obtain

B(s, ỹ) ≥ E
[ ∫ T

s

−u2dt−X2
T

]
− c2(T − s) + 2cy − c2.

Hence, taking the supremum over u and recalling that ỹ − y + c(T − s) = −c, we
get the estimate

(5.7) B(s, y − c(T − s+ 1)) ≥ B(s, y)− c2(T − s+ 1) + 2cy

for all c, y ∈ R. Now substitute ȳ = y − c(T − s + 1) and c̄ = −c. Plugging this
above, we see that

B(s, ȳ) ≥ B(s, ȳ − c̄(T − s+ 1))− c̄2(T − s+ 1)− 2c̄(ȳ − c̄(T − s+ 1)),

which is equivalent to

B(s, ȳ − c̄(T − s+ 1)) ≤ B(s, ȳ)− c̄2(T − s+ 1) + 2c̄ȳ.

But ȳ and c̄ can take arbitrary real values; thus equality holds in (5.7), which is
the desired homogeneity. Consequently, taking c = y/(T − s+ 1), we obtain

B(s, y) = B(s, 0)− y2

T − s+ 1
= φ(s)− y2

T − s+ 1
.

Plugging this into (5.6), we get

φ′(s) +
σ2

T − s+ 1
= 0,
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so that φ(s) = σ2 ln(T − s+ 1) + C for some constant C. This yields

B(s, y) = σ2 ln(T − s+ 1)− y2

T − s+ 1
+ C,

and the terminal condition B(T, y) = −y2 gives C = 0. Strictly speaking, the
function B we obtained is the candidate for the Bellman function; however, since
it is of class C2 and satis�es the HJB equation, Theorem 5.3 implies that it does
coincide with the abstract Bellman function. Note that the optimal control at time
t is equal to u∗(t) = −Xt/(T − t+ 1).

The methodology we described above works perfectly for the in�nite-horizon
problems.

Example 5.5. Consider the problem

sup
u

E
{
−
∫ ∞

0

e−ρt(X2
t + u2t )dt

}
,

where dXt = udt + XtdWt and X0 = 1. Here ρ is a �xed positive constant. As
usual, we start with writing down the abstract Bellman function corresponding to
the problem:

B(s, y) = sup
u

E
{
−
∫ ∞

s

e−ρt(X2
t + u2t )dt

}
,

where Xs = y and X is governed by the same stochastic di�erential equation as
above. Now we will establish two homogeneity properties of B. First, suppose
that Xs = y and X satis�es the above SPDE; then X̃t = Xt+s. t ≥ 0, satis�es

X̃0 = y and dX̃t = dXt+s = u(t+ s)dt+Xt+sdWt+s = u(t+ s)dt+ X̃tdW̃t, where

W̃t =Wt+s −Ws is a Brownian motion. Since in addition we have

E
∫ ∞

s

e−ρt(X2
t + u2t )dt = E

∫ ∞

0

e−ρ(t+s)(X2
t+s + u2t+s)dt

= e−ρsE
∫ ∞

0

e−ρt(X̃2
t + u2t+s)dt,

we infer that B(s, y) = e−ρsB(0, y). Next, observe that if X is a process induced
by X0 = y and the control u, then λX is a process induced by λX0 = λy and λu:
this follows at once from the linearity of the stochastic di�erential equation. Thus

B(0, λy) = sup
u

E
{
−
∫ ∞

0

e−ρt(λ2X2
t + λ2u2t )dt

}
= λ2B(0, y).

Putting the above homogeneity properties together, we see that B(s, y) = γe−ρsy2

for some unknown constant γ; in particular, B is of class C2. To compute γ, we
derive the corresponding HJB equation. We proceed as usual: for a �xed starting
position y, we consider the control u which is equal to a on some small interval
[0, ε], and is the (almost) optimal control induced by B(ε,Xε) on (ε,∞). Then

B(0, y) ≥ −
∫ ε

0

e−ρt(X2
t + u2t )dt+ E0,yB(ε,Xε).

Putting all the terms on the right, dividing by ε and letting ε→ 0 yields

L(t,X)B(0, y)− (y2 + a2) ≤ 0,

or

Bs(0, y) +Bx(0, y)a+
1

2
Bxx(0, y)y

2 − (y2 + a2) ≤ 0.
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Plugging the formula for B, we obtain

γ
(
−ρy2 + 2ya+ y2

)
− y2 − a2 ≤ 0.

Now we optimize over a and assume equality: the left-hand side is the largest for
a = γy and hence we get y2

[
γ(−ρ + γ + 1) − 1

]
= 0. This equality must hold for

all y, and thus the expression in the square brackets must be zero. There are two
solutions

γ± =
ρ− 1±

√
(1− ρ)2 + 4

2
,

satisfying γ+ > 0 and γ− < 0. But by the very de�nition of B, it is clear that
B ≤ 0; thus we are forced to take γ− and hence

B(s, y) =
ρ− 1−

√
(1− ρ)2 + 4

2
· e−ρsy2.

Finally, note that the optimal control is u∗t = γ−Xt, t ≥ 0.

It should however be emphasized that in general, Bellman functions need not
be of class C2 and hence the application of the HJB may not make sense.

Example 5.6. Let

F (x) =


0 if x ≤ 0,

x2 if x ∈ [0, 1],

1 if x ≥ 1.

Consider the optimal control problem supu EF (XT ), where X0 = 0 and dXt =
utdWt; here u ∈ R are arbitrary. We introduce the Bellman function

B(s, y) = sup
u

EF (XT ),

where Xs = y and X satis�es the same SPDE as above. The terminal condition
reads B(T, y) = F (y). Furthermore, if B ∈ C2, then the HJB equation takes the
form

Bs(s, y) + sup
a∈R

{
1

2
Byy(s, y)a

2

}
= 0.

This implies that Byy must be nonpositive; then the optimal control a is zero and
we obtain Bs(s, y) = 0 for all s ∈ [0, T ] and y ∈ R. Consequently, we deduce that
B(s, y) = B(T, y) = F (y) for all s ∈ [0, T ] and y ∈ R. But this contradicts the
condition Byy ≤ 0: the function F is not concave. The problem here lies in the
fact that B is not of class C2, and that the optimal control does not exist. To see
this, we solve �nd the Bellman function �by hand�. Clearly, if y ≥ 1, then it is
optimal to take u ≡ 0: then the process X is constant and EF (XT ) = F (y) = 1 is
obviously optimal. Similarly, if at some time t the process X reaches 1, then from
that time on it is optimal to take the zero control. On the other hand, if y < 1,
let us consider u = a on some small time interval [s, s + ε], for some big positive
number a. Then Xt = s+a(Wt−Ws). It follows from the law of iterated logarithm
for Brownian motion that if a is chosen su�ciently large, then X reaches 1 with
probability as close to 1 as we wish. Putting the above considerations together, we
see that B(s, y) = 1 for all s < T and y ∈ R. Furthermore, for y < 1 the optimal
control does not exist: it would be optimal to take u∗(t, y) = ∞ for y < 1 and
u∗(t, y) = 0 for y ≥ 1, which makes no sense.



3. PROBLEMS 71

3. Problems

1. Solve the problem

sup

{
1

2

∫ T

0

[−u2(t)e−Xt ]dt+ eXT

}
,

where dXt = u(t)e−Xtdt+ σdWt, X0 = x0; here σ > 0 and x0 are �xed numbers.

2. Let Xt denote the wealth of a person at time t. Suppose that at each
time, the person has two possible investments to choose. The �rst, risky asset Y is
assumed to satisfy the SPDE

dYt = aYtdt+ σYtdWt, t ≥ 0,

for some given parameters a, σ > 0. The second, risk-free asset Z satis�es

dZt = bZtdWt,

for some b ∈ (0, a). At each instant t the person can choose how big fraction
u(t) ∈ [0, 1] of the wealth will be invested in the risky asset (the remaining part is
invested in Z). Find the control u which optimizes the functional E

√
XT , where T

is a �xed �nite horizon.

3. Solve the problem
sup
u

P(XT ≥ 1),

where dXt = u(t)dWt, u(t) ∈ [−1, 1], X0 = x0.





CHAPTER 6

Towards harmonic analysis: Buckley's inequality

The purpose of this short chapter is to show that the methods of optimal
control can be applied successfully in some problems of harmonic analysis. The
presentation is based on notes [8].

Let I be a subinterval of the real line R. A weight w on I is a positive, integrable
function. For any subinterval J ⊆ I, we will use the notation

⟨w⟩J =
1

|J |

∫
J

w

for the average of w over J . Here and below, the integration will be taken with
respect to Lebesgue's measure and |J | is the length of J .

For I as above and δ ≥ 1, let

A∞(I, δ) :=
{
w : ⟨w⟩J ≤ δe⟨w⟩J for all J ⊆ I

}
be the δ-ball in the Muckenhoupt class A∞. Let DI stand for the class of all dyadic
subintervals of I. Let Ad

∞(I, δ) be the dyadic version of A∞(I, δ), in the de�nition
of which only J ∈ DI are considered.

In 1991, S. Buckley proved the following result.

Theorem 6.1. There exists a constant c = c(δ) such that∑
J∈DI

|J |
(
⟨w⟩J+ − ⟨w⟩J−

⟨w⟩J

)2

≤ c(δ)|I|

for any weight w ∈ Ad
∞(I, δ).

Here I± stand for the left/right half of the interval I. Our primary goal is to
prove the above estimate with the constant c(δ) = 8 log δ.

The Bellman function corresponding to this problem is given as follows. Fix
δ ≥ 1 and de�ne

B(x1, x2) = sup

{
1

|I|
∑
J∈DI

|J |
(
⟨w⟩J+

− ⟨w⟩J−

⟨w⟩J

)2

: ⟨w⟩J = x1, ⟨logw⟩J = x2

}
,

where the supremum is taken over all w ∈ A∞(I, δ). Formally, this function is
de�ned on the domain

Ωδ =
{
x = (x1, x2) : log

x1
δ

≤ x2 ≤ log x1

}
.

To see this, note that the right-hand side is guaranteed by Jensen's inequality and
the left is due to the A∞ condition. Note that B does not depend on the interval
I, which can be seen by applying an appropriate a�ne transformation.

Our goal is to �nd the explicit formula for B. To this end, we could proceed
as usual: �nd a certain candidate for this object, and then show that it coincides

73
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with B. We will follow this path, but obtain a suboptimal candidate; the constant
8 log δ will not be optimal (we will show that B ≤ B̃ only).

We turn our attention to the properties of B. First, by the very de�nition of
B, we have the following �initial condition�:

B(x1, log x1) = 0.

There is only one weight w which satis�es ⟨w⟩I = x1 and ⟨logw⟩I = log x1: the
constant one, equal to x1 almost everywhere. For this weight, the sum in the
de�nition of B vanishes.

Here is a version of the Bellman equation, sometimes called �the main inequal-
ity� in the literature.

Lemma 6.2. For every pair x± of points from Ωδ such that (x+ + x−)/2 ∈ Ωδ,
we have

B(x) ≥ B(x−) +B(x+)

2
+

(
x−1 − x+1

x1

)2

.

Proof. Pick arbitrary weights w± ∈ A∞(I±, δ) with ⟨w±⟩I± = x±1 and ⟨w±⟩I± =

x±2 . Then their concatenation w : I → R belongs to Ainfty(I, δ) and satis�es
⟨w⟩I = x1 and ⟨w⟩I = x2. Consequently, by the de�nition of the Bellman function,

B(x1, x2)

≥ 1

|I|
∑
J∈DI

|J |
(
⟨w⟩J+ − ⟨w⟩J−

⟨w⟩J

)2

=
1

2|I−|
∑

J∈DI−

|J |
(
⟨w⟩J+ − ⟨w⟩J−

⟨w⟩J

)2

+
1

2|I+|
∑

J∈DI+

|J |
(
⟨w⟩J+ − ⟨w⟩J−

⟨w⟩J

)2

+

(
⟨w⟩I+ − ⟨w⟩I−

⟨w⟩I

)2

.

Taking the supremum over w±, we get the claim. □

Furthermore, B enojoys the following homogeneity condition.

Lemma 6.3. We have B(λx1, log λ + x2) = B(x1, x2) for any λ > 0 and any
(x1, x2) ∈ Ωδ. In particular, B(x1, x2) = B(x1e

−x2 , 0) = φ(x1e
−x2).

Proof. Take an arbitrary weight w ∈ A∞(I, δ) with ⟨w⟩I = x1 and ⟨logw⟩I =
x2. Then for any λ > 0, the weight w̃ = λw also belongs to A∞(I, δ) and satis�es
⟨w̃⟩I = λx1 and ⟨log w̃⟩I = log λ+ x2. Consequently, by the very de�nition of B,

B(λx1, log λ+x2) ≥
1

|I|
∑
J∈DI

|J |
(
⟨w̃⟩J+

− ⟨w̃⟩J−

⟨w̃⟩J

)2

=
1

|I|
∑
J∈DI

|J |
(
⟨w⟩J+

− ⟨w⟩J−

⟨w⟩J

)2

.

Taking the supremum over w, we get B(λx1, log λ+ x2) ≥ B(x1, x2), setting x1 :=
λx1, x2 := log λ+ x2 and λ := λ−1, we obtain the reverse bound. □

Step 1. A candidate for B. We write down an in�nitesimal version of the
Bellman equation. Namely, pick an arbitrary x = (x1, x2) belonging to interior of Ωδ

and �x h, k ∈ R. Then for ε su�ciently close to 0, we have x± = (x1±εh, x2±εk) ∈
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Ωδ. Plug x, x−, x+ into the Bellman equation, put everything on the left, divide
throughout by ε2 and let ε→ 0, obtaining

1

2
B̃x1x1(x)h

2 + B̃x1x2(x)hk +
1

2
B̃x2x2(x)k

2 + 4

(
h

x1

)2

≤ 0.

Since h, k were chosen arbitrarily, we see that the Hessian matrix(
Bx1x1 +

8
x2
1

Bx1x2

Bx1x2
Bx2x2

)
must be semipositive-de�nite. The homogeneity allows us to rewrite this in the
form

(6.1)

(
e−2x2

(
g′′(s) + 8

s2

)
−e−x2(sg′(s))′

−e−x2(sg′(s))′ s(sg′(s))′

)
≤ 0,

where s = x1e
−x2 . This is equivalent to saying that (sg′)′ ≤ 0 and the determinant

is nonnegative. Now, as usual, we assume the degeneracy condition: the deter-
minant must vanish. This assumption is plausible: if we are interested in sharp
estimates, then there should be weights for which the Bellman equation holds (that
is, we have equality in the main inequality). If we compute the determinant, we
are led to the equation (

g′(s)− 8

s

)
(sg′)′ = 0.

The general solution to this equation is g(s) = c log s+c1; since g(1) = 0 (the initial
condition), we are forced to take c1 = 0. To �nd c, we go back to the inequality
(6.1). We must have e−2x2(g′′(s) + 8/s2) ≤ 0, equivalently, −c+ 8 ≤ 0. Thus, it is
natural to assume that c = 8. We have obtained the candidate

g(s) = 8 log s and B̃(x1, x2) = 8(log x1 − x2).

Step 2. We will show that B ≤ B̃. First, we check that B̃ does satisfy the main
inequality. We have

B̃(x)− B̃(x−) + B̃(x+)

2
−
(
x+1 − x−1

x1

)2

= 8 log x1 − 8x2 − 4 log(x−1 x
+
1 ) + 4(x−2 + x+2 )−

(
x+1 − x−1

x1

)2

= 4 log
x21

(x1 + h)(x1 − h)
− 4

(
h

x1

)2

= −4

[
log

(
1−

(
h

x1

)2
)

+

(
h

x1

)2
]
≥ 0.

This inequality enables us to write an appropriate induction step. Pick an arbitrary
weight w ∈ A∞(I, δ) and, for J ∈ DI , denote x

J = (⟨w⟩J , ⟨logw⟩J). The main
inequality yields

|J |B̃(xJ) ≥ |J−|B̃(xJ−) + |J+|B̃(xJ+)|+ |J |

(
x
J−
1 − x

J+

1

xJ1

)2

.
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We will use this inequality repeatedly, to I; then to I±; then to I±±, etc. Let D
n
I

denote the class of all dyadic subintervals of I of length 2−n|I|. We obtain

|I|B̃(xI) ≥
∑

J∈Dn
I

|J |B̃(xJ)|+
n−1∑
k=0

∑
J∈Dk

I

|J |

(
x
J−
1 − x

J+

1

xJ1

)2

.

But B̃ is nonnegative; we thus obtain

n−1∑
k=0

∑
J∈Dk

I

|J |

(
x
J−
1 − x

J+

1

xJ1

)2

≤ |I|B̃(xI).

Letting n→ ∞ are get ∑
J∈DI

|J |

(
x
J−
1 − x

J+

1

xJ1

)2

≤ |I|B̃(xI).

Dividing by |I| and taking the supremum over w, we get B(xI) ≤ B̃(xI). In
particular, B(xI) ≤ φ(x1e

−x2) ≤ 8 log δ.
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