Algebraic Topology I. - homework problems.

9 listopada 2014

Series 1: Categories and functors

Zad. 1. Show that if a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ has a left (resp. right) adjoint functor then this adjoint functor is unique up to natural equivalence.

Zad. 2. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ is a pair of adjoint functors. Show, that there exist natural transformations $\Phi: F G \rightarrow i d_{\mathcal{D}}$ and $\Psi: i d_{\mathcal{C}} \rightarrow G F$ such that the triangles of natural transformations:

and

commute.
Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be a pair of functors such that there exist natural transformations $\Phi: F G \rightarrow i d_{\mathcal{D}}$ and $\Psi: i d_{\mathcal{C}} \rightarrow G F$ such that the above triangles of natural transformations commute. Show that F, G is a pair of adjoint functors.

Zad. 3. Show that if $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories then the functor $G: \mathcal{D} \rightarrow \mathcal{C}$ establishing this equivalence is both right and left adjoint to F. Is the converse true?

Series 2: Representability, limits.

Zad. 4. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. For an object $Y \in o b \mathcal{D}$ consider the functor $F_{Y}: \mathcal{C}^{o p} \rightarrow \mathcal{S e t}$, $F_{Y}(X)=M o r_{\mathcal{D}}(F(X), Y)$. Prove that if for every object $Y \in o b \mathcal{D}$ functor F_{Y} is representable then there exists a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ right adjoint to F.

Zad. 5. Let \mathcal{I} be a small category and $F: \mathcal{I} \rightarrow \mathcal{C}$ a diagram in \mathcal{C}. For every object $X \in$ obC define a constant functor $\Delta_{X}: I \rightarrow \mathcal{C}$, which to every object $i \in o b \mathcal{I}$ assigns X and to every morphism in \mathcal{I} assigns $i d_{X} \cdot \Delta: \mathcal{C} \rightarrow \mathcal{F} \operatorname{unct}(\mathcal{I}, \mathcal{C})$ for which $\Delta(X)=\Delta_{X}$ and for a morphism $f: X \rightarrow X^{\prime}$ in \mathcal{C} is a
natural transformation $\Delta(f): \Delta_{X} \rightarrow \Delta_{X^{\prime}}, \Delta(f)(i)=f: \Delta_{X}(i)=X \rightarrow \Delta_{X^{\prime}(i)}=X^{\prime}$, Check that Δ is indeed a functor. Prove that $\lim _{I} F$ exists iff the functor $\operatorname{Mor}_{\mathcal{F}_{\text {unct }(\mathcal{I}, \mathcal{C})}}(\Delta-, F): \mathcal{C}^{o p} \rightarrow \mathcal{S e t}$ is representable and $\lim _{F}$ is the representing object.

Formulate the analogous statement for colim.
Zad. 6. Let \mathcal{I} be a small category and consider a diagram $F: \mathcal{I} \rightarrow \mathcal{S}$ et in the category of sets given by a representable functor $\operatorname{Mor}_{\mathcal{I}}\left(i_{0}, \cdot\right)$. Find colimF. (hint: Yoneda helps a lot!)

1 Series 3: Cofibrations and Fibrations.

Zad. 7. Show that if

is a push out diagram in \mathcal{T} op then for every space Z the induced diagram

is a pull back diagram. (This was the key step in proving that for a map $f: X \rightarrow Y, \operatorname{map}(Z(f), Z)=$ $P\left(f^{*}\right)$.)

Zad. 8. Present the map $X \amalg X \rightarrow X$ sending each summand identically onto X as the composition of a cofibration and homotopy equivalence.
Present the diagonal map $\Delta: Y \rightarrow Y \times Y$ as the composition of a homotopy equivalence and a fibration.

Zad. 9. Present the map $X \rightarrow\{*\}$ as the composition of a cofibration and homotopy equivalence. Present the map $\{*\} \rightarrow X$ as the composition of a homotopy equivalence and a fibration.

