Algebraic Topology I. – homework problems.

9 listopada 2014

Series 1: Categories and functors

Zad. 1. Show that if a functor $F: \mathcal{C} \to \mathcal{D}$ has a left (resp. right) adjoint functor then this adjoint functor is unique up to natural equivalence.

Zad. 2. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ is a pair of adjoint functors. Show, that there exist natural transformations $\Phi: FG \to id_{\mathcal{D}}$ and $\Psi: id_{\mathcal{C}} \to GF$ such that the triangles of natural transformations:

and

commute.

Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be a pair of functors such that there exist natural transformations $\Phi: FG \to id_{\mathcal{D}}$ and $\Psi: id_{\mathcal{C}} \to GF$ such that the above triangles of natural transformations commute. Show that F, G is a pair of adjoint functors.

Zad. 3. Show that if $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories then the functor $G: \mathcal{D} \to \mathcal{C}$ establishing this equivalence is both right and left adjoint to F. Is the converse true?

Series 2: Representability, limits.

Zad. 4. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. For an object $Y \in ob\mathcal{D}$ consider the functor $F_Y: \mathcal{C}^{op} \to \mathcal{S}et$, $F_Y(X) = Mor_{\mathcal{D}}(F(X), Y)$. Prove that if for every object $Y \in ob\mathcal{D}$ functor F_Y is representable then there exists a functor $G: \mathcal{D} \to \mathcal{C}$ right adjoint to F.

Zad. 5. Let \mathcal{I} be a small category and $F: \mathcal{I} \to \mathcal{C}$ a diagram in \mathcal{C} . For every object $X \in ob\mathcal{C}$ define a constant functor $\Delta_X: I \to \mathcal{C}$, which to every object $i \in ob\mathcal{I}$ assigns X and to every morphism in \mathcal{I} assigns id_X . $\Delta: \mathcal{C} \to \mathcal{F}unct(\mathcal{I}, \mathcal{C})$ for which $\Delta(X) = \Delta_X$ and for a morphism $f: X \to X'$ in \mathcal{C} is a

natural transformation $\Delta(f): \Delta_X \to \Delta_{X'}, \ \Delta(f)(i) = f: \Delta_X(i) = X \to \Delta_{X'(i)} = X'$, Check that Δ is indeed a functor. Prove that $\lim_{I \to \infty} F$ exists iff the functor $Mor_{\mathcal{F}unct(\mathcal{I},\mathcal{C})}(\Delta -, F): \mathcal{C}^{op} \to \mathcal{S}et$ is representable and $\lim_{I \to \infty} F$ is the representing object.

Formulate the analogous statement for colim.

Zad. 6. Let \mathcal{I} be a small category and consider a diagram $F: \mathcal{I} \to \mathcal{S}et$ in the category of sets given by a representable functor $Mor_{\mathcal{I}}(i_0, \cdot)$. Find colim F. (hint: Yoneda helps a lot!)

1 Series 3: Cofibrations and Fibrations.

Zad. 7. Show that if

$$\begin{array}{ccc}
A & \xrightarrow{j} & X \\
f \downarrow & & \downarrow h \\
Y & \xrightarrow{g} & W
\end{array}$$

is a push out diagram in Top then for every space Z the induced diagram

$$\begin{array}{c|c} map(W,Z) & \xrightarrow{g^*} & map(Y,Z) \\ & h^* \downarrow & & \downarrow f^* \\ map(X,Z) & \xrightarrow{j^*} & map(A,Z) \end{array}$$

is a pull back diagram. (This was the key step in proving that for a map $f: X \to Y$, $map(Z(f), Z) = P(f^*)$.)

Zad. 8. Present the map $X \coprod X \to X$ sending each summand identically onto X as the composition of a cofibration and homotopy equivalence.

Present the diagonal map $\Delta: Y \to Y \times Y$ as the composition of a homotopy equivalence and a fibration.

Zad. 9. Present the map $X \to \{*\}$ as the composition of a cofibration and homotopy equivalence. Present the map $\{*\} \to X$ as the composition of a homotopy equivalence and a fibration.