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Introduction

The aim of these Notes is to introduce the reader to the language of cat-
egories and to present the basic notions of homological algebra, first from
an elementary point of view, with the notion of derived functors, next with
a more sophisticated approach, with the introduction of triangulated and
derived categories.

After having introduced the basic concepts of category theory and in par-
ticular those of projective and inductive limits, we treat with some details
additive and abelian categories and we construct the derived functors. We
also introduce the reader to the concepts of triangulated and derived cat-
egories. Our exposition of these topics is rather sketchy, and the reader is
encouraged to consult the literature.

These Notes are extracted from [23]. Other references are [25], [3] for the
general theory of categories, [12], [31] and [22, Ch 1], for homological alge-
bra, including derived categories. The book [24] provides a nice elementary
introduction to the classical homological algebra. For further developements,
see [18], [23].

Let us briefly describe the contents of these Notes.

In Chapter 1 we expose the basic language of categories and functors.
A key point is the Yoneda lemma, which asserts that a category C may
be embedded in the category C” of contravariant functors on C with values
in the category Set of sets. This naturally leads to the concept of repre-
sentable functor. Many examples are treated, in particular in relation with
the categories Set of sets and Mod(A) of A-modules, for a (non necessarily
commutative) ring A.

In Chapter 2 we construct the projective and inductive limits and, as
a particular case, the kernels and cokernels, products and coproducts. We
introduce the notions filtrant category and cofinal functors, and study with
some care filtrant inductive limits in the category Set of sets. Finally, we
define right or left exact functors and give some examples.

In Chapter 3 we introduce additive categories and study the category
of of complexes in such categories. In particular, we introduce the shifted
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complex, the mapping cone of a morphism, the homotopy of complexes and
the simple complex associated with a double complex, with application to
bifunctors. We also briefly study the simplicial category and explain how to
associate complexes to simplicial objects.

In Chapter 4 we treat abelian categories. The toy model of such cat-
egories is the category Mod(A) of modules over a ring A and for sake of
simplicity, we shall always argue as if we were working in a full abelian sub-
category of a category Mod(A). We explain the notions of exact sequences,
give some basic lemmas such as “the five lemma” and “the snake lemma”,
and study injective resolutions. We apply these results in constructing the
derived functors of a left exact functor (or bifunctor), assuming that the cat-
egory admits enough injectives. As an application we get the functors Ext
and Tor. Finally, we study Koszul complexes and show how they naturally
appear in Algebra and Analysis.

Chapters 1 to 4 may be considered as an elementary introduction to the
subject. Chapters 5 to 7 are more difficult, but our study will be more
superficial and some proofs will be skipped.

In Chapter 5, we construct the localization of a category with respect
to a family of morphisms S satisfying suitable conditions and we construct
the localization of functors. Localization of categories appears in particular
in the construction of derived categories.

In Chapter 6, we introduce triangulated categories, triangulated func-
tors and cohomological functors, and prove some basic results of this theory.
We also localize triangulated categories and triangulated functors.

Chapter 7 is devoted to derived categories. The homotopy category
K(C) of an additive category C is triangulated. When C is abelian, the
cohomology functor H?: K(C) — C is cohomological and the derived category
D(C) of C is obtained by localizing K(C) with respect to the family of quasi-
isomorphisms. We explain here this construction, with some examples, and
also construct the right derived functor of a left exact functor.

Conventions. In these Notes, all rings are unital and associative but not
necessarily commutative. The operations, the zero element, and the unit are
denoted by +, -, 0, 1, respectively. However, we shall often write for short ab
instead of a - b. All along these Notes, k will denote a commutative ring.
(Sometimes, k will be a field.) We denote by () the empty set and by {pt}
a set with one element. We denote by N the set of non-negative integers,
N={0,1,...}.

Caution. In these Notes, we will be extremely sketchy with the questions
of universes.



Chapter 1

The language of categories

In this chapter we introduce some basic notions of category theory which
are of constant use in various fields of Mathematics, without spending too
much time on this language. After giving the main definitions on categories
and functors, we prove the Yoneda Lemma. We also introduce the notions
of representable functors and adjoint functors.

We start by recalling some basic notions on sets and on modules over a
(non necessarily commutative) ring.

1.1 Sets and maps

The aim of this section is to fix some notations and to recall some elementary
constructions on sets.

If f: X — Y is a map from a set X to a set Y, we shall often say
that f is a morphism from X to Y. If f is bijective we shall say that f
is an isomorphism and write f: X =5 Y. If there exists an isomorphism
f: X =5Y, we say that X and Y are isomorphic and write X ~ Y.

We shall denote by Homg,, (X,Y), or simply Hom (X,Y), the set of all
maps from X to Y. If g: Y — Z is another map, we can define the compo-
sition go f: X — Z. Hence, we get two maps:

go: Hom (X,Y) — Hom (X, Z),
of: Hom (Y, Z) — Hom (X, 7).

Notice that if X = {z} and Y = {y} are two sets with one element each,
then there exists a unique isomorphism X =Y. Of course, if X and Y are
finite sets with the same cardinal 7 > 1, X and Y are still isomorphic, but
the isomorphism is no more unique.
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In the sequel we shall denote by () the empty set and by {pt} a set with
one element. Note that for any set X, there is a unique map ) — X and a
unique map X — {pt}.

Let {X;}ier be a family of sets indexed by a set I. The product of the
X;’s, denoted [[,.; Xi, or simply [[. X, is the defined as

iel
(1.1) [ = {{zitier; 2 € X for all i € T},

If I = {1,2} one uses the notation X; x Xy. If X; = X for all i € I, one uses
the notation X!. Note that

(1.2) Hom (1, X) ~ X'

For a set Y, there is a natural isomorphism

(1.3) Hom (Y, [ [ Xi) ~ [ ] Hom (Y, X;).

For three sets I, X, Y, there is a natural isomorphism
(1.4) Hom (/ x X,Y) ~ Hom (/,Hom(X,Y)).

If {X;}icr is a family of sets indexed by a set I, one may also consider
their disjoint union, also called their coproduct. The coproduct of the X;’s is
denoted | |,.; X or simply | |, X;. If I = {1, 2} one uses the notation X; LU.X,.
If X, =X for all i € I, one uses the notation X!). Note that

(1.5) X xI~XWD,
For a set Y, there is a natural isomorphism

(1.6) Hom (| |X;,Y) ~ ][ Hom (X;,Y).

Consider two sets X and Y and two maps f,g from X to Y. We write for
short f,g: X = Y. The kernel (or equalizer) of (f,g), denoted Ker(f, g), is
defined as

(1.7) Ker(f,g) ={z € X; f(z) = g(2)}.
Note that for a set Z, one has
(1.8) Hom (Z,Ker(f,g)) ~ Ker(Hom (Z, X) = Hom (Z,Y)).

Let us recall a few elementary definitions.
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e A relation R on a set X is a subset of X x X. One writes 2Ry if
(z,y) € R.

e The opposite relation R°P is defined by xR°Py if and only if yRz.

e A relation R is reflexive if it contains the diagonal, that is, 2R« for all
e X.

e A relation R is symmetric if xRy implies yRz.
e A relation R is anti-symmetric if 2Ry and yRz implies x = y.
e A relation R is transitive if xRy and yRz implies 2R z.

e A relation R is an equivalence relation if it is reflexive, symmetric and
transitive.

e A relation R is a pre-order if it is reflexive and transitive. If moreover it
is anti-symmetric, then one says that R is an order on X. A pre-order
is often denoted <. A set endowed with a pre-order is called a poset.

e Let (1,<) be a poset. One says that (I, <) is filtrant (one also says
“directed”) if I is non empty and for any i,j € I there exists k with
1 < kandj<k.

e Assume (/, <) is a filtrant poset and let J C I be a subset. One says
that J is cofinal to I if for any ¢ € I there exists j € J with ¢ < j.

If R is a relation on a set X, there is a smaller equivalence relation which
contains R. (Take the intersection of all subsets of X x X which contain R
and which are equivalence relations.)

Let R be an equivalence relation on a set X. A subset S of X is saturated
if z € S and xRy implies y € S. For x € X, denote by T the smallest
saturated subset of X containing x. One then defines a new set X/R and a
canonical map f: X — X/R as follows: the elements of X/R are the sets &
and the map [ associates to x € X the set Z.

1.2 Modules and linear maps

All along these Notes, a ring A means an associative and unital ring, but A
is not necessarily commutative and k denotes a commutative ring. Recall
that a k-algebra A is a ring endowed with a morphism of rings ¢: k — A
such that the image of k is contained in the center of A (i.e., p(z)a = ap(x)
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for any x € k and a € A). Notice that a ring A is always a Z-algebra. If A
is commutative, then A is an A-algebra.

Since we do not assume A is commutative, we have to distinguish between
left and right structures. Unless otherwise specified, a module M over A
means a left A-module.

Recall that an A-module M is an additive group (whose operations and
zero element are denoted +,0) endowed with an external law A x M — M
(denoted (a,m) +— a-m or simply (a, m) — am) satisfying:

(ab)ym = a(bm)
(a+b)ym =am+bm
a(m+m') =am + am’

where a,b € A and m,m’ € M.

Note that M inherits a structure of a k-module via ¢. In the sequel, if
there is no risk of confusion, we shall not write .

We denote by A° the ring A with the opposite structure. Hence the
product ab in A°P is the product ba in A and an A°P-module is a right A-
module.

Note that if the ring A is a field (here, a field is always commutative),
then an A-module is nothing but a vector space.

Examples 1.2.1. (i) The first example of a ring is Z, the ring of integers.
Since a field is a ring, Q, R, C are rings. If A is a commutative ring, then
Alxy, ..., x,)], the ring of polynomials in n variables with coefficients in A, is
also a commutative ring. It is a sub-ring of A[[z1, ..., x,]], the ring of formal
powers series with coefficients in A.

(ii) Let k be a field. Then for n > 1, the ring M, (k) of square matrices of
rank n with entries in k is non commutative.

(iii) Let k be a field. The Weyl algebra in n variables, denoted W), (k), is the
non commutative ring of polynomials in the variables z;, 9; (1 < i,j < n)
with coefficients in k and relations :

where [p, q| = pg — qp and 5; is the Kronecker symbol.

The Weyl algebra W, (k) may be regarded as the ring of differential op-
erators with coefficients in k[zy,...,z,], and k[zy,...,z,] becomes a left
W, (k)-module: x; acts by multiplication and 0; is the derivation with re-
spect to x;.
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A morphism f: M — N of A-modules is an A-linear map, i.e., f satisfies:

{ o

A morphism f is an isomorphism if there exists a morphism g : N — M
with fog=1idy,go f =1idyy.

If f is bijective, it is easily checked that the inverse map f=': N — M
is itself A-linear. Hence f is an isomorphism if and only if f is A-linear and
bijective.

A submodule N of M is a subset N of M such that n,n’ € N implies
n+n € Nandn € N,a € A implies an € N. A submodule of the
A-module A is called an ideal of A. Note that if A is a field, it has no
non trivial ideal, i.e., its only ideals are {0} and A. If A = C[z], then
I ={P € C[z]; P(0) = 0} is a non trivial ideal.

If N is a submodule of M, it defines an equivalence relation mRm’ if
and only if m —m’ € N. One easily checks that the quotient set M/R is
naturally endowed with a structure of a left A-module. This module is called
the quotient module and is denoted M/N.

Let f: M — N be a morphism of A-modules. One sets:

ns

) = f(m) + f(m') m,m"e M

_|._
m) f(m) meM,ace A.

Kerf = {meM; f(m)=0}
Imf = {neN; thereexistsme M, f(m)=n}.

These are submodules of M and N respectively, called the kernel and the
image of f, respectively. One also introduces the cokernel and the coimage

of f:
Coker f = N/Imf, Coim f = M/Ker f.
Note that the natural morphism Coim f — Im f is an isomorphism.

Example 1.2.2. Let W, (k) denote as above the Weyl algebra. Consider
the left W, (k)-linear map W, (k) — klxy,...,z,], W,(k) > P — P(1) €
k[zq,...,2,]. This map is clearly surjective and its kernel is the left ideal
generated by (0y,---,0,). Hence, one has the isomorphism of left W, (k)-
modules:

(1.9) /ZW )0; S5 K[z, .., ).
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Products and direct sums

Let I be a set, and let {M;};c; be a family of A-modules indexed by I. The
set [ [, M; is naturally endowed with a structure of a left A-module by setting

{miti +{mi}i = {mi +mi}i,

The direct sum €, M; is the submodule of [[, M; whose elements are the
{z;}:’s such that x; = 0 for all but a finite number of i € I. In particular, if
the set [ is finite, the natural injection €, M; — [[, M, is an isomorphism.

Linear maps

Let M and N be two A-modules. Recall that an A-linear map f: M — N
is also called a morphism of A-modules. One denotes by Hom , (M, N) the
set of A-linear maps f: M — N. This is clearly a k-module. In fact one
defines the action of k on Hom ,(M,N) by setting: (Af)(m) = A(f(m)).
Hence (Af)(am) = Af(am) = Xaf(m) = arf(m) = a(Af(m)), and \f €
Hom , (M, N).

There is a natural isomorphism Hom ,(A, M) ~ M: to u € Hom ,(A, M)
one associates u(1) and to m € M one associates the linear map A —
M,a — am. More generally, if I is an ideal of A then Hom ,(A/I, M) ~
{m € M;Im = 0}.

Note that if A is a k-algebra and L € Mod(k), M € Mod(A), the
k-module Hom, (L, M) is naturally endowed with a structure of a left A-
module. If N is a right A-module, then Hom, (N, L) becomes a left A-
module.

Tensor product

Consider a right A-module N, a left A-module M and a k-module L. Let us
say that amap f: N x M — L is (A, k)-bilinear if f is additive with respect
to each of its arguments and satisfies f(na,m) = f(n,am) and f(n\,m) =
A(f(n,m)) for all (n,m) € N x M and a € A, \ € k.

Let us identify a set I to a subset of k) as follows: to i € I, we associate
{lj}jGI € k(I) given by

Lif i
(1.10) =4 o TTh

0if j#1.
The tensor product N ®, M is the k-module defined as the quotient of
k(V*M) by the submodule generated by the following elements (where n,n' €
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N,m,m' € M,a € A,)X € kand N x M is identified to a subset of k(V>*M)):

(n+n',m)— (n,m) — (n',m)
(n,m+m’) — (n,m) — (n,m’)
(navm) - (n7am)

A(n,m) — (nA,m).

The image of (n,m) in N ®, M is denoted n @ m. Hence an element of
N ®, M may be written (not uniquely!) as a finite sum . n; @ m;, n; € N,
m; € M and:

(n+n)em=n®@m+n @m
n®(m+m)=n@m+nem
na@m=ngam

A(n@m)=nA@m=n® Am.

Denote by 3: N x M — N ®, M the natural map which associates n @ m
to (n,m).

Proposition 1.2.3. The map § is (A, k)-bilinear and for any k-module L
and any (A, k)-bilinear map f: N x M — L, the map [ factorizes uniquely
through a k-linear map ¢: N @, M — L.

The proof is left to the reader.
Proposition 1.2.3 is visualized by the diagram:

NxM-—L-Ne, M
r
f v
L.

Consider an A-linear map f: M — L. It defines a linear map idy x f: N x
M — N x L, hence a (A, k)-bilinear map N x M — N ®, L, and finally a
k-linear map

idy®f: N@, M - N@, L.

One constructs similarly g ® id,; associated to g: N — L.
There is are natural isomorphisms A ®, M ~ M and N ®, A~ N.
Denote by Bil(N x M, L) the k-module of (A, k)-bilinear maps from N x M
to L. One has the isomorphisms

(1.11) Bil(N x M,L) ~ Hom,(N®, M,L)
~ Hom ,(M,Hom, (N, L))
~ Hom ,(N,Hom, (M, L)).
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For L € Mod(k) and M € Mod(A), the k-module L ®,_ M is naturally
endowed with a structure of a left A-module. For M, N € Mod(A) and
L € Mod(k), we have the isomorphisms (whose verification is left to the
reader):

(1.12) Hom ,(L ®, N,M) =~ Hom ,(N,Hom, (L, M))
~ Hom, (L, Hom ,(N, M)).

If A is commutative, there is an isomorphism: N ®, M ~ M ®, N given
by n ® m — m ® n. Moreover, the tensor product is associative, that is, if
L,M,N are A-modules, there are natural isomorphisms L ®, (M ®, N) ~
(L®, M)®, N. One simply writes L ®, M ®, N.

1.3 Categories and functors

Definition 1.3.1. A category C consists of:
(i) a set Ob(C) whose elements are called the objects of C,

(ii) for each X,Y € Ob(C), a set Hom,(X,Y’) whose elements are called
the morphisms from X to Y,

(iii) for any X,Y,Z € Ob(C), a map, called the composition, Hom ,(X,Y") x
Hom (Y, Z) — Hom (X, Z), and denoted (f,g) — go f,

these data satisfying:
(a) o is associative,

(b) for each X € Ob(C), there exists idy € Hom (X, X) such that for all
f € Hom,(X,Y) and g € Hom,(Y, X), foidx = f, idx og = g.

Note that idx € Hom (X, X)) is characterized by the condition in (b).

Remark 1.3.2. There are some set-theoretical dangers, illustrated in Re-
mark 2.5.12, and one should mention in which “universe” we are working.

We do not give in these Notes the definition of a universe, only recalling
that a universe U is a set (a very big one) stable by many operations and
containing N. A set E' is U-small if it is isomorphic to a set which belongs to
U. Then, given a universe U, a U-category C is a category such that for any
X,Y € C, the set Hom ,(X,Y) is U-small. The category C is itself U-small
if moreover the set Ob(C) is U-small.

The crucial point is Grothendieck’s axiom which says that any set belong
to some universe.
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Notation 1.3.3. One often writes X € C instead of X € Ob(C) and f: X —
Y (orelse f: Y < X) instead of f € Hom,(X,Y). One calls X the source
and Y the target of f.

A morphism f: X — Y is an isomorphism if there exists g: X < Y such
that fog =1idy and go f = idx. In such a case, one writes f: X ==Y or
simply X ~ Y. Of course g is unique, and one also denotes it by f~!.

A morphism f: X — Y is a monomorphism (resp. an epimorphism) if
for any morphisms g; and go, fo g1 = f o gy (resp. g1 o f = go 0 f) implies
g1 = go. One sometimes writes f: X»—Y or else X < Y (resp. f: X—>Y)
to denote a monomorphism (resp. an epimorphism).

Two morphisms f and g are parallel if they have the same sources and
targets, visualized by f,g: X =2 Y.

One introduces the opposite category CP:

Ob(C?) = Ob(C), Hom,,,(X,Y) = Hom/(Y,X),

the identity morphisms and the composition of morphisms being the obvious
ones.

A category C’ is a subcategory of C, denoted C' C C, if: Ob(C") € Ob(C),
Hom,(X,Y) C Hom,(X,Y) for any X,Y € C’, the composition o in C’ is
induced by the composition in C and the identity morphisms in C’ are induced
by those in C. One says that C’ is a full subcategory if for all X,Y € (',
Hom,(X,Y) = Hom,(X,Y).

A category is discrete if the only morphisms are the identity morphisms.
Note that a set is naturally identified with a discrete category.

A category C is finite if the family of all morphisms in C (hence, in par-
ticular, the family of objects) is a finite set.

A category C is a groupoid if all morphisms are isomorphisms.

Examples 1.3.4. (i) Set is the category of sets and maps (in a given uni-
verse), Set’ is the full subcategory consisting of finite sets.

(ii) Rel is defined by: Ob(Rel) = Ob(Set) and Hompg,(X,Y) = P(X xY),
the set of subsets of X x Y. The composition law is defined as follows. For
f: X —=Yandg:Y — Z, go fis the set

{(x,2) € X x Z; there exists y € Y with (z,y) € f,(y, 2) € g}

Of course, idy = A C X x X, the diagonal of X x X.

(iii) Let A be a ring. The category of left A-modules and A-linear maps is

denoted Mod(A). In particular Mod(Z) is the category of abelian groups.
We shall use the notation Hom ,(«, *) instead of Hom g q04y(*, *)-
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One denotes by Mod!(A) the full subcategory of Mod(A) consisting of
finitely generated A-modules.
(iv) One associates to a pre-ordered set (I, <) a category, still denoted by [
for short, as follows. Ob(I) = I, and the set of morphisms from i to j has a
single element if 7 < j, and is empty otherwise. Note that I°P is the category
associated with I endowed with the opposite order.
(v) We denote by Top the category of topological spaces and continuous
maps.
(vi) We shall often represent by the diagram e — e the category which
consists of two objects, say {a,b}, and one morphism a — b other than id,
and id,. We denote this category by Arr.
(vii)) We represent by e —= e the category with two objects, say {a,b},
and two parallel morphisms a = b other than id, and id,.
(viii) Let G be a group. We may attach to it the groupoid G with one object,
say {a} and morphisms Hom ;(a,a) = G.
(ix) Let X be a topological space locally arcwise connected. We attach to it
a category X as follows: Ob()N() = X and for x,y € X, amorphism f: x — y
is a path form x to y.

Definition 1.3.5. (i) An object P € C is called initial if for all X € C,
Hom (P, X) ~ {pt}. One often denotes by @ an initial object in C.

(ii) One says that P is terminal if P is initial in C°P, i.e., for all X € C,
Hom (X, P) ~ {pt}. One often denotes by pt, a terminal object in C.

(iii) One says that P is a zero-object if it is both initial and terminal. In such
a case, one often denotes it by 0. If C has a zero object, for any objects
X,Y € C, the morphism obtained as the composition X — 0 — Y is
still denoted by 0: X — Y.

Note that initial (resp. terminal) objects are unique up to unique isomor-
phisms.

Examples 1.3.6. (i) In the category Set, () is initial and {pt} is terminal.
(ii) The zero module 0 is a zero-object in Mod(A).

(iii) The category associated with the ordered set (Z, <) has neither initial
nor terminal object.

Definition 1.3.7. Let C and C’' be two categories. A functor F': C — ('
consists of a map F': Ob(C) — Ob(C’) and for all X,Y € C, of a map still
denoted by F': Hom,(X,Y) — Hom,, (¥ (X), F(Y)) such that

F(idx) =idpx), F(fog)=F(f)oF(g)



1.3. CATEGORIES AND FUNCTORS 17

A contravariant functor from C to C’ is a functor from C°P to C’. In other
words, it satisfies F'(go f) = F(f) o F(g). If one wishes to put the emphasis
on the fact that a functor is not contravariant, one says it is covariant.

One denotes by op : C — C°P the contravariant functor, associated with
idcos.

Example 1.3.8. Let C be a category and let X € C.
(i) Hom,(X, «) is a functor from C to Set. To Y € C, it associates the set
Hom,(X,Y) and to a morphism f:Y — Z in C, it associates the map

Hom (X, f): Homo(X,Y) <% Hom (X, Z).

(ii) Hom,(+, *) is a functor from C° to Set. To Y € C, it associates the set
Hom (Y, X) and to a morphism f: Y — Z in C, it associates the map

Hom . (f, X): Hom,(Z, X) <% Hom (Y, X).

Example 1.3.9. Let A be a k-algebra and let M € Mod(A) Similarly as in
Example 1.3.8, we have the functors

Hom , (M, «): Mod(A) — Mod(k),
Hom ,(+, M): Mod(A)°® — Mod(k)

Clearly, the functor Hom , (M, «) commutes with products in Mod(A), that
is,

Hom , (M, HN,) ~ HHomA(M, N;)

and the functor Hom ,(+, N) commutes with direct sums in Mod(A), that
is,

Hom ,(EP Mi, N) ~ []Hom ,(M;,N)

(ii) Let N be a right A-module. Then N ®, +: Mod(4) — Mod(k) is a
functor. Clearly, the functor N ®, + commutes with direct sums, that is,

Ne,( @M ~ P e, M)

1

and similarly for the functor « @, M.
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Definition 1.3.10. Let F': C — C’ be a functor.

(i) One says that F'is faithful (resp. full, resp. fully faithful) if for X, Y € C
Hom,(X,Y) = Hom,, (F(X), F(Y)) is injective (resp. surjective, resp.
bijective).

(ii) One says that F is essentially surjective if for each Y € C’ there exists
X € C and an isomorphism F(X) ~ Y.

(iii) One says that F' is conservative if any morphism f: X — Y in C is an
isomorphism as soon as F(f) is an isomorphism.

Examples 1.3.11. (i) The forgetful functor for: Mod(A) — Set associates
to an A-module M the set M, and to a linear map f the map f. The functor
for is faithful and conservative but not fully faithful.

(ii) The forgetful functor for: Top — Set (defined similarly as in (i)) is
faithful. It is neither fully faithful nor conservative.

(iii) The forgetful functor for: Set — Rel is faithful and conservative.

One defines the product of two categories C and C’ by :

Ob(C x C") = Ob(C) x Ob(C)
Hom,, o (X, X"),(Y,Y")) = Hom.(X,Y) x Hom (X", Y").
A bifunctor F': CxC" — C” is a functor on the product category. This means
that for X € C and X' € ', F(X,+):C" - C" and F(+,X’') : C — C" are

functors, and moreover for any morphisms f: X - Y inC,g: X' — Y’ in
C’, the diagram below commutes:

F(X,9)

F(X, X' F(X,Y")
F(va’)L jF(f,Y’)
F(Y,X) — ~ F(Y,Y")

In fact, (f, g) = (idy, g) o (f, idX/) = (f, idy/) ¢} (ldx,g)

Examples 1.3.12. (i) Hom (<, *) : C°®? x C — Set is a bifunctor.
(ii) If A is a k-algebra, Hom ,(+, «): Mod(A)°® x Mod(A4) — Mod(k) and
* ®, *: Mod(A°) x Mod(A) — Mod(k) are bifunctors.

Definition 1.3.13. Let Fy, F, are two functors from C to C’. A morphism of
functors §: Fy — F} is the data for all X € C of a morphism 6(X) : F(X) —



1.3. CATEGORIES AND FUNCTORS 19

F5(X) such that for all f: X — Y, the diagram below commutes:

(X)X py(x)

Fl(f)L
(

jF2(f)
v) 2L my(y)

A morphism of functors is visualized by a diagram:
Fy

C” Yo
~~—" 7

Fy

Hence, by considering the family of functors from C to C' and the morphisms
of such functors, we get a new category.

Notation 1.3.14. (i) We denote by Fct(C,C’) the category of functors from
C to C'. One may also use the shorter notation (C’)C.

Examples 1.3.15. Let k be a field and consider the functor

*: Mod(k)°® — Mod(k),
V — V* = Hom, (V, k).

Then there is a morphism of functors id — * o * in Fet(Mod(k), Mod(k)).
(ii) We shall encounter morphisms of functors when considering pairs of ad-
joint functors (see (1.17)).

In particular we have the notion of an isomorphism of categories. A
functor F': C — C' is an isomorphism of categories if there exists G : C' — C
such that: G o F = id¢ and F o G = ide. In particular, for all X € C,
G o F(X) = X. In practice, such a situation rarely occurs and is not really
interesting. There is a weaker notion that we introduce below.

Definition 1.3.16. A functor F': C — C’ is an equivalence of categories if
there exists G: C" — C such that: G o F is isomorphic to id¢ and F o G is
isomorphic to ide:.

We shall not give the proof of the following important result below.

Theorem 1.3.17. The functor F': C — C’ is an equivalence of categories if
and only if F is fully faithful and essentially surjective.

If two categories are equivalent, all results and concepts in one of them
have their counterparts in the other one. This is why this notion of equiva-
lence of categories plays an important role in Mathematics.
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Examples 1.3.18. (i) Let k be a field and let C denote the category defined
by Ob(C) = N and Hom(n,m) = My, ,(k), the space of matrices of type
(m,n) with entries in a field k (the composition being the usual composition
of matrices). Define the functor F: C — Mod/ (k) as follows. To n € N,
F(n) associates k" € Mod/ (k) and to a matrix of type (m,n), F associates
the induced linear map from k" to k™. Clearly F' is fully faithful, and since
any finite dimensional vector space admits a basis, it is isomorphic to k™ for
some n, hence F' is essentially surjective. In conclusion, F' is an equivalence
of categories.

(ii) let C and C’ be two categories. There is an equivalence

(1.13) Fet(C,C")°P ~ Fet(C, (C')P).
(iii) Let I, J and C be categories. There are equivalences
(

1.14) Fct(I x J,C) ~ Fet(J,Fet(1,C)) ~ Fet(I, Fet(J,C)).

1.4 The Yoneda Lemma

Definition 1.4.1. Let C be a category. One defines the categories
C" = Fct(C®,Set), C' = Fct(C, Set®),
and the functors

he : C—=C" X Homg(+,X)
ke : C—=CY, X w— Hom,(X,*).

Since there is a natural equivalence of categories
(1.15) CY ~ COoPIOP
we shall concentrate our study on C*.

Proposition 1.4.2. (The Yoneda lemma.) For A € C" and X € C, there
is an isomorphism Hom ., (he(X), A) ~ A(X), functorial with respect to X
and A.

Proof. One constructs the morphism ¢: Hom,(h¢(X), A) = A(X) by the
chain of morphisms: Hom . (h¢(X), A) = Homg,, (Hom,(X, X), A(X)) —
A(X), where the last map is associated with idx.

To construct ©: A(X) — Hom,(he(X), A), it is enough to associate
with s € A(X) and Y € C a map from Hom (Y, X) to A(Y'). It is defined
by the chain of maps Hom (Y, X) — Homg, (A(X),A(Y)) — A(Y) where
the last map is associated with s € A(X).

One checks that ¢ and ¢ are inverse to each other. q.e.d.
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Corollary 1.4.3. The functor he is fully faithful.

Proof. For X and Y in C, one has Hom ,(he(X),he(Y)) =~ he(Y)(X) =
Hom,(X,Y). q.e.d.

One calls he the Yoneda embedding.

Hence, one may consider C as a full subcategory of C”. In particular,
for X € C, he(X) determines X up to unique isomorphism, that is, an
isomorphism he(X) =~ he(Y') determines a unique isomorphism X ~ Y.

Corollary 1.4.4. Let C be a category and let f: X — Y be a morphism in
C.

(i) Assume that for any Z € C, the map Hom(Z, X) EAN Hom.(Z,Y) is
bijective. Then f is an isomorphism.

(i) Assume that for any Z € C, the map Hom (Y, Z) L2 Hom (X, Z) is
bijective. Then f is an isomorphism.

Proof. (i) By the hypothesis, he(f) : he(X) — he(Y) is an isomorphism in
C". Since he is fully faithful, this implies that f is an isomorphism. (See
Exercise 1.2 (ii).)

(ii) follows by replacing C with C°P. q.e.d.

1.5 Representable functors, adjoint functors

Representable functors

Definition 1.5.1. (i) One says that a functor F' from C°? to Set is repre-
sentable if there exists X € C such that F(Y) ~ Hom (Y, X) functori-
ally in Y € C. In other words, F' ~ he(X) in C*. Such an object X is
called a representative of F.

(ii) Similarly, a functor G: C — Set is representable if there exists X € C
such that G(Y') >~ Hom (X, Y") functorially in ¥ € C.

It is important to notice that the isomorphisms above determine X up to
unique isomorphism. More precisely, given two isomorphisms F' =% he(X)
and F' == he(X') there exists a unique isomorphism #: X =5 X’ making the
diagram below commutative:
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Representable functors provides a categorical language to deal with universal
problems. Let us illustrate this by an example.

Example 1.5.2. Let A be a k-algebra. LetN be a right A-module, M a
left A-module and L a k-module. Denote by B(N x M, L) the set of A, k-
bilinear maps from N x M to L. Then the functor F': L +— B(N x M, L) is
representable by N ®, M by (1.11).

Adjoint functors

Definition 1.5.3. Let F': C — C" and G: C" — C be two functors. One says
that (F,G) is a pair of adjoint functors or that F' is a left adjoint to G, or
that G is a right adjoint to F' if there exists an isomorphism of bifunctors:

(1.16) Homy, (F(+), ) ~ Hom,(+,G(+))

If G is an adjoint to F', then G is unique up to isomorphism. In fact,
G(Y) is a representative of the functor X — Hom ,(F(X),Y).
The isomorphism (1.16) gives the isomorphisms

Hom,(F oG(+),*) ~Hom.(G(*),G(*)),
Hom, (F(+),F(*)) ~ Hom,(+,Go F(*)).

In particular, we have morphisms X — G o F/(X), functorial in X € C, and
morphisms F o G(Y) — Y, functorial in Y € C'. In other words, we have
morphisms of functors

(1.17) FoG —idey, ide— GoF

Examples 1.5.4. (i) Let X € Set. Using the bijection (1.4), we get that
the functor Homg,, (X, +): Set — Set is right adjoint to the functor « x X.
(ii) Let A be a k-algebra and let L € Mod(k). Using the first isomorphism
in (1.12), we get that the functor Hom, (L, «): Mod(A) to Mod(A) is right
adjoint to the functor « ®, L.

(iii) Let A be a k-algebra. Using the isomorphisms in (1.12) with N = A,
we get that the functor for: Mod(A) — Mod(k) which, to an A-module
associates the underlying k-module, is right adjoint to the functor A ®,
+: Mod(k) — Mod(A) (extension of scalars).

Exercises to Chapter 1

Exercise 1.1. Prove that the categories Set and Set°” are not equivalent
and similarly with the categories Set’ and (Set/)°p.
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(Hint: if F': Set — Set® were such an equivalence, then F()) ~ {pt} and
F({pt}) ~ 0. Now compare Homg_, ({pt}, X) and Homg_..» (F'({pt}), F (X))
when X is a set with two elements.)

Exercise 1.2. (i) Let F': C — C’ be a faithful functor and let f be a mor-
phism in C. Prove that if F'(f) is a monomorphism (resp. an epimorphism),
then f is a monomorphism (resp. an epimorphism).

(ii) Assume now that F' is fully faithful. Prove that if F'(f) is an isomor-
phism, then f is an isomorphism. In other words, fully faithful functors are
conservative.

Exercise 1.3. Is the natural functor Set — Rel full, faithful, fully faithful,
conservative?

Exercise 1.4. Prove that the category C is equivalent to the opposite cate-
gory C° in the following cases:

(i) C denotes the category of finite abelian groups,

(ii) C is the category Rel of relations.

Exercise 1.5. (i) Prove that in the category Set, a morphism f is a mono-
morphism (resp. an epimorphism) if and only if it is injective (resp. surjec-
tive).

(ii) Prove that in the category of rings, the morphism Z — Q is an epimor-
phism.

(iii) In the category Top, give an example of a morphism which is both a
monomorphism and an epimorphism and which is not an isomorphism.

Exercise 1.6. Let C be a category. We denote by id¢: C — C the identity
functor of C and by End (id¢) the set of endomorphisms of the identity functor
ide : C — C, that is,

End (ldc) = Hom Fet(C.C) (idc, ldc)

Prove that the composition law on End (id¢) is commutative.
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Chapter 2
Limits

We construct inductive and projective limits in categories by using projective
limits in the category Set and give some examples. We also analyze some
related notions, in particular those of cofinal categories, filtrant categories
and exact functors. Special attention will be paid to filtrant inductive limits
in the categories Set and Mod(A).

2.1 Products and coproducts

Let C be a category and consider a family {X; };c; of objects of C indexed by
a (small) set /. Consider the two functors

(2.1) C — Set, Y — [ [ Hom, (Y, X;),
(2.2) C — Set,Y - [ [Hom (X;,Y).

Definition 2.1.1. (i) Assume that the functor in (2.1) is representable.
In this case one denotes by [], X; a representative and calls this object
the product of the X;’s. In case I has two elements, say I = {1,2}, one
simply denotes this object by X; x Xs.

(ii) Assume that the functor in (2.2) is representable. In this case one
denotes by [[, X; a representative and calls this object the coproduct
of the X;’s. In case I has two elements, say I = {1,2}, one simply
denotes this object by X; L Xs.

(iii) If for any family of objects {X;}ies, the product (resp. coproduct) ex-
ists, one says that the category C admits products (resp. coproducts)
indexed by 1.

25
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(iv) If X; = X for all ¢ € I, one writes:
X'=1]x, XxU:=]]x.

Note that the coproduct in C is the product in CP.
By this definition, the product or the coproduct exist if and only if one
has the isomorphisms, functorial with respect to Y € C:

(2.3) HomC(Y,HXi) ~ HHomC(Y, Xi),

(2.4) HomC(H X, Y) ~ HHomC(Xi7Y).

Assume that [[, X; exists. By choosing Y = [[. X; in (2.3), we get the
morphisms

TG HXJ _>X1
J

Similarly, assume that [[, X; exists. By choosing Y =[], X, in (2.4), we get
the morphisms

Ei: Xz — ]'_[AXVJ

J

The isomorphism (2.3) may be translated as follows. Given an object Y and
a family of morphisms f;: Y — X, this family factorizes uniquely through
[ I, Xi. This is visualized by the diagram

The isomorphism (2.4) may be translated as follows. Given an object Y and
a family of morphisms f;: X; — Y, this family factorizes uniquely through
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1, Xi. This is visualized by the diagram

Example 2.1.2. (i) The category Set admits products (that is, products
indexed by small sets) and the two definitions (that given in (1.1) and that
given in Definition 2.1.1) coincide.

(ii) The category Set admits coproducts indexed by small sets, namely, the
disjoint union.

(iii) Let A be a ring. The category Mod(A) admits products, as defined in
§ 1.2. The category Mod(A) also admits coproducts, which are the direct
sums defined in § 1.2. and are denoted €P.

(iv) Let X be a set and denote by X the category of subsets of X. (The set
X is ordered by inclusion, hence defines a category.) For 51,5y € X, their
product in the category X is their intersection and their coproduct is their
union.

Remark 2.1.3. The forgetful functor for: Mod(A) — Set commutes with
products but does not commute with coproducts. That is the reason why
the coproduct in the category Mod(A) is called and denoted differently.

2.2 Kernels and cokernels

Let C be a category and consider two parallel arrows f,g : Xqg = X; in C.
Consider the two functors

(2.5) C® — Set, Y — Ker(Hom (Y, Xy) = Hom,(Y, X4)),
(2.6) C — Set, Y — Ker(Hom,(X;,Y) = Hom,(X,Y)).

Definition 2.2.1. (i) Assume that the functor in (2.5) is representable.
In this case one denotes by Ker(f,g) a representative and calls this
object a kernel (one also says a equalizer) of (f, g).

(ii) Assume that the functor in (2.6) is representable. In this case one
denotes by Coker(f, g) a representative and calls this object a cokernel
(one also says a co-equalizer) of (f,g).
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(iii) A sequence Z — Xy, = Xj (resp. Xo = X1 — Z) is exact if Z is
isomorphic to the kernel (resp. cokernel) of Xy =% X.

(iv) Assume that the category C admits a zero-object 0. Let f: X — YV
be a morphism in C. A kernel (resp. a cokernel) of f, if it exists, is a
kernel (resp. a cokernel) of f,0: X =2 Y. It is denoted Ker(f) (resp.
Coker(f)).

Note that the cokernel in C is the kernel in CP.
By this definition, the kernel or the cokernel of f,g: Xqg = X exist if
and only if one has the isomorphisms, functorial in Y € C:

(2.7) Hom (Y, Ker(f, g)) ~ Ker(Hom (Y, Xy) = Hom,(Y, X1)),
(2.8) Hom ,(Coker(f, g),Y) ~ Ker(Hom,(X;,Y) = Hom,(Xo,Y)).

Assume that Ker(f, g) exists. By choosing Y = Ker(f, g) in (2.7), we get the
morphism

h: Ker(XO = Xl) — Xj.

Similarly, assume that Coker(f,g) exists. By choosing Y = Coker(f, g) in
(2.8), we get the morphism

k: X1 — COkGI‘(X(] = Xl)

Proposition 2.2.2. The morphism h: Ker(Xy = X1) — Xy is a monomor-
phism and the morphism k: X; — Coker(Xo = X7) is an epimorphism.

Proof. (i) Consider a pair of parallel arrows a,b: Y = X such that ao k =
bok=w. Thenwof=aokof=aokog=bokog=wog. Hence w
factors uniquely through £, and this implies a = b.

(ii) The case of cokernels follows, by reversing the arrows. q.e.d.

The isomorphism (2.7) may be translated as follows. Given an objet Y and
a morphism u: Y — X such that f ou = ¢ o u, the morphism wu factors
uniquely through Ker(f,g). This is visualized by the diagram

I
Ker(f, g) —— Xo —= X;.
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The isomorphism (2.8) may be translated as follows. Given an objet Y and
a morphism v: X; — Y such that v o f = v o g, the morphism v factors
uniquely through Coker(f, g). This is visualized by diagram:

f
Xo——= X; —*= Coker(f, g).

Y

Example 2.2.3. (i) The category Set admits kernels and the two definitions
(that given in (1.7) and that given in Definition 2.2.1) coincide.

(ii) The category Set admits cokernels. If f,g: Zy = Z; are two maps, the
cokernel of (f, g) is the quotient set Z; /R where R is the equivalence relation
generated by the relation x ~ y if there exists z € Z; with f(2) = = and
9(z) =y.

(iii) Let A be a ring. The category Mod(A) admits a zero object. Hence,
the kernel or the cokernel of a morphism f means the kernel or the cokernel
of (f,0). As already mentioned, the kernel of a linear map f: M — N is
the A-module f~!(0) and the cokernel is the quotient module M/Im f. The
kernel and cokernel are visualized by the diagrams

Ker(f) = Xo —1= X,  Xo—1= X, —*~ Coker(f).
Y Y

2.3 Limits

Let us generalize and unify the preceding constructions. In the sequel, I will
denote a (small) category. Let C be a category. A functor a: I — C (resp.
B: I°° — C) is sometimes called an inductive (resp. projective) system in C
indexed by I, or else, a diagram indexed by I.

For example, if (I, <) is a pre-ordered set, I the associated category, an
inductive system indexed by [ is the data of a family (X;);c; of objects of
C and for all 7 < j, a morphism X; — X with the natural compatibility
conditions.

Projective limits in Set

Assume first that C is the category Set and let us consider projective systems.
One sets
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(29)  limp={{z;}; € Hﬁ(i); B(s)(x;) = x; for all s € Hom (4, j)}.

The next result is obvious.

Lemma 2.3.1. Let §: I°°? — Set be a functor and let X € Set. There is a
natural isomorphism

Hom g, (X, lim §) <% lim Homg,, (X, 5),

where Homg , (X, B) denotes the functor I°° — Set, i — Homg_, (X, B(i)).

Projective and inductive limits

Consider now two functors §: I — C and a: [ — C. For X € C, we get
functors from I°P to Set:

Hom (X, B): I°? 3 i — Hom,(X, (7)) € Set,
Hom (o, X): I°? i+ Hom,(a, X) € Set.

Definition 2.3.2. (i) Assume that the functor X — lim Hom(X, ) is
representable. We denote by l£1 B its representative and say that the
functor # admits a projective limit in C. In other words, we have the
isomorphism, functorial in X € C:

(2.10) HomC(X,l'&n/B) zl’ngomc(X,ﬁ).

(i) Assume that the functor X+ limHom,(a, X) is representable. We
denote by liénoz its representative and say that the functor a admits
an inductive limit in C. In other words, we have the isomorphism,
functorial in X € C:

(2.11) Homc(liga,X) z@Homc(a,X),

Remark 2.3.3. The projective limit of the functor  is not only the object
@ B but also the isomorphism of functors given in (2.10), and similarly with
inductive limits.

When C = Set this definition of @ [ coincides with the former one, in
view of Lemma 2.3.1.

Notice that both projective and inductive limits are defined using projec-
tive limits in Set.
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Assume that @ B exists in C. One gets:
lim Hom,(Jim 3, ) = Hom, (lim 3, lim )
and the identity of lgl B defines a family of morphisms
pi: 1&15 — B(1).

Consider a family of morphisms {f;: X — [(i)}ier in C satisfying the com-
patibility conditions

(2.12) fi = fio f(s) for all s € Hom,(4, j).

This family of morphisms is nothing but an element of lim Hom (X, 5(2)),

hence by (2.10), an element of Hom (X, Jm 3, X ). Therefore, Im 3 is char-
acterized by the “universal property”:

for all X € C and all family of morphisms {f;: X — £(7)}ier
(2.13) qin C satisfying (2.12), all morphisms f;’s factorize uniquely

through lgl B.

This is visualized by the diagram:

Similarly, assume that 1;11304 exists in C. One gets:

lim Hom (o, lim o) ~ Hom ¢ (lim cv, lim cv)
and the identity of @a defines a family of morphisms
ai) — lim .

Consider a family of morphisms {f;: «(i) — X };cr in C satisfying the com-
patibility conditions

(2.14) fi=f;o f(s) for all s € Hom,(4, j).
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This family of morphisms is nothing but an element of lim Hom (i), X),

hence by (2.11), an element of Hom (hg a, X). Therefore, lim o is character-
ized by the “universal property”:

for all X € C and all family of morphisms {f;: a(i) = X }ies
(2.15) ¢ in C satisfying (2.14), all morphisms f;’s factorize uniquely
through hg .

This is visualized by the diagram:

Example 2.3.4. Let X be a set and let X be the category given in Exam-
ple 2.1.2 (iv). Let g: I°» — X and a: I — X be two functors. Then

lim 3 = mﬁ(@'), lim a = e

(2

Examples

Examples 2.3.5. (i) When the category I is discrete, projective and induc-
tive limits indexed by I are nothing but products and coproducts indexed by
I.

(ii) Consider the category I with two objects and two parallel morphisms
other than identities, visualized by e = e. A functor a.: I — C is character-
ized by two parallel arrows in C:

(216) f,g: X():Xl

In the sequel we shall identify such a functor with the diagram (2.16). Then,
the kernel (resp. cokernel) of (f,g) is nothing but the projective (resp. in-
ductive) limit of the functor a.

(iii) If I is the empty category and a: I — C is a functor, then Jm o exists
in C if and only if C has a terminal object pt., and in this case lim a ~ pt,.
Similarly, ligqa exists in C if and only if C has an initial object ()¢, and in
this case @a ~ (c.
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(iv) If I admits a terminal object, say i, and if §: I°> — C and a: [ — C
are functors, then

hm 3~ f(i,)  lima >~ a(i).
This follows immediately of (2.15) and (2.13).

If every functor from I°P? to C admits a projective limit, one says that C
admits projective limits indexed by I. If this property holds for all categories
I (resp. finite categories I), one says that C admits projective (resp. finite
projective) limits, and similarly with inductive limits.

Remark 2.3.6. Assume that C admits projective (resp. inductive) limits
indexed by I. Then Jim : Fct(I°P,C) — C (resp. liny - Fct(I,C) — C) is a
functor.

Projective limits as kernels and products

We have seen that products and kernels (resp. coproducts and cokernels)
are particular cases of projective (resp. inductive) limits. One can show
that conversely, projective limits can be obtained as kernels of products and
inductive limits can be obtained as cokernels of coproducts.

Recall that for a category I, Mor(/) denote the set of morphisms in /.
There are two natural maps (source and target) from Mor(I) to Ob(I):

o : Mor(I) = Ob(I), (s:i—j)—1,
7 : Mor(l) = Ob(I), (s:i—7j)—j.

Let C be a category which admits projective limits and let 5: I°® — C be
a functor. For s: ¢ — j, we get two morphisms in C:
. N

from which we deduce two morphisms in C: [[,.; 8(i) = B(c(s)). These
morphisms define the two morphisms in C:

(2.17) [icr B() == T.cmorcry B0 (5)).

Similarly, assume that C admits inductive limits and let a: I — C be a
functor. By reversing the arrows, one gets the two morphisms in C:

(2.18) aentor(n 4(0(8) == 1T 0(0).
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Proposition 2.3.7. (i) Wm 3 is the kernel of (a,b) in (2.17),
(ii) lim o us the cokernel of (a,b) in (2.18).

Sketch of proof. By the definition of projective and inductive limits we are
reduced to check (i) when C = Set and in this case this is obvious.  q.e.d.

In particular, a category C admits finite projective limits if and only if it
satisfies:

(i) C admits a terminal object,
(ii) for any X,Y € Ob(C), the product X x Y exists in C,

(iii) for any parallel arrows in C, f,g: X = Y, the kernel exists in C.

There is a similar result for finite inductive limits, replacing a terminal object
by an initial object, products by coproducts and kernels by cokernels.

Example 2.3.8. The category Set admits projective and inductive limits,
as well as the category Mod(A) for a ring A. Indeed, both categories admit
products, coproducts, kernels and cokernels.

2.4 Properties of limits

Double limits

For two categories I and C, recall the notation C':=Fct(I,C) and for a third
category J, recall the equivalence (1.14);

Fet(I x J,C) ~ Fet(I,Fet(J,C)).

Consider a bifunctor g: I°°? x J°° — (C. It defines a functor a functor
By: I? — C’7* as well as a functor B;: J® — C'*”. One easily checks
that

(2.19) Jm 3 ~ lim lim 3, ~ lim lim f3;.
Similarly, if a: I x J — C is a bifunctor, it defines a functor ay: I — C”’ as
well as a functor a;: J — C! and one has the isomorphisms

(2.20) hga:lig(ligcw) zlig(li_ngal).

In other words:
(221) lin 5. /) = Jan im(3(s. /) = i Lim (3(s. )
(2.22) lim (i, ) = lin(lim(a(7. /) = iy lin(a(i. ).
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Limits with values in a category of functors

Consider another category A and a functor 3: I°? — Fct(A,C). It defines
a functor 8: I° x A — C, hence for each A € A, a functor F(A): I — C.
Assuming that C admits projective limits indexed by I, one checks easily that
A l'&lﬁ(A) is a functor, that is, an object of Fct(.A,C), and is a projective
limit of 5. There is a similar result for inductive limits. Hence:

Proposition 2.4.1. Let I be a category and assume that C admits projective
limits indexed by I. Then for any category A, the category Fct(A,C) admits
projective limits indexed by I. Moreover, if B: I°® — Fct(A,C) is a functor,
then @ﬁ € Fet(A,C) is given by

(lim B)(A4) = lim (B(A4)), A€ A

Similarly, assume that C admits inductive limits indexed by I. Then for
any category A, the category Fct(A,C) admits inductive limits indezed by I.
Moreover, if a: I — Fct(A,C) is a functor, then lim oo € Fet(A,C) is given
by

(lim @)(A) = lig (a(4)), A€ A

Corollary 2.4.2. Let C be a category. Then the categories C" and CV admit
inductive and projective limits.

Composition of limits

Let I,C and C’ be categories and let a: [ — C, f: [® - C and F: C = ('
be functors. When C and C’ admit projective or inductive limits indexed by
I, there are natural morphisms

(2.23) F(lim §) — lim (F o §),
(2.24) lim (Foa) = F(lima).

This follows immediately from (2.15) and (2.13).
Definition 2.4.3. Let [ be a category and let F': C — C’ be a functor.

(i) Assume that C and C" admit projective limits indexed by I. One says
that F' commutes with such limits if (2.23) is an isomorphism.

(ii) Similarly, assume that C and C’ admit inductive limits indexed by I.
One says that F' commutes with such limits if (2.24) is an isomorphism.
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Examples 2.4.4. (i) Let C be a category which admits projective limits
indexed by I and let X € C. By (2.10), the functor Hom,(X, *): C — Set
commutes with projective limits indexed by /. Similarly, if C admits inductive
limits indexed by I, then the functor Hom,(+,X): C°® — Set commutes
with projective limits indexed by I, by (2.11).

(ii) Let I and J be two categories and assume that C admits projective (resp.
inductive) limits indexed by I x J. Then the functor Jim : Fet(JP,C) = C
(resp. h% Fct(J,C) — C ) commutes with projective (resp. inductive )
limits indexed by I. This follows from the isomorphisms (2.19) and (2.20).
(iii) Let k be a field, C = C" = Mod(k), and let X € C. Then the functor
Hom (X, +) does not commute with inductive limit if X is infinite dimen-
sional.

Proposition 2.4.5. Let F': C — C' be a functor and let I be a category.

(i) Assume that C and C' admit projective limits indexed I and F admits a
left adjoint G: C' — C. Then F' commutes with projective limits indexed

by I, that is, F(l&nﬂ(z)) ~ @F(ﬂ(z))

(ii) Simailarly, if C and C' admit inductive limits indexed by I and F' admits
a right adjoint, then F' commutes with such limits.

Proof. 1t is enough to prove the first assertion. To check that (2.23) is an
isomorphism, we apply Corollary 1.4.4. Let Y € C’. One has the chain of
isomorphisms

Hom,, (¥, F(jim A(1)) = Hom(G(Y),Jim 5(0))
~ @HOHIC(G(Y)?B(Z‘))
~ lim Hom, (Y, F(5(1)))

~ Hom (Y, @F(ﬁ(l)))

2.5 Filtrant inductive limits

Since it admits coproducts and cokernels, the category Set admits inductive
limits. We shall construct them more explicitely.



2.5. FILTRANT INDUCTIVE LIMITS 37

Let ov: I — Set be a functor and consider the relation on | |;.; «(7)):

a(i) 3 2Ry € a(j) if there exists k € I, s: i —» kand t: j — k

(2.25) {with o(s)(x) = a(t)(y).
The relation R is reflexive and symmetric but is not transitive in general.

Proposition 2.5.1. With the notations above, denote by ~ the equivalence
relation generated by R. Then

lima =~ (| ]a@)/ ~.
iel
Proof. Let S € Set. By the definition of the projective limit in Set we get:

lim Hom (o, S) =~ {{uitier;ui: a(i) = S, u; = u; 0 as)
if there exists s: i — j},
= {{p(ivx)}iel,l@a(i);p(iax) S S,p(z,x) = p(]a y)
if there exists s: i — j with a(s)(z) = y}

~ Hom (| |a(i))/ ~, ).

iel
q.e.d.

In the category Set one uses the notation | | better than [].

For a ring A, the category Mod(A) admits coproducts and cokernels.
Hence, the category Mod(A) admits inductive limits. One shall be aware that
the functor for: Mod(A) — Set does not commute with inductive limits. For
example, if I is empty and a: I — Mod(A) is a functor, then «(l) = {0}
and for({0}) is not an initial object in Set.

Definition 2.5.2. A category [ is called filtrant if it satisfies the conditions
(i)—(iii) below.

(i) I is non empty,
(ii) for any ¢ and j in I, there exists k € I and morphisms ¢ — k, j — k,

(iii) for any parallel morphisms f,g: i =% j, there exists a morphism h: j —
k such that ho f =hog.

One says that I is cofiltrant if I°P is filtrant.
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The conditions (ii)—(iii) of being filtrant are visualized by the diagrams:

EN 2 "

K4 R

Of course, if (1, <) is a non-empty directed ordered set, then the associated
category [ is filtrant.

Proposition 2.5.3. Let a: [ — Set be a functor, with I filtrant. The
relation R given in (2.25) on [[, a(7) is an equivalence relation.

Proof. Let x; € af(ij), j = 1,2,3 with z1 ~ 2 and zy ~ 3. There exist
morphisms visualized by the diagram:

. S1 .
11—

13— J2
such that a(sy)z; = a(s2)xs, a(ty)rs = a(ts)rs, and vouy 0 S; = v o ug o ta.

Set wq =wvou; 081, Wy =v01U; 08y =vO0Uy 0ty and wz = v ouyots. Then
a(wy)r; = a(ws)rs = a(ws)rs. Hence zq ~ x3. q.e.d.

Corollary 2.5.4. Let a: I — Set be a functor, with I filtrant.

(i) Let S be a finite subset in ligloz. Then there exists i € I such that S is
contained in the image of a(v) by the natural map a(i) — liga.

(ii) Leti € I and let x and y be elements of a(i) with the same image in
lima. Then there exists s: 1 — j such that a(s)(x) = a(s)(y) in a(j).

Proof. (i) Denote by a: | |,c;a(i)) — lim v the quotient map. Let S =
{z1,...,2,}. For j =1,..., n, there exists y; € a(i;) such that z; = a(y;).
Choose k € I such that there exist morphisms s;: a(i;) — «a(k). Then
73 = afa(s; ().

(ii) For z,y € (i), 2Ry if and only if there exists s: i — j with «a(s)(x) =
a(s)(y) in a(j). q.e.d.

Corollary 2.5.5. Let A be a ring and denote by for the forgetful functor
Mod(A) — Set. Then the functor for commutes with filtrant inductive
limits. In other words, if I is filtrant and a: I — Mod(A) is a functor, then

foro (hén a(i)) = hg(for o a(i)).
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The proof is left as an exercise (see Exercise 2.8).

Inductive limits with values in Set indexed by filtrant categories commute
with finite projective limits. More precisely:

Proposition 2.5.6. For a filtrant category I, a finite category J and a func-
tor a: I x J® — Set, one has @@na(i,j)%l'&nh&qa(i,j). In other
it i

words, the functor
limy : Fct(I,Set) — Set
commutes with finite projective limits.

Proof. 1t is enough to prove that hgl commutes with kernels and with finite
products.

(i) hﬂ commutes with kernels. Let o, 8: I — Set be two functors and let
fyg: a = B be two morphisms of functors. Define v as the kernel of (f, g),
that is, we have exact sequences

(1) = a(i) = B(i).

Let Z denote the kernel of liga(i) = hglﬁ(z) We have to prove that the
natural map A: @7(2) — Z is bijective.

(i) (a) The map A is surjective. Indeed for # € Z, represent z by some
z; € ai). Then f;j(x;) and g;(x;) in (i) having the same image in lim f3,
there exists s: 4 — j such that B(s)fi(x;) = 5(s)gi(x:). Set z; = a(s)z;.
Then f;(z;) = g;(z;), which means that z; € y(j). Clearly, A\(z;) = x.

(i) (b) The map A is injective. Indeed, let x,y € lim~y with A(x) = A(y). We
may represent x and y by elements z; and y; of v(7) for some ¢ € I. Since z;
and y; have the same image in lim «, there exists ¢ — j such that they have
the same image in «(j). Therefore their images in v(j) will be the same.

(ii) lim commutes with finite products. The proof is similar to the preceding
one and left to the reader. q.e.d.

Corollary 2.5.7. Let A be a ring and let I be a filtrant category. Then
the functor lin : Fct(1, Mod(A)) — Mod(A) commutes with finite projective
limits.
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Cofinal functors

Let ¢: J — I be a functor. If there are no risk of confusion, we still denote
by ¢ the associated functor ¢: J°° — I°?. For two functors a: I — C and
B I°° — C, we have natural morphisms:

(2.26) lim (o) « lim§p,
(2.27) lim (o) — limar.
This follows immediately of (2.15) and (2.13).

Definition 2.5.8. Assume that ¢ is fully faithful and I is filtrant. One
says that ¢ is cofinal if for any ¢ € I there exists j € J and a morphism

si— @(j).
Example 2.5.9. A subset J C N defines a cofinal subcategory of (N, <) if
and only if it is infinite.

Proposition 2.5.10. Let ¢: J — I be a fully faithful functor. Assume that
I s filtrant and ¢ is cofinal. Then

(i) for any category C and any functor B: I°® — C, the morphism (2.26)
18 an isomorphism,

(ii) for any category C and any functor a: I — C, the morphism (2.27) is
an isomorphism.

Proof. Let us prove (ii), the other proof being similar. By the hypothesis, for
each i € I we get a morphism «(i) — hﬂ(a o (7)) from which one deduce

jeJ
a morphism
limy (i) = limy( 0 (7).
iel jeJ

One checks easily that this morphism is inverse to the morphism in (2.24).
q.e.d.

Example 2.5.11. Let X be a topological space, z € X and denote by I, the
set of open neighborhoods of z in X. We endow [, with the order: U < V' if
V CcU. Given U and V in I, and setting W = U NV, we have U < W and
V < W. Therefore, I, is filtrant.

Denote by C®(U) the C-vector space of complex valued continuous func-
tions on U. The restriction maps C°(U) — C°(V'),V C U define an inductive
system of C-vector spaces indexed by I,. One sets

(2.28) Cx, = lim C°(V).

vel,
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An element ¢ of C%J is called a germ of continuous function at 0. Such a
germ is an equivalence class (U, ¢y)/ ~ with U a neighborhood of z, ¢y a
continuous function on U, and (U, ¢y ) ~ 0 if there exists a neighborhood V/
of x with V' C U such that the restriction of ¢y to V is the zero function.
Hence, a germ of function is zero at x if this function is identically zero in a
neighborhood of z.

A set theoretical remark

Remark 2.5.12. In these notes, we have skipped problems related to ques-
tions of cardinality and universes (see Remark 1.3.2), but this is dangerous.
In particular, when taking limits, we should assume that all categories (C, C’
etc.) belong to a given universe U and that all limits are indexed by U-small
categories (I, J, etc.). However some constructions force one to quit the
universe U to a bigger one V. We shall not develop this point here.

Let us give an example which shows that without some care, we may have
troubles.

Let C be a category which admits products and assume there exist X,Y €
C such that Hom,(X,Y) has more than one element. Set M = Mor(C),
where Mor(C) denotes the “set” of all morphisms in C, and let © = card(M),
the cardinal of the set M. We have Hom,(X,Y™) ~ Hom,(X,Y)" and
therefore card(Hom,(X,Y?) > 27. On the other hand, Hom,(X,Y") C
Mor(C) which implies card(Hom (X, Y*) < .

The “contradiction” comes from the fact that C does not admit products
indexed by such a big set as Mor(C). (The remark was found in [10].)

Exercises to Chapter 2

Exercise 2.1. (i) Let I be a (non necessarily finite) set and { X, };c; a family
of sets indexed by I. Show that [[, X; is the disjoint union of the sets X.
(ii) Construct the natural map [[, Homg (Y, X;) = Homg,, (Y, [, X;) and
prove it is injective.

(iii) Prove that the map [[, Homg, (X;,Y) — Homg,, ([]; X;, Y) is not in-
jective in general.

Exercise 2.2. Let XY € C and consider the category D whose objects are
triplets Z € C, f: Z — X, g: Z — Y, the morphisms being the natural ones.
Prove that this category admits a terminal object if and only if the product
X xY exists in C, and that in such a case this terminal object is isomorphic
to X XY, X XY — X, X xY — Y. Deduce that if X x Y exists, it is unique
up to unique isomorphism.
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Exercise 2.3. Let I and C be two categories and denote by A the functor
from C to C! which, to X € C, associates the constant functor A(X): I 3
i— X e€C, (i—j)€ Mor(]) — idx. Assume that any functor from I to C
admits an inductive limit.

(i) Prove the formula (for a: I — C and Y € C):

Homc(liﬁm a(1),Y) = Hom g ) (r, A(Y)).

(ii) Replacing I with the opposite category, deduce the formula (assuming
projective limits exist):

Hom,, (X, 1&“ G(#)) >~ Hom gy op ) (A(X), G).

Exercise 2.4. Let C be a category which admits filtrant inductive limits.
One says that an object X of C is of finite type if for any functor a: I —
C with [ filtrant, the natural map lim Hom (X, a) — Hom(X,lima) is
injective. Show that this definition coincides with the classical one when
C = Mod(A), for a ring A.
(Hint: let X € Mod(A). To prove that if X is of finite type in the categorical
sense then it is of finite type in the usual sense, use the fact that, denoting
by S be the family of submodules of finite type of X ordered by inclusion,
we have h_n;X/V ~0.)

ves
Exercise 2.5. Let C be a category which admits filtrant inductive lim-
its. Omne says that an object X of C is of finite presentation if for any
functor a: I — C with [ filtrant, the natural map @Homc(X, a) —
Hom (X ,li_n;a) is bijective. Show that this definition coincides with the
classical one when C = Mod(A), for a ring A.

Exercise 2.6. Consider the category I with three objects {a,b,c} and two
morphisms other than the identities, visualized by the diagram

a+c—b.

Let C be a category. A functor 5: I°°? — C is nothing but the data of three
objects X, Y, Z and two morphisms visualized by the diagram

xhzay

The fiber product X xz Y of X and Y over Z, if it exists, is the projective
limit of 5.
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(1) Assume that C admits products (of two objects) and kernels. Prove that
X Xz Y nis isomorphic to the equalizer of X x Y == Z. Here, the two
morphisms X x Y = Z are given by f,g.

(ii) Prove that C admits finite projective limits if and only if it admits fiber
products and a terminal object.

Exercise 2.7. Let [ be a filtrant ordered set and let A;,7 € I be an inductive
system of rings indexed by I.
(i) Prove that A := lim A; is naturally endowed with a ring structure.

(ii) Define the notion of an inductive system M; of A;-modules, and define

the A-module h_n>q M;.

(iii) Let N; (resp. M;) be an inductive system of right (resp. left) A; modules.
Prove the isomorphism

(2

lim(N; ®,, M;) = lim N; @, lim M;.

Exercise 2.8. Let I be a filtrant ordered set and let M;, 7 € I be an inductive
sytem of k-modules indexed by I. Let M = | | M;/ ~ where | | denotes the
set-theoretical disjoint union and ~ is the relation M; > x; ~ y; € M; if
there exists k > i,k > j such that ug;(z;) = w;(y;).

Prove that M is naturally a k-module and is isomorphic to 1‘113 M;.

Exercise 2.9. (i) Let C be a category which admits inductive limits indexed
by a category I. Let a: I — C be a functor and let X € C. Construct the
natural morhism

(2.29) h_ngode,a(i)) — Hode,l%ma(i)).

(ii) Let k be a field and denote by k[z]S" the k-vector space consisting
of polynomials of degree < n. Prove the isomorphism kx| = lignk[x]gn

and, noticing that idyj; ¢ lim Hom, (k[z], k[z]="), deduce that the morphism

(2.29) is not an isomorphism in general.

Exercise 2.10. Let C be a category and recall (Proposition 2.4.1) that the
category C" admits inductive limits. One denotes by “lim” the inductive
limit in C*. Let k be a field and let C = Mod(k). Prove that the Yoneda

functor he: C — C" does not commute with inductive limits.
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Exercise 2.11. Let I be a discrete set and let J be the set of finite subsets
of I, ordered by inclusion. We consider both I and J as categories. Let C
be a category and a: I — C a functor. For J € J we denote by ay: J — C
the restriction of o to J.
(i) Prove that the category J is filtrant.
(ii) Prove the isomorphism lim lim vy = lim .

JeJ jeJ
Exercise 2.12. Let C be a category which admits a zero-object and kernels.
Prove that a morphism f: X — Y is a monomorphism if and only if Ker f ~
0.



Chapter 3

Additive categories

Many results or constructions in the category Mod(A) of modules over a
ring A have their counterparts in other contexts, such as finitely generated
A-modules, or graded modules over a graded ring, or sheaves of A-modules,
etc. Hence, it is natural to look for a common language which avoids to
repeat the same arguments. This is the language of additive and abelian
categories.

In this chapter, we give the main properties of additive categories.

3.1 Additive categories

Definition 3.1.1. A category C is additive if it satisfies conditions (i)-(v)
below:

(i) for any X,Y € C, Hom,(X,Y) € Mod(Z),

(ii) the composition law o is bilinear,

)
)

(iii) there exists a zero object in C,

(iv) the category C admits finite coproducts,
)

the category C admits finite products.

(v

Note that Hom,(X,Y) # 0 since it is a group and for all X € C,
Hom (X,0) = Hom,(0,X) = 0. (The morphism 0 should not be confused
with the object 0.)

Notation 3.1.2. If X and Y are two objects of C, one denotes by X &Y
(instead of X LIY") their coproduct, and calls it their direct sum. One denotes
as usual by X x Y their product. This change of notations is motivated by

45
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the fact that if A is a ring, the forgetful functor Mod(A) — Set does not
commute with coproducts.

Lemma 3.1.3. Let C be a category satisfying conditions (1)—(iii) in Definition
3.1.1. Consider the condition

(vi) for any two objects X and Y in C, there exists Z € C and morphisms
1: X =>2Z,00:Y =7, p1: Z— X and py: Z — 'Y satisfying

(3

1
(3.2) p2oiz =Iidy, ppoi; =0,
3

(3

proi; =idx, pioix=0
i1 op; +izopy =idz.

Then the conditions (iv), (v) and (vi) are equivalent and the objects X @Y,
X XY and Z are naturally isomorphic.

Proof. (a) Let us assume condition (iv). The identity of X and the zero
morphism Y — X define the morphism p;: X ®Y — X satisfying (3.1). We
construct similarly the morphism py: X @Y — Y satisfying (3.2). To check
(3.3), we use the fact that if f: X @Y — X @Y satisfies f oi; = 4; and
f 0] ig = ig, then f = idx@y.

(b) Let us assume condition (vi). Let W € C and consider morphisms
f: X >Wandg:Y - W. Set h:=fopr@gopy. Then h: Z - W
satisfies hoi; = f and hoiy = g and such an h is unique. Hence Z ~ X @Y.
(c¢) We have proved that conditions (iv) and (vi) are equivalent and moreover
that if they are satisfied, then Z ~ X @& Y. Replacing C with C°, we get
that these conditions are equivalent to (v) and Z ~ X x Y. q.e.d.

Example 3.1.4. (i) If A is a ring, Mod(A) and Modf(A) are additive cate-
gories.

(ii) Ban, the category of C-Banach spaces and linear continuous maps is
additive.

(iii) If C is additive, then C°P is additive.

(iv) Let I be category. If C is additive, the category Fct(/,C) of functors
from I to C, is additive.

(v) If C and C’ are additive, then C x C’ is additive.

Let F': C — C’ be a functor of additive categories. One says that F' is
additive if for X,Y € C, Hom ,(X,Y) — Hom,(F(X), F(Y)) is a morphism
of groups. We shall not prove here the following result.
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Proposition 3.1.5. Let F': C — C’ be a functor of additive categories. Then
F is additive if and only if it commutes with direct sum, that s, for X and

Y inC:

F0O) ~ 0
FIX®Y) ~ F(X)®F(Y).

Unless otherwise specified, functors between additive categories will be
assumed to be additive.
Generalization. Let k£ be a commutative ring. One defines the notion of
a k-additive category by assuming that for X and Y in C, Hom,(X,Y) is a
k-module and the composition is k-bilinear.

3.2 Complexes in additive categories

Let C denote an additive category.
A differential object (X °,dy) in C is a sequence of objects X* and mor-
phisms d* (k € Z):

(3.4) e xR e

A morphism of differential objects f*: X* — Y * is visualized by a commu-
tative diagram:

dn
e o Xn X xntl .

j fn j fnJrl
dn

ey Y xntl L

Hence, the category Dif f(C) of differential objects in C is nothing but the
category Fct(Z,C). In particular, it is an additive category.

Definition 3.2.1. (i) A complex is a differential object (X °, d% ) such that
d"od" ' =0 for all n € Z.

(ii) One denotes by C(C) the full additive subcategory of Dif f(C) consist-
ing of complexes.

From now on, we shall concentrate our study on the category C(C).

A complex is bounded (resp. bounded below, bounded above) if X™ =0
for |n] >> 0 (resp. n << 0, n >> 0). One denotes by C*(C)(* = b,+,—)
the full additive subcategory of C(C) consisting of bounded complexes (resp.
bounded below, bounded above). We also use the notation C**(C) = C(C)
(ub for “unbounded”).
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One considers C as a full subcategory of C*(C) by identifying an object
X € C with the complex X * “concentrated in degree 0”:

X' = 20=2X=0—---

where X stands in degree 0.

Shift functor

Let C be an additive category, let X € C(C) and let p € Z. One defines the
shifted complex X|[p| by:

{ o =

dipy = (—1Pdy™”

If f: X — Y is a morphism in C(C) one defines f[p]: X[p] — Y[p] by
(flpD)" = .

The shift functor [1]: X +— X][1] is an automorphism (i.e. an invertible
functor) of C(C).
Mapping cone

Definition 3.2.2. Let f: X — Y be a morphism in C(C). The mapping
cone of f, denoted Mc(f), is the object of C(C) defined by:

Mc(f)" = (X[O)"oY"
d’ 0
B = (AN 4 )

Of course, before to state this definition, one should check that dﬁg% N
d’ﬁdc(f) = 0. Indeed:

_d}+2 0 —d}—H 0
fn+2 dr}z/—&-l ° fn+1 d@ =0
Notice that although Mc(f)" = (X[1])" & Y™, Mc(f) is not isomorphic to

X[1]®Y in C(C) unless f is the zero morphism.
There are natural morphisms of complexes

(3.5) a(f): Y = Me(f),  B(f): Me(f) — X[1].

and B(f) o a(f) = 0.
If F': C — C' is an additive functor, then F(Mc(f)) ~ Mc(F(f)).
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Homotopy
Let again C be an additive category.

Definition 3.2.3. (i) A morphism f: X — Y in C(C) is homotopic to
zero if for all p there exists a morphism s?: X? — Y?~! such that:

P _ optl i p—1 D
fF=s""od,+dy  os

Two morphisms f,g : X — Y are homotopic if f — ¢g is homotopic to
ZEero.

(ii) An object X in C(C) is homotopic to 0 if idx is homotopic to zero.

A morphism homotopic to zero is visualized by the diagram (which is not
commutative):

dP
xr—1___ o xp__X xptl

A

yr-1 —YP—— yptl
dy-

Note that an additive functor sends a morphism homotopic to zero to a
morphism homotopic to zero.

Example 3.2.4. The complex 0 — X' — X' & X” — X" — 0 is homotopic
to zero.

The homotopy category K(C)

We shall construct a new category by deciding that a morphism in C(C)
homotopic to zero is isomorphic to the zero morphism. Set:

Ht(X,Y)={f: X =Y f is homotopic to 0}.
If f: X Y and g: Y — Z are two morphisms in C(C) and if f or g is
homotopic to zero, then g o f is homotopic to zero. This allows us to state:
Definition 3.2.5. The homotopy category K(C) is defined by:
Ob(K(C)) = Ob(C(C))
In other words, a morphism homotopic to zero in C(C) becomes the zero
morphism in K(C) and a homotopy equivalence becomes an isomorphism.

One defines similarly K*(C), (% = ub,b, 4+, —). They are clearly additive
categories endowed with an automorphism, the shift functor [1]: X — XT1].
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3.3 Double complexes

Let C be as above an additive category. A double complex (X ** dx) in C
is the data of

{(xmm d" d"" (n,m) € Zox 1}
where X™™ € C and the “differentials” d'y™: X™™ — Xnmtbm  grem .
Xmm —y Xmt gatisfy:
(3.6) d% =d”% =0, dod =d"od.
One can represent a double complex by a commutative diagram:

(3.7)

X nm armm Xn,m+1

qmm d/n,m+1

n+1,m n+1,m+1
— X s X —

One defines naturally the notion of a morphism of double complexes, and
one obtains the additive category C?*(C) of double complexes.

There are two functors Fy, Fy; : C*(C) — C(C(C)) which associate to
a double complex X the complex whose objects are the rows (resp. the
columns) of X. These two functors are clearly isomorphisms of categories.

Now consider the finiteness condition:

(3.8) forallpeZ, {(m,n)e€Z xZ;X™ #0,m+n=p} is finite

and denote by CF(C) the full subcategory of C*(C) consisting of objects X
satisfying (3.8). To such an X one associates its “total complex” tot(X) by
setting:

tOt(X)p = @m+n=pxn’m7

dhylenm = d™" 4 (1)

tot

This is visualized by the diagram:

n,m (=)na” n,m+1
X b —_— X b
‘|
Xn+1,m

16 3.3 may be skipped in a first reading.
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Proposition 3.3.1. The differential object {tot(X)?, di)ot(X)}PGZ is a complex
(i.e., df;éx) odl = 0) and tot : C}(C) — C(C) is a functor of additive

tot(X)
categories.
Proof. For (n,m) € Z x Z, one has
do d(Xn,m) — d/l o dl/(Xn,m) + dl o d/(Xn,m)
+(_)n+1d/1 o d/(Xn,m) 4 (_)nd/ o d//(Xn,m>
= 0.
It is left to the reader to check that tot is an additive functor. q.e.d.

Example 3.3.2. Let f°: X° — Y be a morphism in C(C). Consider
the double complex Z**° such that Z=%° = X*, Z%°* =Y *, Z»* =0 for
i # —1,0, with differentials f7: Z=% — Z%. Then

(3.9) tot(Z°") ~ Mc(f").

Bifunctor

Let C,C" and C” be additive categories and let F': C x C" — C” be an additive
bifunctor (i.e., F'(+, «) is additive with respect to each argument). It defines
an additive bifunctor C?(F): C(C) x C(C') — C%*(C"). In other words, if
X € C(C) and X’ € C(C’) are complexes, then C*(F)(X,X’) is a double

complex.

Example 3.3.3. Consider the bifunctor « ® «: Mod(A°?) x Mod(A) —
Mod(Z). We shall simply write ® instead of C*(®). Hence, for X €
C~(Mod(A°?)) and Y € C~(Mod(A)), one has

(X ®Y)n,m — X" ®Ym,
d/n,m — dq;,( ® }/-Tn7 d//n,m — Xn ® dg}
The complex Hom"

Consider the bifunctor Hom,: C x C — Mod(Z). We shall write Hom;j'
instead of C*(Hom,). If X and Y are two objects of C(C), one has

Hom " (X, Y)"™ = Hom ,(X™™,Y™),
d™™ = Hom, (X ™, dy),  d"™" =Hom,((—)"dy""",Y™).

Note that Hom;" (X,Y) is a double complex in the category Mod(Z) and
should not be confused with the group Hom (X,Y).
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Let X € C7(C) and Y € C*(C). One sets
(3.10) Hom (X,Y) = tot(Hom (X, Y)).
Hence, Hom (X, Y)" = @, Hom (X7, Y"*/) and
d" : Hom(X,Y)" = Hom,(X,Y)" ™

is defined as follows. To f = {f’}; € @, Hom (X7, Y"™") one associates

jez

d"f ={g'}; € @ Hom (X7, Y1),

jez
with
g = I I (Tl gL =g
In other words, the components of df in Hom,(X,Y)" ™ will be
(3.11) (' f) = di'™ o f7 4 (=) T o di.
Note that for XY, Z € C(C), there is a natural composition map
(3.12) Hom},(X,Y) ® Hom (Y, Z) = Hom (X, Z).

Proposition 3.3.4. Let C be an additive category and let X,Y € C(C).
There are isomorphisms:

Z°(Hom [ (X,Y)) = Kerd® =~ Hom,(X,Y),
B°(Hom(X,Y)) =Imd ' ~ Ht(X,Y),
H°(Hom,(X,Y)) = Kerd’/Imd ™! ~ Homy ) (X,Y).

Proof. (i) Let us calculate ZO(Homé(X7 Y)). By (3.11), the component of
d°{f7}; in Hom (X7, Y7*) will be zero if and only if &} o f7 = fi*! o d,
that is, if the family {f7}; defines a morphism of complexes.

(i) Let us calculate B’(Hom(X,Y)). An element f/ € Hom,(X7,Y7) will
be in the image of d~* if it is in the sum of the image of Hom (X7, Y7~!) by
di! and the image of Hom ,(X7*!,Y7) by & . Hence, if it can be written as
fl=dtosi + s od. q.e.d.

Remark 3.3.5. Roughly speaking, a DG-category is an additive category in
which the morphisms are no more additive groups but are complexes of such
groups.

The category C(C) endowed for each X, Y € C(C) of the complex Hom (X, Y))|}
and with the composition given by (3.12) is an example of such a DG-
category.
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3.4 Simplicial constructions

We shall define the simplicial category and use it to construct complexes and
homotopies in additive categories.

Definition 3.4.1. (a) The simplicial category, denoted by A, is the cate-
gory whose objects are the finite totally ordered sets and the morphisms
are the order-preserving maps.

(b) We denote by A;,; the subcategory of A such that Ob(A;,;) = Ob(A),
the morphisms being the injective order-preserving maps.

For integers m,m denote by [n,m] the totally ordered set {k € Z; n <
kE <m}.

Proposition 3.4.2. (i) the natural functor A — Set’ is faithful,

(i) the full subcategory of A consisting of objects {[0,n]}n>_1 is equivalent
to A,

(i) A admits an initial object, namely 0, and a terminal object, namely
{0}.

The proof is obvious.
Let us denote by

d?: [0,n]—[0,n + 1] 0<i<n+1)

the injective order-preserving map which does not take the value ¢. In other
words

d (k) = k for k <1,
S Mk +1 for k>

One checks immediately that
(3.13) it od! =di od) | for 0<i<j<n+2.

Indeed, both morphisms are the unique injective order-preserving map which
does not take the values ¢ and j.
The category A,; is visualized by

—dl—> ........... >
(3.14) 0 a5 [0) Zf 7 [0,1] —ai>[0,1,2] "%
—di= -

16 3.4 may be skipped.
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Let C be an additive category and F': A;,; — C a functor. We set for n € Z:

[ {F([O,n]) for n > —1,

0 otherwise,
n+1
df: F" — F™Hdp =) (=) F(d]).
=0
Consider the differential object
—1 0 m
(315) F'i=o 0 Ft g0 Bt o e By

Theorem 3.4.3. (i) The differential object F* is a complez.
(i) Assume that there exist morphisms s%: F™ — F"~ ! (n > 0)satisfying:

sttt o F(dR) = idpn forn > —1,
spto F(dr,) =F(d} ") osy fori>0,n>0.

Then F° is homotopic to zero.

Proof. (i) By (3.13), we have

n+2 n+1
ditody = >N (=)VF(dT ody)

7=0 =0

= Y (MFR@Med)+ Y (D) e d))
0<5<i<n+1 0<i<j<n+2

= Y ()PR@Ted)+ Y ()M edyy)
0<j<i<n+1 0<i<j<n+2

= 0.

Here, we have used

Yo (FRE@Ted,) = ) ()R od))

0<i<j<n+2 0<i<j<n+1

= ) (2)PTERAT odp).

0<j<i<n+1
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(ii) We have

n+1 o dn d?—l oS

n+1 n
= S (it o P + S (<1 P o s)
1=0 =0
= S o F(dg) + (1S o F(dL) + Z F(d o s)
i=0
lan+Z D E o sT) +Z F(d! " osh)
1=0
lan

Exercises to Chapter 3

Exercise 3.1. Let C be an additive category and let X € C(C) with differ-
ential dx. Define the morphism dy: X — X][1] by setting §% = (—1)"d%.
Prove that dx is a morphism in C(C) and is homotopic to zero.

Exercise 3.2. Let C be an additive category, f,g: X = Y two morphisms
in C(C). Prove that f and g are homotopic if and only if there exists a
commutative diagram in C(C)

TW Mcff) o X\r]

a(g)

In such a case, prove that u is an isomorphism in C(C).

Exercise 3.3. Let C be an additive category and let f: X — Y be a mor-
phism in C(C).
Prove that the following conditions are equivalent:

is homotopic to zero,

(a
(b) f factors through a(idx): X — Mc(idy),

) [
)

(c) f factors through S(idy)[—1]: Mc(idy)[—1] — Y,
)

(d) f decomposes as X — Z — Y with Z a complex homotopic to zero.
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Exercise 3.4. A category with translation (A, T) is a category A together
with an equivalence T: A — A. A differential object (X,dx) in a cate-
gory with translation (4,7 is an object X € A together with a morphism
dx: X — T(X). A morphism f: (X,dx) — (Y,dy) of differential objects is
a commutative diagram

X% 7x

v,

y 1y

One denotes by A, the category consisting of differential objects and mor-
phisms of such objects. If A is additive, one says that a differential object
(X,dx) in (A, T) is a complex if the composition X X T(X) M), T?(X)
is zero. One denotes by A, the full subcategory of Ay consisting of complexes.
(i) Let C be a category. Denote by Z, the set Z considered as a discrete
category and still denote by Z the ordered set (Z, <) considered as a category.
Prove that C% := Fct(Zg, C) is a category with translation.

(ii) Show that the category Fct(Z,C) may be identified to the category of
differential objects in CZ.

(iii) Let C be an additive category. Show that the notions of differential
objects and complexes given above coincide with those in Definition 3.2.1
when choosing A = C(C) and T" = [1].

Exercise 3.5. Consider the catgeory A and for n > 0, denote by
st [0,n]—=[0,n — 1] 0<i<n-—1)

the surjective order-preserving map which takes the same value at ¢ and ¢+ 1.
In other words

k for k <1,
k—1 for k> i.

Checks the relations:

s?os?“zs?_los;.lﬂ for 0 <j<i<n,
n+1 n __ gn—1 n . .
S; od! =d; 087 4 for 0 <i<j<n,

st o d = idjg for0<i<n+1li=j7j+]1,

sitlodt =dios?  for1<j+1<i<n+l



Chapter 4

Abelian categories

Convention 4.0.4. In these Notes, when dealing with an abelian category
C (see Definition 4.1.2 below), we shall assume that C is a full abelian sub-
category of a category Mod(A) for some ring A. This makes the proofs
much easier and moreover there exists a famous theorem (due to Freyd &
Mitchell) that asserts that this is in fact always the case (up to equivalence
of categories).

4.1 Abelian categories

Let C be an additive category which admits kernels and cokernels. Let
f: X — Y be a morphism in C. One defines:

Coim f := Cokerh, where h: Ker f — X
Imf := Kerk, where k: Y — Coker f.

Consider the diagram:

Ker f X

Coim f -*>TIm f

Since foh =0, f factors uniquely through f , and ko f factors through ko f .
Since ko f =ko fos=0and s is an epimorphism, we get that ko f = 0.
Hence f factors through Ker k = Im f. We have thus constructed a canonical
morphism:

(4.1) Coim f = Im f.

57
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Examples 4.1.1. (i) For a ring A and a morphism f in Mod(A), (4.1) is an
isomorphism.

(ii)) The category Ban admits kernels and cokernels. If f: X — Y is a
morphism of Banach spaces, define Ker f = f~'(0) and Coker f = Y/Im f
where Im f denotes the closure of the space Im f. It is well-known that there
exist continuous linear maps f: X — Y which are injective, with dense and
non closed image. For such an f, Ker f = Coker f = 0 although f is not an
isomorphism. Thus Coim f ~ X and Im f ~ Y. Hence, the morphism (4.1)
is not an isomorphism.

(iii) Let A be a ring, I an ideal which is not finitely generated and let M =
A/I. Then the natural morphism A — M in Mod!(A) has no kernel.

Definition 4.1.2. Let C be an additive category. One says that C is abelian
if:

(i) any f: X — Y admits a kernel and a cokernel,

(ii) for any morphism f in C, the natural morphism Coim f — Im f is an
isomorphism.

Examples 4.1.3. (i) If A is a ring, Mod(A) is an abelian category. If A is
noetherian, then Mod!(A) is abelian.

(ii) The category Ban admits kernels and cokernels but is not abelian. (See
Examples 4.1.1 (ii).)

(iii) If C is abelian, then C°P is abelian.

Proposition 4.1.4. Let I be category and let C be an abelian category. Then
the category Fet(I,C) of functors from I to C is abelian.

Proof. (i) Let F,G: I — C be two functors and ¢: F' — G a morphism of
functors. Let us define a new functor H as follows. For i € I, set H(i) =
Ker(F(i) — G(i)). Let s: i — j be a morphism in I. In order to define the
morphism H(s): H(i) — H(j), consider the diagram

- F(1) - G()
H(s). F(s) G(s)

N0 .

—=F(j) == G(j)-

Since ¢(7)o F(s)oh; = 0, the morphism F(s)o h; factorizes uniquely through
H(j). This gives H(s). One checks immediately that for a morphism ¢: j —
k in I, one has H(t) o H(s) = H(t o s). Therefore H is a functor and one
also easily cheks that H is a kernel of the morphism of functors ¢.
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(ii) One defines similarly the functor Coim . Since, for each i € I, the
natural morphism Coim (i) — Im (i) is an isomorphism, one deduces that
the natural morphism of functors Coim ¢ — Im ¢ is an isomorphism. q.e.d.

Corollary 4.1.5. If C is abelian, then the categories of complexes C*(C)
(x = ub,b,+,—) are abelian.

Proof. 1t follows from Proposition 4.1.4 that the category Dif f(C) of differ-
ential objects of C is abelian. One checks immediately that if f*: X* —Y*
is a morphism of complexes, its kernel in the category Dif f(C) is a complex
and is a kernel in the category C(C), and similarly with cokernels. q.e.d.

For example, if f: X — Y is a morphism in C(C), the complex Z defined by
Z" = Ker(f": X" — Y™), with differential induced by those of X, will be a
kernel for f, and similarly for Coker f.

Note the following results.

e An abelian category admits finite projective limits and finite inductive
limits. (Indeed, an abelian category admits an initial object, a terminal
object, finite products and finite coproducts and kernels and cokernels.)

e In an abelian category, a morphism f is a monomorphism (resp. an
epimorphism) if and only if Ker f ~ 0 (resp. Coker f ~ 0) (see Exer-
cise 2.12). Moreover, a morphism f: X — Y is an isomorphism as soon
as Ker f ~ 0 and Coker f ~ 0. Indeed, in such a case, X == Coim f
and Im f =Y.

Unless otherwise specified, we assume until the end of this chapter that C is
abelian.

Consider a complex X' Ix & xv (hence, g o f = 0). It defines a
morphism Coim f — Ker g, hence, C being abelian, a morphism Im f —
Kerg.

Definition 4.1.6. (i) One says that a complex X’ X % X" s exact if
Im f = Kerg.
(i) More generally, a sequence of morphisms X? 25 --- — X" with di*! o
d' = 0foralli € [p,n—1] is exact if Im d* = Ker d"™* for all i € [p, n—1].
(iii) A short exact sequence is an exact sequence 0 - X' — X — X" — 0
Any morphism f: X — Y may be decomposed into short exact sequences:

0 — Ker f - X — Coim f — 0,
0—Imf—Y — Coker f — 0,

with Coim f ~ Im f.
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Proposition 4.1.7. Let

(4.2) 0-X' 5 X% x50

be a short exact sequence in C. Then the conditions (a) to (e) are equivalent.
(a) there exists h: X" — X such that g o h = idx».

there exists k: — such that ko f = idx.
b) th k: X — X' h that ko f =id

(c) there exists p = (k,g) and p = ( {L ) such that X % X' @ X" and

X'oX"% X are isomorphisms inverse to each other.
(d) The complex (4.2) is homotopic to 0.

(e) The complex (4.2) is isomorphic to the complez 0 — X' — X' & X" —
X" —0.

Proof. (a) = (c). Since g = go ho g, we get g o (idx —h o g) = 0, which
implies that idyx —h o g factors through Ker g, that is, through X’. Hence,
there exists k: X — X’ such that idxy —hog= fok.

(b) = (c) follows by reversing the arrows.

(c) = (a). Since go f =0, we find g = gohog, that is (goh—idx»)og = 0.
Since ¢ is an epimorphism, this implies g o h —idx» = 0.

(c) = (b) follows by reversing the arrows.

(d) By definition, the complex (4.2) is homotopic to zero if and only if there
exists a diagram

0 X/ f X g X,, 0
e l
id kKoo i
LA
0 X 7 X—=X 0
such that idys = ko f,idy» =goh and idxy =hog+ fok.
(e) is obvious by (c). q.e.d.

Definition 4.1.8. In the above situation, one says that the exact sequence
splits.

Note that an additive functor of abelian categories sends split exact se-
quences into split exact sequences.

If A is a field, all exact sequences split, but this is not the case in general.
For example, the exact sequence of Z-modules

02Z 372 572/22—0

does not split.
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4.2 Exact functors

Definition 4.2.1. Let F': C — C’ be a functor of abelian categories. One
says that

(i) F is left exact if it commutes with finite projective limits,
(ii) F is right exact if it commutes with finite inductive limits,
(iii) F is exact if it is both left and right exact.

Lemma 4.2.2. Consider an additive functor F': C — C'.

(a) The conditions below are equivalent:

(i) F is left exact,

(ii) F' commutes with kernels, that is, for any morphism f: X — Y,
F(Ker(f)) = Ker(F(f)),

(iii) for any exact sequence 0 — X' — X — X" in C, the sequence
0— F(X') = F(X) — F(X") is exact in C',

(iv) for any exact sequence 0 — X' — X — X" — 0 in C, the sequence
0— F(X') = F(X) = F(X") is exact in C'.

(b) The conditions below are equivalent:

(i) F is ezxact,
(ii) for any exact sequence X' — X — X" in C, the sequence F(X') —
F(X) — F(X") is exact in C',
(iii) for any ezxact sequence 0 — X' — X — X" — 0 in C, the sequence
0— F(X') = F(X) — F(X") =0 is exact in C'.

There is a similar result to (a) for right exact functors.

Proof. Since F' is additive, it commutes with terminal objects and products
of two objects. Hence, by Proposition 2.3.7, F is left exact if and only if it
commutes with kernels.

The proof of the other assertions are left as an exercise. q.e.d.

Proposition 4.2.3. (i) The functor Hom,: C°® x C — Mod(Z) is left ea-
act with respect to each of its arguments.

(ii) If a functor F': C — C' admits a left (resp. right) adjoint then F' is left
(resp. right) exact.
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(iii) Let I be a category. The functor Jm : Fct(I°P,C) — C is left exact and
the functor lin - Fct(I,C) — C is right exact.

(iv) Let A be a ring and let I be a set. The two functors [[ and @ from
Fct(1,Mod(A)) to Mod(A) are exact.

(v) Let A be a ring and let I be a filtrant category. The functor hgl from
Fct(I,Mod(A)) to Mod(A) is ezact.

Proof. (i) follows from (2.10) and (2.11).

(ii) Apply Proposition 2.4.5.

(iii) Apply Proposition 2.4.1.

(iv) is left as an exercise (see Exercise 4.1).

(v) follows from Corollary 2.5.7. q.e.d.

Example 4.2.4. Let A be a ring and let N be a right A-module. Since the
functor N ®, + admits a right adjoint, it is right exact. Let us show that
the functors Hom ,(+, ) and N ®, + are not exact in general. In the sequel,
we choose A = k[z], with k a field, and we consider the exact sequence of
A-modules:

(4.3) 0= A5 A— AJAz — 0,

where -z means multiplication by x.
(i) Apply the functor Hom ,(+, A) to the exact sequence (4.3). We get the
sequence:

0 — Hom ,(A/Az,A) = A= A—0

which is not exact since x- is not surjective. On the other hand, since z- is

injective and Hom ,(+, A) is left exact, we find that Hom ,(A/Az, A) = 0.

(ii) Apply Hom ,(A/Ax, «) to the exact sequence (4.3). We get the sequence:
0 — Hom ,(A/Ax, A) — Hom ,(A/Axz, A) — Hom ,(A/Az, A/Ax) — 0.

Since Hom ,(A/Az, A) = 0 and Hom ,(A/Axz, AJ/Azx) # 0, this sequence is
not exact.
(iii) Apply * ®, A/Az to the exact sequence (4.3). We get the sequence:

0— AJAz 55 AJAr — AJ/rA®, A/Ax — 0.
Multiplication by x is 0 on A/Ax. Hence this sequence is the same as:
0— AJAz > AJAz — AJAz ®, AJAz — 0

which shows that A/Ax ®, A/Az ~ A/Az and moreover that this sequence
is not exact.

(iv) Notice that the functor Hom ,(+, A) being additive, it sends split exact
sequences to split exact sequences. This shows that (4.3) does not split.
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Example 4.2.5. We shall show that the functor lim : Mod(k)"™ — Mod(k)
is not right exact in general.

Consider as above the k-algebra A := k|z] over a field k. Denote by
I = A - x the ideal generated by z. Notice that A/I"" ~ k[z]=", where
k[z]=" denotes the k-vector space consisting of polynomials of degree < n.
For p < n denote by v,,: A/I"+A/I? the natural epimorphisms. They
define a projective system of A-modules. One checks easily that

lim A/ 1" = K{[a],

the ring of formal series with coefficients in k. On the other hand, for p < n
the monomorphisms I"—I? define a projective system of A-modules and one
has

1‘&1]" ~ (.

Now consider the projective system of exact sequences of A-modules
0=I"—>A— A/I" = 0.

By taking the projective limit of these exact sequences one gets the sequence
0 — 0 — k[z] — k[[z]] — 0 which is no more exact, neither in the category
Mod(A) nor in the category Mod(k).

The Mittag-Leffler condition

Let us give a criterion in order that the projective limit of an exact sequence
remains exact in the category Mod(A). This is a particular case of the so-
called “Mittag-Leffler” condition (see [17]).

Proposition 4.2.6. Let A be a ring and let 0 — {M]} LN {M,} 2
{M!} = 0 be an exact sequence of projective systems of A-modules indexed
by N. Assume that for each n, the map M), , — M), is surjective. Then the
sequence

0 — lim M, % lim M,, % Jim M}/ — 0
1S exact.

Proof. Let us denote for short by v, the morphisms M, — M,,_; which define

"

the projective system {M,}, and similarly for v}, vy. Let {z}}, € 1&1]\/[7’1’

" i " ny __ "
Hence x; € M), and v, (7)) = x, .
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We shall first show that v,: g, (2") — g¢,1,(z”_,) is surjective. Let

n n—1
Tpn-1 € g;—ll(x;;—l)' Take Tp € ggl(x;;) Then gn—l(vn(xn> - xn—l)) =
0. Hence v,(x,) — p-1 = fa_1(2),_;). By the hypothesis f,_1(z)_;) =
fa—1 (v (21)) for some !, and thus v, (z, — fn(z))) = Tp_1.
Then we can choose z,, € g, '(2”) inductively such that v,(z,) = z,_1.

q.e.d.

4.3 Injective and projective objects

Definition 4.3.1. Let C be an abelian category.
(i) An object I of C is injective if the functor Hom(+, ) is exact.

(ii) Ome says that C has enough injectives if for any X € C there exists a
monomorphism X—1I with [ injective.

(iii) An object P is projective in C if it is injective in C°P, i.e., if the functor
Hom (P, «) is exact.

(iv) One says that C has enough projectives if for any X € C there exists
an epimorphism P—X with P projective.

Proposition 4.3.2. The object I € C is injective if and only if, for any
X, Y € C and any diagram in which the row is exact:

00— x' 1o

=

I
the dotted arrow may be completed, making the solid diagram commutative.

Proof. (i) Assume that I is injective and let X" denote the cokernel of the
morphism X’ — X. Applying Hom,(+, ) to the sequence 0 = X' — X —
X", one gets the exact sequence:

Hom (X", I) = Hom (X, I) 2 Hom (X', I) = 0.

Thus there exists h: X — I such that ho f = k.
(ii) Conversely, consider an exact sequence 0 — X’ 5 X 4 X" 0. Then
the sequence 0 — Hom (X", 1) h, Hom (X, 1) L2 Hom,(X',I) — 0 is
exact by the hypothesis.

To conclude, apply Lemma 4.2.2. q.e.d.
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By reversing the arrows, we get that P is projective if and only if for any
solid diagram in which the row is exact:

P
xtoxr g

the dotted arrow may be completed, making the diagram commutative.

Lemma 4.3.3. Let 0 — X' L X % X" 5 0 be an evact sequence in C, and
assume that X' is injective. Then the sequence splits.

Proof. Applying the preceding result with & = idy,, we find h: X — X’ such
that ko f = idx/. Then apply Proposition 4.1.7. q.e.d.

It follows that if F': C — C’ is an additive functor of abelian categories, and
the hypotheses of the lemma are satisfied, then the sequence 0 — F(X') —
F(X) — F(X") — 0 splits and in particular is exact.

Lemma 4.3.4. Let X', X" belong to C. Then X' & X" is injective if and
only if X' and X" are injective.

Proof. 1t is enough to remark that for two additive functors of abelian cat-
egories F' and G, X — F(X) @ G(X) is exact if and only if F' and G are
exact. q.e.d.

Applying Lemmas 4.3.3 and 4.3.4, we get:

Proposition 4.3.5. Let 0 — X' — X — X" — 0 be an ezxact sequence in C
and assume X' and X are injective. Then X" is injective.

Example 4.3.6. (i) Let A be aring. An A-module M free if it is isomorphic
to a direct sum of copies of A, that is, M ~ A It follows from (2.4) and
Proposition 4.2.3 (iv) that free modules are projective.

Let M € Mod(A). For m € M, denote by A,, a copy of A and denote by
1,, € A,, the unit. Define the linear map

Y. @Am%M

by setting ¥ (1,,) = m and extending by linearity. This map is clearly surjec-
tive. Since the left A-module €, .,,; A is free, it is projective. This shows
that the category Mod(A) has enough projectives.
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More generally, if there exists an A-module N such that M & N is free
then M is projective (see Exercise 4.3).

One can prove that Mod(A) has enough injectives (see Exercise 4.4).
(ii) If k is a field, then any object of Mod (k) is both injective and projective.
(iii) Let A be a k-algebra and let M € Mod(A°). One says that M is
flat if the functor M ®, «: Mod(A) — Mod(k) is exact. Clearly, projective
modules are flat.

4.4 Complexes in abelian categories

Cohomology

Recall that the categories C*(C) are abelian for « = ub, +, —, b.
Let X € C(C). One defines the following objects of C:

Z"(X) = Kerdy
B"(X) := Imdy!
H"(X) = Z"(X)/B"(X) (:= Coker(B"(X)— Z"(X)))

One calls H"(X) the n-th cohomology object of X. If f: X — Y is a mor-

phism in C(C), then it induces morphisms Z"(X) — Z"(Y) and B"(X) —

B"(Y), thus a morphism H"(f): H"(X) — H™(Y). Clearly, H*(X @ Y) ~

H"(X) @ H™(Y). Hence we have obtained an additive functor:
H"(+):C(C)—C.

Notice that H"(X) = H°(X|[n]).
There are exact sequences

XU Kerdt — HY(X) =0, 0— H*(X) — Cokerd?? <5 xn+1,
The next result is easily checked.
Lemma 4.4.1. The sequences below are exact:
(44) 0 — H"(X) — Coker(d%:1) & Kerd' — H™1(X) — 0.
One defines the truncation functors:

(4.5) < FE L O(C) = O (C)
(4.6) T2 F L O(C) — CF(C)
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as follows. Let X :=--- — X771 5 X7 X"+l ... One sets:
T=(X): o XM X s Kerdy -0 — -
X )= = X" o X" Imdy = 0= -
7" X):= -+ —0— Cokerdy ' — X" — X" ...
ZM(X)= o= 0—=Imdy = X" — X"

There is a chain of morphisms in C(C):
T'X 57X -5 X 57X = 77X,
and there are exact sequences in C(C):

0— 751X — 75X — H"(X)[—n] — 0,
0— H"(X)[-n] = 72"X — 72" X =0,
0—75"X = X — 72"t X — 0,

0 751X 5 X 572X — 0.

(4.7)

We have the isomorphisms

H/(X) j<n,

Hi(rs"X) =~ HI(75"X)  ~ { .
0 J>n.

(4.8) .
H/(X)  j=>mn,

HI(72"X) =% HI (12" X)) ~ { »
0 J<n.
The verification is straightforward.

Lemma 4.4.2. Let C be an abelian category and let f: X — Y be a mor-
phism in C(C) homotopic to zero. Then H™(f): H"(X) — H™(Y) is the 0
morphism.

Proof. Let f* = s"*lod% +d} 'os™. Then d% = 0 on Ker d’ and djs 'os™ = 0
on Kerdy/Imdy . Hence H"(f) : Kerdy/Imdy ' — Kerdy/Imdy " is
the zero morphism. q.e.d.

In view of Lemma 4.4.2; the functor H°: C(C) — C extends as a functor
H°: K(C) = C.

One shall be aware that the additive category K(C) is not abelian in general.
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Definition 4.4.3. One says that a morphism f: X — Y in C(C) is a quasi-
isomorphism (a qis, for short) if H*(f) is an isomorphism for all k¥ € Z. In
such a case, one says that X and Y are quasi-isomorphic. In particular,
X € C(C) is qis to 0 if and only if the complex X is exact.

Remark 4.4.4. By Lemma 4.4.2, a complex homotopic to 0 is gis to 0, but
the converse is false. One shall be aware that the property for a complex
of being homotopic to 0 is preserved when applying an additive functor,
contrarily to the property of being qis to 0.

Remark 4.4.5. Consider a bounded complex X and denote by Y* the
complex given by Y7 = H/(X*),d}, = 0. One has:

(4.9) V' =@ H'(X")][—1].

The complexes X* and Y ° have the same cohomology objects. In other
words, H’(Y*) ~ H’(X"*). However, in general these isomorphisms are
neither induced by a morphism from X* — Y *, nor by a morphism from
Y*® — X°, and the two complexes X* and Y* are not quasi-isomorphic.

Long exact sequence

Lemma 4.4.6. (The “five lemma”.) Consider a commutative diagram:

X0 @0 x1 1 X2 @2 X3

A4 A A A

0 1 2 3
Y BOY ﬂlY ﬁzY

and assume that the rows are exact sequences.

(i) If f° is an epimorphism and f', f> are monomorphisms, then f? is a
monomorphism.

(i) If f2 is a monomorphism and f°) f? are epimorphisms, then f! is an
epimorphism.

According to Convention 4.0.4, we shall assume that C is a full abelian
subcategory of Mod(A) for some ring A. Hence we may choose elements in
the objects of C.

Proof. (i) Let zy € X5 and assume that f%(z2) = 0. Then f3 o ay(z3) = 0
and f? being a monomorphism, this implies as(z2) = 0. Since the first row
is exact, there exists 71 € X; such that a;j(z1) = x5. Set y; = f!(x;). Since
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B1 o fY(zy) = 0 and the second row is exact, there exists yo € Y such that
Bo(yo) = f'(x1). Since fY is an epimorphism, there exists zo € X° such
that yo = f%(wg). Since f!o ap(zg) = f(z1) and f! is a monomorphism,
ap(xg) = x1. Therefore, 9 = a;(x1) = 0.

(ii) is nothing but (i) in CP. q.e.d.
Lemma 4.4.7. (The snake lemma.) Consider the commutative diagram in
C below with exact rows:

x Lo x Lo xr 0

R

Then it gives rise to an exact sequence:

Kera — Ker f — Ker~y 2, Coker a — Coker  — Coker 7.

The proof is similar to that of Lemma 4.4.6 and is left as an exercise.
Theorem 4.4.8. Let 0 — X' L X % X" = 0 be an ezact sequence in C(C).
(i) For each k € Z, the sequence H*(X') — H*(X) — H*(X") is ezact.
(ii) For each k € 7Z, there exists 6* : H*(X") — H*"1(X') making the long

sequence
(4.10) - — HYX) — HYX") 5 HY(X') = HY(X) = -

exact. Moreover, one can construct 8% functorial with respect to short
exact sequences of C(C).

Proof. Consider the commutative diagrams:

0 0 0
| | }
Hk(X/) Hk(X) Hk(X//)

| | |

Coker d%;' —= Coker d%! —~ Coker dit—=0
dl;(’ ‘L d])c( ‘1/ d];(// \1/
0 — Kerdi}' —— Ker d{"' ——Kerd¥}/

l | J

Hk+1 (X/) Hk""l(X) Hk+1 (X”)
| | |
0 0 0

The columns are exact by Lemma 4.4.1 and the rows are exact by the hy-
pothesis. Hence, the result follows from Lemma 4.4.7. q.e.d.
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Corollary 4.4.9. Consider a morphism f: X — Y in C(C) and recall that
Mc(f) denotes the mapping cone of f. There is a long exact sequence:

(4.11) -+ = H*'(Mc(f)) —» H*(X) L H¥Y) = HY(Mc(f) — -+ |
Proof. Using (3.5), we get a complex:
(4.12) 0—Y — Mc(f) — X[1] — 0.

Clearly, this complex is exact. Indeed, in degree n, it gives the split exact
sequence 0 — Y™ — Y" @ X" — X" — (0. Applying Theorem 4.4.8, we
find a long exact sequence

(4.13)-- — H**(Mc(f)) — H*1(X[1]) RASN H*Y) = H*(Mc(f)) = --- .

It remains to check that, up to a sign, the morphism 6*~1: H*(X) — H*(Y)
is H*(f). We shall not give the proof here. q.e.d.

Double complexes

Consider a double complex X** as in (3.7).

Theorem 4.4.10. Let X** be a double complex. Assume that all rows X7
and columns X*7 are 0 for j < 0 and are ezact for j > 0. Then HP(X®*) ~
HP(X*Y) for all p.

Proof. We shall only describe the first isomorphism H?(X%*) ~ H?(X*?) in
the case where C = Mod(A), by the so-called “Weil procedure”. Let zP? €
XPY with d'zP° = 0 which represents y € HP(X*?). Define 27! = d"2P°.
Then d’'zP! = 0, and the first column being exact, there exists 2P~ 1! € XP~1!
with d’2P~ 51 = 271, One can iterate this procedure until getting %7 € X0P.
Since d'd"z%P = 0, and d’ is injective on X°? for p > 0 by the hypothesis, we
get d’2%P = 0. The class of 207 in HP(X%*) will be the image of y by the
Weil procedure. Of course, one has to check that this image does not depend
of the various choices we have made, and that it induces an isomorphism.

This can be visualized by the diagram:
207 L
2

_o d” _
C(]l’p 29_1,1,;7 1

v

s
2P0 4 ol

d'y



4.5. RESOLUTIONS 71

4.5 Resolutions

Solving linear equations

The aim of this subsection is to illustrate and motivate the constructions
which will appear further. In this subsection, we work in the category
Mod(A) for a k-algebra A. Recall that the category Mod(A) admits enough
projectives.

Suppose one is interested in studying a system of linear equations

No
(414) Zpijuj = Uy, (Z: 1,...,N1)
j=1

where the p;;’s belong to the ring A and u;, v; belong to some left A-module
S. Using matrix notations, one can write equations (4.14) as

(4.15) Pou=wv

where P, is the matrix (p;;) with N; rows and Ny columns, defining the
A-linear map Py : SN — SN, Now consider the right A-linear map

(4.16) Py AN 5 ANo,

where - P, operates on the right and the elements of AM and A™ are written
as rows. Let (eq,...,en,) and (fi,..., fn,) denote the canonical basis of AM
and AN respectively. One gets:

No
j=1

Hence Im P, is generated by the elements Ej\/:ol pije; for ¢ = 1,..., Ny,
Denote by M the quotient module AN /AM . Py and by ¢ : AN — M
the natural A-linear map. Let (uq,...,uy,) denote the images by 1 of
(e1,...,en,). Then M is a left A-module with generators (uq, ..., uy,) and
relations Z;V:01 pijuj = 0for7=1,..., N;. By construction, we have an exact
sequence of left A-modules:

(4.18) AN By ANo By ap s,
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Applying the left exact functor Hom ,(+,S) to this sequence, we find the
exact sequence of k-modules:

(4.19) 0 — Hom ,(M, 5) — 5N Iy 5™

(where Py operates on the left). Hence, the k-module of solutions of the
homogeneous equation associated to (4.14) is described by Hom , (M, S).

Assume now that A is left Noetherian, that is, any submodule of a free
A-module of finite rank is of finite type. In this case, arguing as in the proof
of Proposition 4.5.3, we construct an exact sequence

c oy AN Py AN T AN By pp ),

In other words, we have a projective resolution L* — M of M by finite free
left A-modules:

L s L=t 5 L0 —0.

Applying the left exact functor Hom ,(+,.S) to L*, we find the complex of
k-modules:

(4.20) 0 — GNo Loy gt [y gNo
Then

{ H°Hom ,(L"°,S5)) ~ Ker R,
H'(Hom (L, S)) ~ Ker(P,)/ Im(P).

Hence, a necessary condition to solve the equation FPyu = v is that Piv =0
and this necessary condition is sufficient if H'(Hom ,(L",S)) ~ 0. As we
shall see in § 4.6, the cohomology groups H’(Hom ,(L*,S)) do not depend,
up to isomorphisms, of the choice of the projective resolution L° of M.

Resolutions

Definition 4.5.1. Let J be a full additive subcategory of C. We say that
J is cogenerating if for all X in C, there exist Y € J and a monomorphism
X—Y.

If J is cogenerating in C°P, one says that J is generating.

Notations 4.5.2. Consider an exact sequence in C, 0 — X — J° — - —
J® — ... and denote by J° the complex 0 — J% — ... — J* — ... We
shall say for short that 0 — X — J° is a resolution of X. If the J*’s belong
to J, we shall say that this is a J-resolution of X. When J denotes the
category of injective objects one says this is an injective resolution.
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Proposition 4.5.3. Let C be an abelian category and let J be a cogenerating
full additive subcategory. Then, for any X € C, there exists an exact sequence

(4.21) 0 X—=>J'=. .5 J = ...

with J* € J for alln > 0.

Proof. We proceed by induction. Assume to have constructed:
0=X—=J'=... = J"

For n = 0 this is the hypothesis. Set B" = Coker(J"~! — J") (with J~! =
X). Then J" ' — J* — B™ — 0 is exact. Embed B" in an object of J:
0 — B™ — J""! Then J" ! — J® — J"*!is exact, and the induction
proceeds. q.e.d.

The sequence

is called a right J-resolution of X. If 7 is the category of injective objects
in C, one says that J* is an injective resolution. Note that, identifying X

and J° to objects of CT(C),
(4.23) X — J" is a gis.

Of course, there is a similar result for left resolution. If for any X € C there
is an exact sequence Y — X — 0 with Y € 7, then one can construct a left
J-resolution of X, that is, a qis Y* — X, where the Y"’s belong to J. If
J is the category of projective objects of C, one says that J* is a projective
resolution.

Proposition 4.5.3 is a particular case of the following.

Proposition 4.5.4. Assume J is cogenerating. Then for any X* € C*(C),
there exists Y € CT(J) and a quasi-isomorphism X* — Y ".

Injective resolutions

In this section, C denotes an abelian category and Z; its full additive subcat-
egory consisting of injective objects. We shall asume

(4.24) the abelian category C admits enough injectives.

In other words, the category Z¢ is cogenerating.
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Proposition 4.5.5. Let f*: X" — I° be a morphism in CT(C). Assume
I belongs to CT(Ze) and X * is exact. Then f* is homotopic to 0.

Proof. Consider the diagram:

)(k—2 )(k—l )(k )(k+1

£

Ik72 ]kfl Ik ]k+1

We shall construct by induction morphisms s* satisfying:
fF=s"odk +ditosh.

For j << 0, s = 0. Assume we have constructed the s/ for j < k. Define
g* = f¥ —d¥ ' o s*. One has

gkod];{1 = fkodlﬁ(_l—d];_loskodlﬁ(_l
k  gk—1 k—1 _ pk—1 k—1 _ gk—2 _ k-1
ffody —dj  off 4+dj od; "os
= 0.

Hence, g* factorizes through X*/Im d?{l. Since the complex X ° is exact,
the sequence 0 — X*/Imdf ' — X**+!is exact. Consider

0— X*/Imdy ' —— X**!

k+1

[k
The dotted arrow may be completed by Proposition 4.3.2. q.e.d.

Corollary 4.5.6. Let I1° € C™(Z¢) and assume I° is exact. Then I° is
homotopic to 0.

Proof. Apply the result of Proposition 4.5.5 with X* = I* and f = idy.
q.e.d.

Proposition 4.5.7. (i) Let f: X — Y be a morphism inC, let 0 - X —
X* be a resolution of X and let 0 — Y — J° be a complex with the
J¥’s injective. Then there exists a morphism f°: X° — J° making
the diagram below commutative:

(4.25) 0—X—>X°

1

0—Y——J°
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(ii) The morphism f* in C(C) constructed in (i) is unique up to homotopy.

Proof. (i) Let us denote by dx (resp. dy) the differential of the complex X *°
(resp. J°), by dy' (resp. dy') the morphism X — X (resp. Y — J°) and
set f~1=f.

We shall construct the f™’s by induction. Morphism f° is obtained by
Proposition 4.3.2. Assume we have constructed f° ..., f". Let g" = d% o
f* X" — J**1. The morphism ¢" factorizes through A" : X"/Imdy ' —
JrL Since X° is exact, the sequence 0 — X"/Imdy ' — X" is exact.
Since J"'! is injective, A" extends as fmt!: Xt — gt
(ii) We may assume f = 0 and we have to prove that in this case f° is
homotopic to zero. Since the sequence 0 — X — X ° is exact, this follows
from Proposition 4.5.5 (i), replacing the exact sequence 0 — Y — J* by the
complex 0 — 0 — J"*. q.e.d.

4.6 Derived functors

Let C be an abelian category satisfying (4.24). Recall that Zo denotes the
full additive subcategory of consisting of injective objects in C. We look at

the additive category K*(Z¢) as a full subcategory of the additive category
K*(C).

Theorem 4.6.1. Assume (4.24). There exists a functor \: C — K*(Z¢) and
an isomorphism of functors H(*) o X\ ~ ide. Moreover, H'(*)o X ~ 0 for
J#0.

Proof. (i) Let X € C and let Iy € CT(Z¢) be an injective resolution of
X. The image of Iy in K*(C) is unique up to unique isomorphism, by
Proposition 4.5.7.

Indeed, consider two injective resolutions Iy and Jy of X. By Propo-

sition 4.5.7 applied to idy, there exists a morphism f°: Iy — Jy making
the diagram (4.25) commutative and this morphism is unique up to homo-
topy, hence is unique in K*(C). Similarly, there exists a unique morphism
g :Jy = Iy in KT(C). Hence, f* and g° are isomorphisms inverse one to
cach other. One defines A(X) as the image of Iy in K*(C).
(i) Let f: X — Y be a morphism in C, let Iy and Iy be injective resolutions
of X and Y respectively, and let f°: Iy — Iy be a morphism of complexes
such as in Proposition 4.5.7. Then the image of f* in Hom. ;. (Ix,Iy)
does not depend on the choice of f* by Proposition 4.5.7. In particular,
we get that if g: Y — Z is another morphism in C and I is an injective
resolutions of Z, then g* o f* = (go f)° as morphisms in K*(Z¢). One
defines \(f) as the image of f* in K*(C).
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q.e.d.

Let F': C — C' be a left exact functor of abelian categories and recall that
C satisfies (4.24). Consider the functors

Hn

cA KNI LK) LS e
Definition 4.6.2. One sets
(4.26) R'F=H"oFo)\
and calls R"F' the n-th right derived functor of F'.

By its definition, the receipt to construct R"F(X) is as follows:

e choose an injective resolution Iy of X, that is, construct an exact
sequence 0 — X — Iy with Iy € CT(Z¢),

e apply F' to this resolution,
e take the n-th cohomology.
In other words, R"F(X) ~ H"(F(Iy)). Note that
e R"F is an additive functor from C to C’,
e R"F(X

0 for n < 0 since I%, = 0 for j < 0,

X

12

F(X) since F' being left exact, it commutes with kernels,

2

(X) =~
"F(X)
e R"F(X)~0 for n # 0 if F is exact,
e R"F(X) ~0forn # 0if X is injective, by the construction of R"F(X).

Definition 4.6.3. An object X of C such that R¥F(X) ~ 0 for all k > 0 is
called F-acyclic.

Hence, injective objects are F-acyclic for all left exact functors F.

Theorem 4.6.4. Let 0 — X' L5 X & X" = 0 be an exact sequence in C.
Then there exists a long exact sequence:

0= F(X)—= F(X)—= = RFX) = RF(X)— RF(X") —
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Sketch of the proof. One constructs an exact sequence of complexes 0 —
X" = X* — X"”" — 0 whose objects are injective and this sequence is

quasi-isomorphic to the sequence 0 — X’ L x4 X" 5 0in C(C). Since
the objects X" are injective, we get a short exact sequence in C(C’):

0= F(X'") = F(X') = F(X"") =0
Then one applies Theorem 4.4.8. q.e.d.

Definition 4.6.5. Let J be a full additive subcategory of C. One says that
J is F-injective if:

(i) J is cogenerating,

(ii) for any exact sequence 0 - X’ — X — X" - 0inCwith X' € J,X €
J, then X" € 7,

(iii) for any exact sequence 0 — X' — X — X” — 0 in C with X’ € 7, the
sequence 0 — F(X') — F(X) — F(X") — 0 is exact.

By considering C°P, one obtains the notion of an F-projective subcategory,
F being right exact.

Lemma 4.6.6. Assume J is F-injective and let X € C*(J) be a complex
qis to zero (i.e. X° is exact). Then F(X ") is qis to zero.

Proof. We decompose X ° into short exact sequences (assuming that this
complex starts at step 0 for convenience):

0= X" X'=22">0
02" =+ X*= 27220
0= 2" X" 52" =0
By induction we find that all the Z7’s belong to 7, hence all the sequences:
0— F(Z" ) = F(X") = F(Z") =0
are exact. Hence the sequence
0— F(X% = F(XY — -

is exact. q.e.d.
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Theorem 4.6.7. Assume J is F-injective and contains the category Zc of
injective objects. Let X € C and let 0 — X — Y° be a resolution of X
with Y° € CH(J). Then for each n, there is an isomorphism R"F(X) ~
H"(F(Y")).

In other words, in order to calculate the derived functors R"F(X), it is
enough to replace X with a right [J-resolution.

Proof. Consider a right [J-resolution Y* of X and an injective resolution I°
of X. By the result of Proposition 4.5.7, the identity morphism X — X
will extend to a morphism of complexes f*:Y® — I° making the diagram
below commutative:

0—X—Y*

|

0—X—1T".

Define the complex K* = Mc(f "), the mapping cone of f°. By the hypoth-
esis, K* belongs to CT(7) and this complex is gis to zero by Corollary 4.4.9.
By Lemma 4.6.6, F(K ") is qis to zero.

On the other-hand, F(Mc(f)) is isomorphic to Mc(F(f)), the mapping
cone of F(f): F(J*) — F(I"). Applying Theorem 4.4.8 to this sequence,
we find a long exact sequence

e HYW(F(J")) = HY(F(I")) = H"(F(K")) — - -
Since F(K*) is qis to zero, the result follows. q.e.d.

Example 4.6.8. Let F': C — C’ be a left exact functor and assume that C
admits enough injecives.

(i) The category Z¢ of injective objects of C is F-injective.

(ii) Denote by Zr the full subcategory of C consisting of F-acyclic objects.
Then Zr contains Z¢, hence is cogenerating. It easily follows from Theo-
rem 4.6.4 that conditions (ii) and (iii) of Definition 4.6.5 are satisfied. Hence,
Ir is F-injective.

Theorem 4.6.9. Let F': C — C' and G: C' — C" be left exact functors of
abelian categories and assume that C and C' have enough injectives.

(i) Assume that G is exact. Then R/(GoF)~Go R'F.

(ii) Assume that F is exact. There is a natural morphism R/(G o F) —
(RIG) o F.
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(iii) Let X € C and assume that R7F(X) ~ 0 for j > 0 and that F sends the
injective objects of C to G-acyclic objects of C'. Then R(G o F)(X) =~
(B G)(F(X)).

Proof. For X € C, let 0 — X — Iy be an injective resolution of X. Then
RI(Go F)(X)~ H/(Go F(Iy)).

(i) If G is exact, H/(G o F(Iy)) is isomorphic to G(H(F(Iy)).

(ii) Consider an injective resolution 0 — F(X) — Jz x) of F(X). By the
result of Proposition 4.5.7, there exists a morphism F(I3) — Jg . Ap-
plying G we get a morphism of complexes: (G o I')(Iy) — G(Jzy)). Since
HI((Go F)(Iy)) = R(G o F)(X) and H'(G(Jpx))) = R'G(F(X)), we get
the result.

(iii) Denote by Zg the full additive subcategory of C’ consisting of G-acyclic
objects (see Example 4.6.8). By the hypothesis, F(Iy) is qis to F(X) and
belongs to C*(Zg). Hence RIG(F(X)) ~ HI(G(F(Iy))) by Theorem 4.6.7
and H'(G(F(Iy))) ~ R/(G o F)(X). q.e.d.

Derived bifunctor

Let F: C x C' — C” be a left exact additive bifunctor of abelian categories.
Assume that C and C’ admit enough injectives. For X € C and Y € C’, one
can thus construct (R/F (X, +))(Y) and (R7F(+,Y))(X).

Theorem 4.6.10. Assume that for each injective object I € C the functor
F(I,+): C" — C" is exact and for each injective object I' € C' the functor
F(«,I"): C = C" is exact. Then, for j € Z, X € C andY € C', there is an
isomorphism, functorial in X andY: (R7F(X, *))(V) ~ (R F(+,Y))(X)

Proof. Let 0 - X — Iy and 0 — Y — Iy be injective resolutions of X and
Y, respectively. Consider the double complex:

0 0 0
| | |

0 0 F(I%,Y) — F(IL,Y) —
| l J

0—F(X, Iy) — F(%, Iy) — F(Ix,Iy) —

l | |

0—F(X,Iy) — F(I}, Iy) — F(Ix,Iy) —

| | l
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The cohomology of the first row (resp. column) calculates RFF(« Y )(X)
(resp. RFF(X, «)(Y)). Since the other rows and columns are exact by the
hypotheses, the result follows from Theorem 4.4.10. q.e.d.

Assume that C has enough injectives and enough projectives. Then one
can define the j-th derived functor of Hom (X, «) and the j-th derived func-
tor of Hom,(+,Y’). By Theorem 4.6.10 there exists an isomorphism

R'Hom,(X, *)(Y) ~ R’Hom,(*,Y)(X)

functorial with respect to X and Y. Hence, if C has enough injectives or
enough projectives, we can denote by the same symbol the derived functor
either of the functor Hom (X, «) or of the functor Hom,(+,Y).

A similar remark applies to the bifunctor ®,: Mod(A°?) x Mod(A) —
Mod(k).

Definition 4.6.11. (i) If C has enough injectives or enough projectives,
one denotes by Extjc( +, *) the j-th right derived functor of Hom..

(ii) For a ring A, one denotes by Tor]A(-, *) the left derived functor of
. ®A ..

Hence, the derived functors of Hom , are calculated as follows. Let X,Y €
C. If C has enough injectives, one chooses an injective resolution Iy of Y and
we get

(4.27) Ext)(X,Y) =~ H/(Hom,(X, Iy)).

If C has enough projectives, one chooses a projective resolution Py of X and
we get

(4.28) Ext’ (X,Y) =~ H/(Hom(Py,Y)).

If C admits both enough injectives and projectives, one can choose to use
either (4.27) or (4.28). When dealing with the category Mod(A), projective
resolutions are in general much easier to construct.

Similarly, the derived functors of ®, are calculated as follows. Let N &
Mod(A°P) and M € Mod(A). One constructs a projective resolution Py of
N or a projective resolution Py, of M. Then

Tor]‘A(N7 M)~ H 7 (Py®, M)~ H(N®,Py).

In fact, it is enough to take flat resolutions instead of projective ones.
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4.7 Koszul complexes

In this section, we do not work in abstract abelian categories but in the
category Mod(A), for a non necessarily commutative k-algebra A.

If L is a finite free k-module of rank n, one denotes by /\j L the k-module
consisting of j-multilinear alternate forms on the dual space L* and calls it
the j-th exterior power of L. (Recall that L* = Hom, (L, k).)

Note that A' L ~ L and A" L ~ k. One sets \" L = k.
If (e1,...,e,) is a basis of L and I = {i; < --- <i;} C {1,...,n}, one
sets

ejzeil/\'--/\eij.

For a subset I C {1,...,n}, one denotes by |/| its cardinal. Recall that:

J
/\ L is free with basis {e;, A+ Ae;1 <ip <ip<---<ij <n}.

Ifiy,..., 4, belong to the set (1,...,n), one defines e;, A---Ae;, by reducing
to the case where i1 < --- < 7;, using the convention e; A e; = —e; A e;.

Let M be an A-module and let ¢ = (¢1, ..., ¢,) be n endomorphisms of
M over A which commute with one another:

(i, ] =0, 1 <i,j<n.
(Recall the notation [a,b] := ab — ba.) Set MW = M @ A’k". Hence

M®© = M and M™ ~ M. Denote by (ei,...,e,) the canonical basis of k.
Hence, any element of M) may be written uniquely as a sum

m = Zm1®61.

=3

One defines d € Hom , (MW, MU+D) by:
dm ®ej) = ngi(m) ®e; Ner
i=1

and extending d by linearity.

Lemma 4.7.1. One has dod = 0.
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Proof. Let m ® ey € MY, Using the commutativity of the ¢;’s one gets

d*m = ZZgoko%(m)@ek/\ei/\eJ

k=1 i=1
= Z wrowi(m)®(exr Ne;+e; Nep) ANey = 0.

1<i<k<n
q.e.d.

Hence we get a complex, called a Koszul complex and denoted K * (M, ¢):
0— MO L .. M .

When n = 1, the cohomology of this complex gives the kernel and cokernel
of ¢1. More generally,

HY(K"(M,p)) ~ Kerp;Nn...NnKergp,,
HY(K™(M, ) = M/(p1(M)+ -+ pn(M)).

Set ¢ = {¢1,...,pn_1} and denote by d’ the differential in K ° (M, ¢'). Then
, defines a morphism

(4.29) On: K (M, ) — K* (M, )

Lemma 4.7.2. The complex K* (M, p)[1] is isomorphic to the mapping cone
of —¢n.
Proof. ! Consider the diagram

MC(&HV 7’ MC(&n)p—H

M
P L AP+ l

KPJrl(M’ 90) T)Kp+2(Ma 80)

drt

given explicitly by:

(MO N k=) @ (M e APk (M oAkt @ (M@ AP k)

—d 0
—pn d

id ®(id ®enA) id ®(id ®en A)

M ® /\P+1 kn M ® /\p+2 kn

!The proof may be skipped
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Then

dla®@e;+b@ek) =—d(a®ey) + (d(b®ek) — @nla) ®ey),
Na®er+b®Reg)=a®e;+bRe, Aeg.

(i) The vertical arrows are isomorphisms. Indeed, let us treat the first one.
It is described by:

(430) ZaJ(X)eJ—i—ZbK@eK'—)ZaJ(X)eJ—i—ZbK@en/\eK
J K J K

with |J| = p+1 and |K| = p. Any element of M @ A"™ k" may uniquely be
written as in the right hand side of (4.30).
(ii) The diagram commutes. Indeed,

MNHodh (a®e;+bReg) =—d(a®es) +e, Nd(bReg) — pn(a) e, Aey
=—d(a®ey)—d(bRe, Nex) — pn(a) Re, Aey,
FloXN(a@ej+b@eg) = —dla®e; +b®@e, Aek)
=—d(a®ey) —pp(a)@e, Ney—d' (bRe, Neg).
q.e.d.

Theorem 4.7.3. There exists a long exact sequence in Mod(A):
(431) = Hj(K. (M7 90,)) 90_71) Hj(K. (M7 90/)) — Hj—H(K. (Mv 90)) —
Proof. Apply Lemma 4.7.2 and the long exact sequence (4.11). q.e.d.

Definition 4.7.4. (i) If for each j, 1 < j < n, ¢, is injective as an endo-
morphism of M/(p1(M) + --- + p;—1(M)), one says (¢1,...,¢,) is a
regular sequence.

(ii) Ifforeach j, 1 < j <n, ¢; is surjective as an endomorphism of Ker ;N
...NKery,_q, one says (¢1,...,py) is a coregular sequence.

Corollary 4.7.5. (i) Assume (¢1,...,0n) is a reqular sequence. Then
HI(K* (M, ) >0 for j #n.

(i) Assume (@1, ..., pn) is a coreqular sequence. Then H'(K* (M, p)) ~ 0
for 5 #0.

Proof. Assume for example that (1, ..., ¢,) is a regular sequence, and let us
argue by induction on n. The cohomology of K * (M, ¢) is thus concentrated
in degree n — 1 and is isomorphic to M /(o1 (M) + -+ + ¢,_1(M)). By the
hypothesis, ¢, is injective on this group, and Corollary 4.7.5 follows. q.e.d.
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Second proof. Let us give a direct proof of the Corollary in case n = 2 for
coregular sequences. Hence we consider the complex:

O MY Mx MY M=o

where d(x) = (¢1(x), p2(x)), d(y,z) = w2(y) — p1(2) and we assume ; is
surjective on M, ¢q is surjective on Ker ¢;.

Let (y,z) € M x M with ¢o(y) = ¢1(2). We look for x € M solution
of p1(x) =y, wa(x) = z. First choose ' € M with ¢1(2') = y. Then
p20p01(2) = 2(y) = 1(2) = p1owa(a’). Thus ¢1(z —¢2(2')) = 0 and there
exists t € M with p1(t) =0, ¢a(t) = z—¢ao(2'). Hencey = ¢y (t+2'), z=
ot + ') and = = t + 2’ is a solution to our problem. q.e.d.

Example 4.7.6. Let k be a field of characteristic 0 and let A = k[xy, ..., z,].
(i) Denote by ;- the multiplication by z; in A. We get the complex:

0= A0 L .5 4 0

where:
n
d(ZaI ®er) = ZZ% car®e; Ner.
I j=1 1
The sequence (x1-,...,2,) is a regular sequence in A, considered as an A-

module. Hence the Koszul complex is exact except in degree n where its
cohomology is isomorphic to k.

(ii) Denote by 0; the partial derivation with respect to x;. This is a k-linear
map on the k-vector space A. Hence we get a Koszul complex

0— AO L. 4 4 g

where:
d(z ary ®6]) = Z Z aj(a[) X €; VAN €r.
I j=1 T
The sequence (0y-,...,0,) is a coregular sequence, and the above complex

is exact except in degree 0 where its cohomology is isomorphic to k. Writing
dx; instead of e;, we recognize the “de Rham complex”.

Example 4.7.7. Let k be a field of characteristic 0 and let M = k[z,y].
Consider the sequence ¢ = (1, @2) with @1 = z- and ¢y = 9,. The sequence
is neither regular nor coregular. However, applying Theorem 4.7.3, one
immediately gets that H/(K " (M, )) is 0 for j # 1 and is isomorphic to k
for j = 1.
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Example 4.7.8. Let k be a field and let A =k[z,y], M =k ~ A/x A+ yA
and let us calculate the k-modules ExtjA(M ,A). Since injective resolutions
are not easy to calculate, it is much simpler to calculate a free (hence, pro-
jective) resolution of M. Since (z,y) is a regular sequence of endomorphisms
of A (viewed as an A-module), M is quasi-isomorphic to the complex:

M":0—=5A5 A5 A0,

where u(a) = (ya, —wa), v(b,c) = zb + yc and the module A on the right
stands in degree 0. Therefore, Ext’, (M, N) is the j-th cohomology object of
the complex Hom ,(M*, N), that is:

0= NSNS N oo,

where v" = Hom (v, N), v/ = Hom (u, N') and the module N on the left stands
in degree 0. Since v'(n) = (zn,yn) and «'(m,l) = ym — xl, we find again a
Koszul complex. Choosing N = A, its cohomology is concentrated in degree
2. Hence, EXtJA(M, A) ~0 for j # 2 and ~ k for j = 2.

Example 4.7.9. Let W = W, (k) be the Weyl algebra introduced in Ex-
ample 1.2.2, and denote by -0; the multiplication on the right by 9;. Then
(+O1,...,:0p) is a regular sequence on W (considered as an W-module) and
we get the Koszul complex:

0= WO L. 5w 0

where:

(S(ZCL[@GI) :ZZCL]'aj®6j/\€[.
j=1 1

1

This complex is exact except in degree n where its cohomology is isomorphic
to k[z] (see Exercise 4.9).

Remark 4.7.10. One may also encounter co-Koszul complexes. For I =
(i1,...,1x), introduce

ejLQIZ{O 1f]¢{217azk}

(—1)l+1€[[ = (—1)l+162'1 VAN é’;l VAN €iy, if@il =€

where e;, A... A€, A...\e;, means that e; should be omitted in e;; A...Ae;,.

Define ¢ by:

d(m®er) = Z pj(m)e;ler.



86 CHAPTER 4. ABELIAN CATEGORIES

Here again one checks easily that § o 6 = 0, and we get the complex:
Ke(M,@):0— M™% ... MO 0,

This complex is in fact isomorphic to a Koszul complex. Consider the iso-
morphism

x /j\k"l)n/_\Jk"

which associates e;m @ e; to m @ ey, where I = (1,...,n)\ I and ¢/ is the
signature of the permutation which sends (1,...,n) to I U (any i € I is
smaller than any j € I). Then, up to a sign, * interchanges d and J.

De Rham complexes

Let E be a real vector space of dimension n and let U be an open subset of
E. Denote as usual by C*(U) the C-algebra of C-valued functions on U of
class C*. Recall that Q'(U) denotes the C>(U)-module of C*-functions on
U with values in E* @, C ~ Homy(£, C). Hence

OLU) ~ E* ®, C=(U).

For p € N, one sets
p
o) = AQ'U)
p

~ (\E") @ C™(U).

(The first exterior product is taken over the commutative ring C*°(U) and
the second one over R.) Hence, Q°(U) = C>*(U), QP(U) = 0 for p > n and
Q*(U) is free of rank 1 over C*°(U). The differential is a C-linear map

d: C™(U) — QY(U).

The differential extends by multilinearity as a C-linear map d: QP(U) —
QPTY(U) satisfying

(4.32) ¢ =0,
' d(wy A ws) = dwy A ws + (—)Pwy A dws for any wy € QP(U).

We get a complex, called the De Rham complex, that we denote by DR(U):

(4.33) DR(U) :=0— Q'(U) % --- = Q"(U) — 0.



Exercises to Chapter 3 87

Let us choose a basis (eq,...,e,) of E and denote by z; the function which,
tox =31, x-e € E, associates its i-th cordinate z;. Then (dz,...,dz,)
is the dual basis on E* and the differential of a function ¢ is given by

dp = i Oy dx;.
i=1

where 0;p := a_go By its construction, the Koszul complex of (0y,...,0,)
x

acting on C*(U )Zis nothing but the De Rham complex:
K* (™), (d,...,0,)) =DR(U).

Note that H°(DR(U)) is the space of locally constant functions on U, and
therefore is isomorphic to C#*“(Y) where #cc(U) denotes the cardinal of the
set of connected components of U. Using sheaf theory, one proves that all
cohomology groups H’(DR(U)) are topological invariants of U.

Holomorphic De Rham complexes

Replacing R" with C", C*°(U) with O(U), the space of holomorphic functions
on U and the real derivation with the holomorphic derivation, one constructs
similarly the holomorphic De Rham complex.

Example 4.7.11. Let n = 1 and let U = C\ {0}. The holomorphic De
Rham complex reduces to

0— O Z oW) —o.

Its cohomology is isomorphic to C in dimension 0 and 1.

Exercises to Chapter 4

Exercise 4.1. Prove assertion (iv) in Proposition 4.2.3, that is, prove that
for a ring A and a set I, the two functors [[ and € from Fct(Z, Mod(A)) to
Mod(A) are exact.

Exercise 4.2. Consider two complexes in an abelian category C: X| —
X7 — X and X} — Xy — X/. Prove that the two sequences are exact if
and only if the sequence X| & X) — X; & Xo — X{ & X/ is exact.
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Exercise 4.3. (i) Prove that a free module is projective.

(i) Prove that a module P is projective if and only if it is a direct summand
of a free module (i.e., there exists a module K such that P & K is free).
(iii) An A-module M is flat if the functor « ®, M is exact. (One defines
similarly flat right A-modules.) Deduce from (ii) that projective modules are
flat.

Exercise 4.4. If M is a Z-module, set MY = Hom (M, Q/Z).

(i) Prove that Q/Z is injective in Mod(Z).

(ii) Prove that the map Hom (M, N) — Hom (N, M) is injective for any
M, N € Mod(Z).

(iii) Prove that if P is a right projective A-module, then PV is left A-injective.
(iv) Let M be an A-module. Prove that there exists an injective A-module
I and a monomorphism M — I.

(Hint: (iii) Use formula (1.12). (iv) Prove that M ~— M"Y is an injective
map using (ii), and replace M with MVV.)

Exercise 4.5. Let C be an abelian category which admits inductive limits
and such that filtrant inductive limits are exact. Let {X;};c; be a family
of objects of C indexed by a set I and let ¢y € I. Prove that the natural
morphism X;, — @,.; X; is a monomorphism.

Exercise 4.6. Let C be an abelian category.

(i) Prove that a complex 0 — X — Y — Z is exact iff and only if for
any object W € C the complex of abelian groups 0 — Hom (W, X) —
Hom ,(W,Y) — Hom (W, Z) is exact.

(i) By reversing the arrows, state and prove a similar statement for a complex
X=Y —=7Z—=0.

Exercise 4.7. Let C be an abelian category. A square is a commutative
diagram:

vy

, lg
x-1.z

A square is Cartesian if moreover the sequence 0 — V — X xY — 7 is
exact, that is, if V'~ X xz Y (recall that X x ;Y = Ker(f —g), where f—g:
X®Y — Z). A square is co-Cartesian if the sequence V. — X @Y — Z — 0
is exact, that is, if Z ~ X @ Y (recall that X @, Y = Coker(f’ — ¢'), where
ff—=¢d:V-o>XxY)

(i) Assume the square is Cartesian and f is an epimorphism. Prove that f’
is an epimorphism.

g
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(ii) Assume the square is co-Cartesian and f’ is a monomorphism. Prove
that f is a monomorphism.

Exercise 4.8. Let C be an abelian category and consider a commutative
diagram of complexes

0 0 0
T
0— X! — Xog— X/
!
0— X, — X, — X/
bl
0—= X} —= Xo— X/

Assume that all rows are exact as well as the second and third column. Prove
that all columns are exact.

Exercise 4.9. Let k be a field of characteristic 0, W := W, (k) the Weyl
algebra in n variables.

(i) Denote by z;- : W — W the multiplication on the left by x; on W (hence,
the z;-’s are morphisms of right W-modules). Prove that ¢ = (x;-,...,2,")
is a regular sequence and calculate H7 (K * (W, ¢)).

(ii) Denote -0; the multiplication on the right by d; on W. Prove that ¢ =
(-01,...,-0,) is a regular sequence and calculate H’ (K * (W, 1))).

(iii) Now consider the left W, (k)-module O := k[xy, ..., z,] and the k-linear
map 0; : O — O (derivation with respect to x;). Prove that A = (04, ...,0,)
is a coregular sequence and calculate H? (K * (O, \)).

Exercise 4.10. Let A = W5(k) be the Weyl algebra in two variables. Con-
struct the Koszul complex associated to ¢ = -x1, o = -0y and calculate its
cohomology.

Exercise 4.11. Let k be a field, A = k[z,y] and consider the A-module
M = @, k[z]t', where the action of z € A is the usual one and the action
of y € A'is defined by y - 2"t/*! = 2™t/ for j > 1, y - 2"t = 0. Define the
endomorphisms of M, ¢1(m) = x - m and py(m) = y - m. Calculate the
cohomology of the Kozsul complex K ° (M, ¢).
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Chapter 5

Localization

Consider a category C and a family S of morphisms in C. The aim of localiza-
tion is to find a new category Cs and a functor () : C — Cs which sends the
morphisms belonging to S to isomorphisms in Cg, (Q),Cs) being “universal”
for such a property.

In this chapter, we shall construct the localization of a category when
S satisfies suitable conditions and the localization of functors. The reader
shall be aware that in general, the localization of a U-category C is no more
a U-category (see Remark 5.1.15).

Localization of categories appears in particular in the construction of
derived categories.

A classical reference is [11].

5.1 Localization of categories
Let C be a category and let S be a family of morphisms in C.

Definition 5.1.1. A localizaton of C by § is the data of a category Cs and
a functor @) : C — Cgs satisfying:

(a) for all s € S, Q(s) is an isomorphism,

(b) for any functor F' : C — A such that F'(s) is an isomorphism for all s € S,
there exists a functor Fs : Cs — A and an isomorphism F' ~ Fso @,

c—-t-
Cs

91
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(c) if Gy and Gq are two objects of Fct(Cs, A), then the natural map
(5.1)  Hom g ey (G1,G2) = Hom o 4)(G10Q,G20Q)
is bijective.

Note that (c¢) means that the functor o@ : Fct(Cs, A) — Fct(C, A) is fully
faithful. This implies that Fs in (b) is unique up to unique isomorphism.

Proposition 5.1.2. (i) If Cs exists, it is unique up to equivalence of cat-
egories.

(ii) If Cs exists, then, denoting by S°P the image of S in C°P by the functor
op, (C°P)ser exists and there is an equivalence of categories:

(Cs)*P = (C?P)ser.

Proof. (i) is obvious.

(ii) Assume Cg exists. Set (C°P)ser := (Cs)°P and define QP : CP? — (CP)sop
by Q°P = opo @ oop. Then properties (a), (b) and (c) of Definition 5.1.1 are
clearly satisfied. q.e.d.

Definition 5.1.3. One says that S is a right multiplicative system if it
satisfies the axioms S1-S4 below.

S1 Forall X € C,idx € S.
S2 Forall feS, g€ S, if go f exists then go f € S.

S3 Given two morphisms, f: X — Y and s : X — X’ with s € S, there
exist t:Y - Y and g: X' - Y’ witht € S and go s = to f. This can
be visualized by the diagram:

X' = X/ Y
A
ST ST t

S4 Let f,g : X — Y be two parallel morphisms. If there exists s € S :
W — X such that f os = gos then there existst € S : Y — Z such
that t o f =t o g. This can be visualized by the diagram:

N A
W—""-oX——=Y ~7

g
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Notice that these axioms are quite natural if one wants to invert the
elements of §. In other words, if the element of S would be invertible, then
these axioms would clearly be satisfied.

Remark 5.1.4. Axioms S1-S2 asserts that § is the family of morphisms of

a subcategory S of C with Ob(S) = Ob(C).

Remark 5.1.5. One defines the notion of a left multiplicative system S
by reversing the arrows. This means that the condition S3 is replaced by:
given two morphisms, f : X — Y and t: Y’ — Y, with t € S, there exist
s: X' - Xandg: X' — Y with s € Sand tog = fos. This can be
visualized by the diagram:

Y’ = X'y

AT

and S4 is replaced by: if there exists t € S: Y — Z such that to f =tog
then there exists s € § : W — X such that f o s = gos. This is visualized
by the diagram

s 4 t
W ........... >'XTE YﬁZ

In the literature, one often calls a multiplicative system a system which is
both right and left multiplicative.

Many multiplicative systems that we shall encounter satisfy a useful prop-
erty that we introduce now.

Definition 5.1.6. Assume that S satisfies the axioms S1-S2 and let X € C.
One defines the categories Sx and S¥ as follows.

) = {s: X > X';s€S8}

Homgx((s : X = X'), (s : X = X")) = {h: X' = X" hos=+"}
Ob(Sx) = {s: X' = X;s€ S}

Homsx((s:X’—>X),(3':X”—>X) = {h: X'=> X";s"oh =s}.

Proposition 5.1.7. Assume that S is a right (resp. left) multiplicative
system. Then the category S~ (resp. SY) is filtrant.

Proof. By reversing the arrows, both results are equivalent. We treat the
case of S¥.
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(a) Let s : X — X’ and s : X — X" belong to S. By S3, there exists
t: X' — X" and ¢ : X" — X" such that ' o8’ =tos, and t € S. Hence,
tos€ S by S2and (X — X”) belongs to S¥.

(b) Let s : X — X" and &' : X — X” belong to S, and consider two
morphisms f,g : X' — X", with fos = gos = s. By S4 there exists
t: X" —W,t e S Ssuchthatto f=tog. Hencetos' : X — W belongs to
SX. q.e.d.

One defines the functors:

ax:S*¥—=C (s: X = X)X,
Bx :S¥ =C (s: X' = X)— X"

We shall concentrate on right multiplicative system.

Definition 5.1.8. Let S be a right multiplicative system, and let X,Y €
Ob(C). We set

Hom, ., (X,Y)= lim  Hom,(X, Y').
(Y =y Hesy

Lemma 5.1.9. Assume that S is a right multiplicative system. Let Y € C
and let s : X — X' € 8. Then s induces an isomorphism

Hom .. (X', Y) =% Hom .. (X,Y).
CS CS

Proof. (i) The map os is surjective. This follows from S3, as visualized by
the diagram in which s,t, ¢ € S:

X/ s =Y
A

(ii)) The map os is injective. This follows from S4, as visualized by the
diagram in which s,t, ¢ € S:
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Using Lemma 5.1.9, we define the composition

(5.2) Homcg(X, Y) x Hong(Y7 Z) — Homcg(X7 Z)
as

lim Hom(X,Y’) x lig Hom,(Y, Z')

Y—Y’ Z—7!

~  lim (Hom(X,Y”) x lim Hom,(Y,Z"))
Y—Y’ Z— 7!

< lim (Hom(X,Y') x lim Hom,(Y", Z"))
Y—Y! Z— 7'

— lim lim Hom,(X, 2
Y=Y Z— 7/

~  lim Hom,(X, Z')
Z— 7'

Lemma 5.1.10. The composition (5.2) is associative.

The verification is left to the reader.

Hence we get a category Cs whose objects are those of C and morphisms
are given by Definition 5.1.8.

Let us denote by ()s : C = Cs the natural functor associated with

Hom (X,Y) =  lim  Hom/(X,Y").
(Y—Y")eSY

If there is no risk of confusion, we denote this functor simply by Q.
Lemma 5.1.11. Ifs: X — Y belongs to S, then Q(s) is invertible.
Proof. For any Z € Cj, the map Homcg(Y, Z) — Hom ¢, (X, Z) is bijective
by Lemma 5.1.9. q.e.d.

A morphism f : X — Y in Cs is thus given by an equivalence class of
triplets (Y, ¢, f)witht:Y - Y/ t € S and f': X — Y’ that is:

X—Y' ~—Y
I t
the equivalence relation being defined as follows: (Y’ t, f') ~ (Y", ¢, f") if
there exists (Y, ¢, f"') (¢,t/,t" € S) and a commutative diagram:

(5.3) Y
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Note that the morphism (Y, ¢, f') in C5 is Q(¢)~' o Q(/f’), that is,

(5.4) F=Q) o Q(f).

For two parallel arrows f,g: X = Y in C we have the equivalence
(5.5)Q(f) = Q(g) € C5 < thereexits s: Y =Y’ se€Swithsof=so0g.

The composition of two morphisms (Y’ ¢, f') : X — Y and (Z',s,¢') :
Y — Z is defined by the diagram below in which ¢,s, s € S:

X Ve Y g Z

Theorem 5.1.12. Assume that S is a right multiplicative system.
(i) The category Cs and the functor Q) define a localization of C by S.

(ii) For a morphism f: X —Y, Q(f) is an isomorphism in Cg if and only
if there exist g :' Y — Z and h : Z — W such that go f € S and
hogesS.

Notation 5.1.13. From now on, we shall write Cs instead of Cg. This is
justified by Theorem 5.1.12.

Remark 5.1.14. (i) In the above construction, we have used the property of
S of being a right multiplicative system. If S is a left multiplicative system,
one sets

Homcg(X, V)= lm Hom,(X')Y).
(X'—X)eSx

By Proposition 5.1.2 (i), the two constructions give equivalent categories.
(ii) If S is both a right and left multiplicative system,

Hom, (X,Y) =~ lim Hom, (X", Y”).
(X'—=X)eSx,(Y—Y")eSY

Remark 5.1.15. In general, Cs is no more a U-category. However, if one
assumes that for any X € C the category S¥ is small (or more generally,
cofinally small, which means that there exists a small category cofinal to it),
then Cs is a U-category, and there is a similar result with the Sx’s.
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5.2 Localization of subcategories

Proposition 5.2.1. Let C be a category, I a full subcategory, S a right
multiplicative system in C, T the family of morphisms in I which belong to

S.

(i) Assume that T is a right multiplicative system in Z. Then Iy — Cs is
well-defined.

(i1) Assume that for every f:Y — X, f €S, Y €Z, there ezists g : X —
W, W eI, withgof edS. Then T is a right multilplicative system
and Ir — Cs is fully faithful.

Proof. (i) is obvious.

(ii) It is left to the reader to check that 7 is a right multpiplicative system.
For X € Z, TX is the full subcategory of S* whose objects are the morphisms
s: X =Y withY € Z. By Proposition 5.1.7 and the hypothesis, the functor
TX — SX is cofinal, and the result follows from Definition 5.1.8. q.e.d.

Corollary 5.2.2. Let C be a category, I a full subcategory, S a right mul-

tiplicative system in C, T the family of morphisms in I which belong to S.

Assume that for any X € C there exists s : X — W with W € Z and s € S.
Then T is a right multpiplicative system and Zr is equivalent to Cs.

Proof. The natural functor Zr — Cg is fully faithful by Proposition 5.2.1 and
is essentially surjective by the assumption. q.e.d.

5.3 Localization of functors

Let C be a category, S a right multiplicative system in C and F': C — A a
functor. In general, F' does not send morphisms in S to isomorphisms in A.
In other words, F' does not factorize through Cs. It is however possible in
some cases to define a localization of F' as follows.

Definition 5.3.1. A right localization of F' (if it exists) is a functor Fs :
Cs — A and a morphism of functors 7 : F' — Fso() such that for any functor
G : Cs — A the map

(5.6) Hom p s 4y (Fs, G) = Hom oy o 4 (F,G 0 Q)

is bijective. (This map is obtained as the composition Hom Fet(Cs,A) (Fs,G) —

Hom gy e ) (Fs 0 Q.G 0 Q) = Hom ¢ 4 (F.G 0 Q).)
We shall say that F' is right localizable if it admits a right localization.
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One defines similarly the left localization. Since we mainly consider right
localization, we shall sometimes omit the word “right” as far as there is no
risk of confusion.

If (7, Fs) exists, it is unique up to unique isomorphisms. Indeed, Fjs is a
representative of the functor

G = Hom o 4)(F, G0 Q).

(This last functor is defined on the category Fct(Cs,.A) with values in Set.)

Proposition 5.3.2. Let C be a category, I a full subcategory, S a right
multiplicative system in C, T the family of morphisms in I which belong to
S. Let F:C — A be a functor. Assume that

(i) for any X € C there ezists s : X — W with W € Z and s € S,
(ii) for anyt € T, F(t) is an isomorphism.
Then F' is right localizable.

Proof. We shall apply Corollary 5.2.2.
Denote by ¢ : Z — C the natural functor. By the hypothesis, the local-
ization F7r of F o exists. Consider the diagram:

Denote by Lél a quasi-inverse of (o and set Fs := Fro Lél. Let us show that
Fs is the localization of F. Let G : Cs — A be a functor. We have the chain
of morphisms:

Hom g 4)(F, G 0 Qs) % Hom per(z)(F oL, GoQsou)
~ Hom Fct(I,A)(FT oQr,GouigoQr)
~ Hom p 7 4)(F7,Gog)
~ Hom Fct(C&A)(FT o Lél, G)
~ Hom g 4)(Fs, G).
We shall not prove here that A is an isomorphism. The first isomomorphism

above (after \) follows from the fact that Q7 is a localization functor (see
Definition 5.1.1 (c)). The other isomorphisms are obvious. q.e.d.
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Remark 5.3.3. Let C (resp. C’) be a category and S (resp. §’) a right
multiplicative system in C (resp. C’). One checks immediately that S x &’
is a right multiplicative system in the category C x C’ and (C x C')sxs' is
equivalent to Cs x Cg,. Since a bifunctor is a functor on the product C x (',
we may apply the preceding results to the case of bifunctors. In the sequel,
we shall write Fss instead of Fsysr.

Exercises to Chapter 5

Exercise 5.1. Let S be a right multiplicative system. One says that S is
saturated if it satisfies

S5 for any morphisms f: X — Y, ¢g:Y — Z and h : Z — W such that
go f and ho g belong to &, the morphism f belongs to S.

Prove that if § is saturated, a morphism f in C belongs to § if and only if
Q(f) is an isomorphism, where ) : C — Cs denotes, as usual, the localization
functor.

Exercise 5.2. Let C be a category, S a right multiplicative system. Let T
be the set of morphisms f : X — Y in C such that there exist g : ¥ — Z
and h: Z — W, with hogand go f in S.

Prove that T is a right saturated multiplicative system and that the
natural functor Cs — C7 is an equivalence.

Exercise 5.3. Let C be a category, S a right and left multiplicative system.
Prove that S is saturated if and only if forany f : X — Y, ¢g:Y — Z|
h:Z—-W,hogeSandgo feSimply g€ S.

Exercise 5.4. Let C be a category with a zero object 0, S a right and left
saturated multiplicative system.

(i) Show that Cs has a zero object (still denoted by 0).

(ii) Prove that Q(X) ~ 0 if and only if the zero morphism 0 : X — X belongs
to S.

Exercise 5.5. Let C be a category, S a right multiplicative system. Consider
morphisms f: X — Y and f/: X’ — Y’ in C and morphism o : X — X’
and f:Y — Y’ in Cs, and assume that f'’oa = o f (in Cs). Prove that
there exists a commutative diagram in C

XX, <X

4

Y =V, Y’
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with s and tin S, a = Q(s) ' o Q(’) and 8= Q(t)"' 0 Q(S).

Exercise 5.6. Let F': C — A be a functor and assume that C admits fimite
inductive limits and F' is right exact. Let & denote the set of morphisms s
in C such that F'(s) is an isomorphism.

(i) Prove that S is a right saturated multiplicative system.

(ii) Prove that the localized functor Fs : Cs — A is faithful.



Chapter 6

Triangulated categories

Triangulated categories play an increasing role in mathematics and this sub-
ject might deserve a whole book. However, we have restricted ourselves to
describe their main properties with the construction of derived categories in
mind.

Some references: [12], [22], [23], [29], [30], [31].

6.1 Triangulated categories

Definition 6.1.1. Let D be an additive category endowed with an auto-
morphism 7T (i.e., an invertible functor T': D — D). A triangle in D is a
sequence of morphisms:

(6.1) xLy %z

A morphism of triangles is a commutative diagram:

x-toy-9oz hopx)
al ﬁl ’Yt T(a)j
x Loy S Hopixy

Example 6.1.2. The triangle X Ly 2% 72N T(X) is isomorphic to the
triangle (6.1), but the triangle X iy %z T(X) is not isomorphic
to the triangle (6.1) in general.

Definition 6.1.3. A triangulated category is an additive category D en-
dowed with an automorphism 7" and a family of triangles called distinguished
triangles (d.t. for short), this family satisfying axioms TR0 - TR5 below.

101
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TRO

TR1

TR2

TR3

TRA4

TR5

CHAPTER 6. TRIANGULATED CATEGORIES

A triangle isomorphic to a d.t. is a d.t.
The triangle X =5 X — 0 — T(X)is ad.t.

For all f: X — Y there exists a d.t. X &Y — Z — T(X).

h

A triangle X Ly % z2 T(X)is a d.t. if and only if Y & Z 5

7(X) % (v is a dt.
Given two dt. X HV % 25 7(X) and X' 5 v S 22 2 1(X)

and morphisms a: X — X’ and f:Y — Y’ with f'oa = o f, there
exists a morphism v : Z — Z’ giving rise to a morphism of d.t.:

Xxtoy 2oz o)
al ﬁl V T(a)l]

f g v R
x Loy Loy,

(Octahedral axiom) Given three d.t.
xLyhz o1,
Y& 725X S T(Y),
X & 75y S 1T(X),

there exists a distinguished triangle Z’ % Y’ YX T(Z') making
the diagram below commutative:

(6.2) Xty -t z T(X)
id g ‘o id
Y
P iy S v T(X)
/ id v T
v
y ez Fox T(Y )z
h l id
7 Y X ~T(Z")

Diagram (6.2) is often called the octahedron diagram. Indeed, it can be
written using the vertexes of an octahedron.



6.1. TRIANGULATED CATEGORIES 103

Remark 6.1.4. The morphism v in TR 4 is not unique and this is the origin
of many troubles.

Remark 6.1.5. The category D°? endowed with the image by the contravari-
ant functor op : D — D°P of the family of the d.t. in D, is a triangulated
category.

Definition 6.1.6. (i) A triangulated functor of triangulated categories F' :
(D, T) — (D', T") is an additive functor which satisfies F o T ~T" o I’
and which sends distinguished triangles to distinguished triangles.

(ii) A triangulated subcategory D’ of D is a subcategory D’ of D which is
triangulated and such that the functor D' — D is triangulated.

(iii) Let (D, T) be a triangulated category, C an abelian category, F' : D — C
an additive functor. One says that F' is a cohomological functor if for
any d.t. X =Y — Z — T(X) in D, the sequence F(X) — F(Y) —
F(Z) is exact in C.

Remark 6.1.7. By TR3, a cohomological functor gives rise to a long exact
sequence:

(6.3) 5 F(X) = F(Y) = F(Z) —» F(T(X)) = - -

Proposition 6.1.8. (i) If X Ly %75 T(X) is a d.t. then go f=0.

(i) For any W € D, the functors Hom (W, ) and Hom (-, W) are coho-

mological.

Note that (ii) means that if o : W — Y (resp. ¢ : Y — W) satisfies
gow =0 (resp. po f =0), then ¢ factorizes through f (resp. through g).
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Proof. (i) Applying TR1 and TR4 we get a commutative diagram:

X4 x 0 T(X)

I

y 21>z T(X).

Then g o f factorizes through 0.
(ii) Let X =Y — Z — T(X) be a d.t. and let W € D. We want to
show that
Hom (W, X) 2% Hom (W, Y) £ Hom (W, 2)

is exact, i.e., : for all ¢ : W — Y such that gop = 0, there exists ¢y : W — X
such that ¢ = f o). This means that the dotted arrow below may be
completed, and this follows from the axioms TR4 and TR3.

w2 0 T(W)
Xy g ().
The proof for Hom (-, W) is similar. q.e.d.

Proposition 6.1.9. Consider a morphism of d.t.:

x Loy Sz hopx)
R
x' Loy S Hopx,

If a and B are isomorphisms, then so is 7.

Proof. Apply Hom (W, -) to this diagram and write X instead of Hom (W, X),
& instead of Hom (W, «), etc. We get the commutative diagram:

X Loy .z px)
dl A ﬁ\ T’(va)l
x Loy L g px,

—_—~—

The rows are exact in view of the preceding proposition, and &, 3, T(«), T(B)l
are isomorphisms. Therefore ¥ = Hom (W, ~) : Hom (W, Z) — Hom (W, Z")
is an isomorphism. This implies that v is an isomorphism by the Yoneda
lemma. q.e.d.
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Corollary 6.1.10. Let D' be a full triangulated category of D.

(i) Consider a triangle X Ly sz T(X) in D' and assume that this
triangle is distinguished in D. Then it is distinguished in D'.

(ii) Consider a d.t. X — Y — Z — T(X) in D, with X and Y in D'
Then there exists Z' € D' and an isomorphism Z ~ 7.

Proof. (i) There exists a d.t. X Ly sz 5 T(X)in D'. Then 7' is
isomorphic to Z by TR4 and Proposition 6.1.9.
(ii) Apply TR2 to the morphism X — Y in D'. q.e.d.

Remark 6.1.11. The proof of Proposition 6.1.9 does not make use of axiom
TR 5, and this proposition implies that TR 5 is equivalent to the axiom:
TR5: given f: X - Y and g : Y — Z, there exists a commutative diagram
(6.2) such that all rows are d.t.

By Proposition 6.1.9, one gets that the object Z given in TR2 is unique
up to isomorphism. However, this isomorphism is not unique, and this is the
source of many difficulties (e.g., glueing problems in sheaf theory).

6.2 Localization of triangulated categories

Definition 6.2.1. Let D be a triangulated category and let N' C Ob(D).
One says that A is a null system if it satisfies:

N1 0eWN,
N2 X € N if and only if T(X) € N,
N3ifX—-Y—>Z—-T(X)isadt. inDand X,Y € N then Z € N.

To a null system one associates a multiplicative system as follows. Define:
S={f: X =Y, thereexistsadt. X - Y — Z = T(X) with Z € N'}.

Theorem 6.2.2. (i) S is a right and left multiplicative system.

(ii) Denote as usual by Ds the localization of D by S and by Q the lo-
calization functor. Then Ds is an additive category endowed with an
automorphism (the image of T, still denoted by T ).

(iii) Define a d.t. in Ds as being isomorphic to the image by Q of a d.t. in
D. Then Dgs is a triangulated category.
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(iv) If X € N then Q(X) ~ 0.

(v) Let F' : D — D' be a functor of triangulated categories such that
F(X) >0 for any X € N. Then F factors uniquely through Q.

The proof is tedious and will not be given here.
Notation 6.2.3. We will write D/N instead of Dg.

Now consider a full triangulated subcategory Z of D. We shall write N NZ
instead of AN Ob(Z). This is clearly a null system in Z.

Proposition 6.2.4. Let D be a triangulated category, N a null system, T a
full triangulated category of D. Assume condition (i) or (ii) below

(i) any morphismY — Z withY € T and Z € N, factorizes asY — Z' —
Z with Z' e N NT,

(ii) any morphism Z —'Y withY € T and Z € N, factorizes as Z — Z' —
Y with Z' e NNT.

Then Z/(NNZI)— D/N is fully faithful.
Proof. We shall apply Proposition 5.2.1. We may assume (ii), the case (i)
being deduced by considering D°?. Let f : ¥ — X is a morphism in S
with Y € Z. We shall show that there exists g : X — W with W € I and
go f € S. The morphism f is embedded in ad.t. ¥ - X — Z — T(Y),
with Z € N. By the hypothesis, the morphism Z — T'(Y) factorizes through
an object Z' € N'NZ. We may embed Z' — T(Y) into a d.t. and obtain a
commutative diagram of d.t.:

y ! X Z——~T(Y)
lid vg L lid
YW —=2'—T(Y)

By TR4, the dotted arrow g may be completed, and Z’ belonging to N, this
implies that go f € S. q.e.d.

Proposition 6.2.5. Let D be a triangulated category, N a null system, T a
full triangulated subcategory of D, and assume conditions (i) or (ii) below:

(i) for any X € D, there exists a d.t. X =Y — Z — T(X) with Z € N
andY € T,

(i) for any X € D, there exists a d.t. Y — X — Z — T(X) with Z € N
andY € T.
Then Z/IN NZ — D/N is an equivalence of categories.

Proof. Apply Corollary 5.2.2. q.e.d.
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Localization of triangulated functors

Let F : D — D’ be a functor of triangulated categories, ' a null system in
D. One defines the localization of F' similarly as in the usual case, replacing
all categories and functors by triangulated ones. Applying Proposition 5.3.2,
we get:

Proposition 6.2.6. Let D be a triangulated category, N a null system, I a
full triangulated category of D. Let F' : D — D’ be a triangulated functor,
and assume

(i) for any X € D, there exists a d.t. X =Y — Z — T(X) with Z e N
and Y € Z,

(ii) foranyY e NNZ, F(Y)~0.
Then F' is right localizable.

One can define F)s by the diagram:

T D/N
I—=TI/INN FN

T

If one replace condition (i) in Proposition 6.2.6 by the condition

(i)’ for any X € D, there exists a d.t. ¥ - X — 7 — T(X) with Z e N
and Y € 7,

one gets that F' is left localizable.
Finally, let us consider triangulated bifunctors, i.e., bifunctors which are
additive and triangulated with respect to each of their arguments.

Proposition 6.2.7. Let D,N,Z and D', N',I' be as in Proposition 6.2.6.
Let F': D x D' — D" be a triangulated bifunctor. Assume:

(i) for any X € D, there exists a d.t. X =Y — Z — T(X) with Z ¢ N
andY €1

(i) for any X' € D', there exists a d.t. X' =Y — Z' — T(X') with
Z'e N andY' €T
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(iii) foranyY € Z andY' € Z'NN', F(Y,Y') ~ 0,
(iv) foranyY € ZNN andY' €Z', F(Y,Y') ~ 0.
Then F' is right localizable.

One denotes by Fia its localization.
Of course, there exists a similar result for left localizable functors by
reversing the arrows in the hypotheses (i) and (ii) above.

Exercises to Chapter 6

Exercise 6.1. Let D be a triangulated category and consider a commutative
diagram in D:

x Loy Sz o)
R

Xty Lop M),

Assume that T'(f) o i’ = 0 and the first row is a d.t. Prove that the second

row is also a d.t. under one of the hypotheses:
(i) for any P € D, the sequence below is exact:

Hom (P, X) — Hom ,(P,Y) — Hom (P, Z') — Hom (P, T(X)),

(ii) for any P € D, the sequence below is exact:
Hom ,(T'(Y), P) — Hom ,(T(X), P) — Hom(Z', P) — Hom (Y, P).

Exercise 6.2. Let D be a triangulated category and let X; — Y; — Z; —
T(X;) and Xo — Yy — Zy — T(X3) be two d.t. Show that X; & Xy, —
In particular, X > X @Y Y % T(X)is a d.t.

(Hint: Consider a d.t. X1 & Xy - V10 Y, - H — T(X;) @ T(X3) and
construct the morphisms H — Z; @ Z,, then apply the result of Exercise
6.1.)

Exercise 6.3. Let X L YV % 7z 5 T(X) be a d.t. in a triangulated
category.

(i) Prove that if A = 0, this d.t. is isomorphic to X - X & Z — Z RN T(X).
(i) Prove the same result by assuming now that there exists k : Y — X with
k’ o} f = ldX

(Hint: to prove (i), construct the morphism Y — X & Z by TR4, then use
Proposition 6.1.9.)
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Exercise 6.4. Let X L Y — Z — T(X) be a d.t. in a triangulated
category. Prove that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 6.5. Let D be a triangulated category, N a null system, and let
Y be an object of D such that Hom ,(Z,Y) ~ 0 for all Z € N. Prove that
Hom,(X,Y) = Homy, \(X,Y).

Exercise 6.6. Let f: X — Y be a monomorphism in a triangulated category
D. Prove that there exist Z € D and an isomorphism h: Y = X @& Z such
that the composition X — Y — X & Z is the canonical morphism.

Exercise 6.7. Let D be a triangulated category, N a null system, and let
Q: D — D/N be the canonical functor.

(i) Let f: X — Y be a morphism in D and assume that Q(f) =0 in D/N.
Prove that there exists Z € N such that f factorizes as X — Z — Y.

(ii) For X € D, prove that Q(X) ~ 0 if and only if there exists Y such that
X @Y € N and this last condition is equivalent to X ® TX € N.
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Chapter 7

Derived categories

In this chapter we construct the derived category of an abelian category C
and the right derived functor RF of a left exact functor F': C — C’ of abelian
categories.

The reader shall be aware that in general, the derived category DT (C) of
a U-category C is no more a U-category (see Remark 7.3.3).
Some references: [12], [19], [22], [23], [29], [30], [31].

7.1 The homotopy category K(C)

Let C be an additive category. Rcall that the homotopy category K(C) is

defined by identifying to zero the morphisms in C(C) homotopic to zero.
Also recall that if f : X — Y is a morphism in C(C), one defines its

mapping cone Mc(f), an object of C(C), and there is a natural triangle

a(f) ),

(7.1) Y () 292 xn) 2 v,

Such a triangle is called a mapping cone triangle. Clearly, a triangle in C(C)
gives rise to a triangle in the homotopy category K(C).

Definition 7.1.1. A distinguished triangle (d.t. for short) in K(C) is a
triangle isomorphic in K(C) to a mapping cone triangle.

Theorem 7.1.2. The category K(C) endowed with the shift functor [1] and
the family of d.t. is a triangulated category.

We shall not give the proof of this fundamental result here.

Notation 7.1.3. For short, we shall sometimes write X — Y — Z REN
instead of X — Y — Z — X|[1] to denote a d.t. in K(C).

111
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7.2 Derived categories

From now on, C will denote an abelian category.

Recall that if f : X — Y is a morphism in C(C), one says that f is
a quasi-isomorphism (a qis, for short) if H*(f) : H*(X) — H¥() is an
isomorphism for all k. One extends this definition to morphisms in K(C).

If one embeds f intoad.t. X 5 Y — Z =5, then f is a qis iff H*(Z) ~ 0
for all k£ € Z, that is, if Z is qis to 0.

Proposition 7.2.1. Let C be an abelian category. The functor H°: K(C) —
C is a cohomological functor.

Proof. Let X LY = Z =% be a d.t. Then it is isomorphic to X — Y 2%

Mec(f) LS X[1] *1, Since the sequence in C(C):

0—Y — Mc(f) > X[1] =0
is exact, it follows from Theorem 4.4.8 that the sequence
H*(Y) = HF(Mc(f)) — H(X)
is exact. Therefore, H*(Y) — H*(Z) — H*(X) is exact. q.e.d.

Corollary 7.2.2. Let 0 — X LY 4 Z 50 be an exact sequence in C(C)
and define p: Mc(f) = Z as o™ = (0,9™). Then ¢ is a qis.

Proof. Consider the exact sequence in C(C):

0 — Mc(idx) = Mc(f) S Z — 0

where "1 (X" @ X") = X" @ Y™ is defined by: 7" = ( ld)gﬂ j(’)n )
Since H*(Mc(idy)) ~ 0 for all k, we get the result. q.e.d.

We shall localize K(C) with respect to the family of objects qis to zero
(see Section 6.2). Define:

N(C)={X € K(C); H*(X) ~0 for all k}.

One also defines N*(C) = N(C) N K*(C) for * =b,+, —.
Clearly, N*(C) is a null system in K*(C).

Definition 7.2.3. One defines the derived categories D*(C) as K*(C)/N*(C),
where * = ub, b, 4+, —. One denotes by @) the localization functor K*(C) —
D*(C).
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By Theorem 6.2.2, these are triangulated categories.

Hence, a quasi-isomorphism in K(C) becomes an isomorphism in D(C).

Recall the truncation functors given in (4.5) and (4.6). These functors
send a complex homotopic to zero to a complex homotopic to zero, hence
are well defined on K*(C). Moreover, they send a qis to a qis. Hence the
functors below are well defined:

Hi(+): D) — C,
=" 7= D(C) — D (0),
=", 72" D(C) — DT(C).

Note that there are isomorphisms of functors 7" ~ 7=" and 72" ~ 727,

Moreover, H7(+) is a cohomological functor on D*(C). In fact, if X € N(C),
then H/(X) ~ 0in C, and if f : X — Y is a gis in K(C), then 7="(f) and
72"(f) are qis.

In particular, if X Ly % 7 Xisadt. i D(C), we get a long exact

sequence:
(7.2) o= HYX) — HYY) —» H¥Z) - H"(X) — -+

Let X € K(C), with H/(X) =0 for j > n. Then the morphism 7="X —
X in K(C) is a qis, hence an isomorphism in D(C).

It follows from Proposition 6.2.4 that D (C) is equivalent to the full sub-
category of D(C) consisting of objects X satisfying H?(X) ~ 0 for j << 0,
and similarly for D~(C), D?(C). Moreover, C is equivalent to the full subcat-
egory of D(C) consisting of objects X satisfying H7(X) ~ 0 for j # 0.
Definition 7.2.4. Let X, Y be objects of C. One sets

Ext¢(X,Y) = Homyp o, (X, Y[k]).

We shall see in Theorem 7.5.5 below that if C has enough injectives, this
definition is compatible with Definition 4.6.2.

Notation 7.2.5. Let A be a ring. We shall write for short D*(A) instead of
D*(Mod(A)), for * =0,b,+, —.

Remark 7.2.6. (i) Let X € K(C), and let Q(X) denote its image in D(C).
One can prove that:
Q(X)~0 < Xisqgisto0in K(C).

(ii) Let f : X — Y be a morphism in C(C). Then f ~ 0in D(C) iff there
exists X' and a qis g : X’ — X such that f o g is homotopic to 0, or else iff
there exists Y and a qis h : Y — Y such that h o f is homotopic to 0.
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Remark 7.2.7. Consider the morphism v : Z — X[1] in D(C). If X, Y, Z be-
long to C (i.e. are concentrated in degree 0), the morphism H*(v) : H*(Z) —
H¥1(X) is 0 for all k € Z. However, v is not the zero morphism in D(C) in
general (this happens if the short exact sequence splits). In fact, let us apply
the cohomological functor Hom (W, «) to the d.t. above. It gives rise to the
long exact sequence:

.-+ = Hom (W, Y) — Hom (W, Z) 2> Hom (W, X[1]) — - --

where 4 = Hom (W, ). Since Hom,(W,Y) — Hom (W, Z) is not an epi-
morphism in general, 4 is not zero. Therefore v is not zero in general. The
morphism v may be described as follows.

Z = 0 0 Z 0
d |, ]
Mc(f) = 0—=X—ToV—0
] g
X[1] := 0 X 0 0.
Proposition 7.2.8. Let X € D(C).
(i) There are d.t. in D(C):
(7.3) TX o X ot
(7.4) LY o 75X o HY(X)[—n]
(7.5) H(X)[—n] = 72"X — 7201 x 24

(ii) Moreover, H*(X)[—n] ~ 7Sn72nX ~ 72"7Sn X
Corollary 7.2.9. Let C be an abelian category and assume that for any
X,Y €C, Ext*(X,Y) =0 for k > 2. Let X € D*(C). Then:
X ~a;H (X)[—j].

Proof. Call “amplitude of X” the smallest integer & such that H7(X) = 0
for j not belonging to some interval of length k. If £ = 0, this means that
there exists some i with H’(X) = 0 for j # 4, hence X ~ H*(X) [—i]. Now
we argue by induction on the amplitude. Consider the d.t. (7.4):

LY o Y o HY(X) [-n] T
and assume 7=""'X ~ @, H/(X)[—j]. By the result of Exercise 6.3, it it
enough to show that Homyy, o) (H"(X)[—n], HI(X)[—7+1]) =0 for j < n.
Since n + 1 — j > 2, the result follows. q.e.d.
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Example 7.2.10. (i) If a ring A is a principal ideal domain (such as a field,
or Z, or k[z] for k a field), then the category Mod(A) satisfies the hypotheses
of Corollary 7.2.9.

(ii) See Example 7.5.8 to see an object which does not split.

7.3 Resolutions

Let J be an additive subcategory of C, and assume that J is cogenerating.
Let X* € CH(C).

By Proposition 4.5.3, there exists Y* € K*(J) and a qis X* — Y™*.

We set NT(J) := N(C)NK™(J). Tt is clear that N*(J) is a null system
in K(J).

Proposition 7.3.1. Assume J is cogenerating in C. Then the natural func-
tor 0 : K*(J)/Nt(J) — DT(C) is an equivalence of categories.

Proof. Apply Proposition 4.5.3 and Proposition 6.2.4. q.e.d.

Let us apply the preceding proposition to the category Z. of injective
objects of C.

Corollary 7.3.2. Assume that C admits enough injectives. Then K*(I¢) —
DT (C) is an equivalence of categories.

Proof. Recall that if X* € C*(Z¢) is qis to 0, then X* is homotopic to 0.
q.e.d.

Remark 7.3.3. Assume that C admits enough injectives. Then D*(C) is a
U-category.

7.4 Derived functors

In this section, C and C’ will denote abelian categories. Let F': C — C’ be a
left exact functor. It defines naturally a functor

K+F: KH(C) = KHC).

For short, one often writes F' instead of K F. Applying the results of Chap-
ter 5, we shall construct (under suitable hypotheses) the right localization
of F. Recall Definition 4.6.5. By Lemma 4.6.6, K*(F) sends N*(J) to
NH(C).
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Definition 7.4.1. If the functor K (F): K*(C) — D*(C’) admits a right
localization (with respect to the gis in K (C)), one says that F' admits a
right derived functor and one denotes by REF: DT (C) — D*(C’) the right
localization of F'.

Theorem 7.4.2. Let F : C — C’ be a left exact functor of abelian categories,
and let J C C be a full additive subcategory. Assume that J is F-injective.
Then F admits a right derived functor RF : D*(C) — D*(C’).

Proof. This follows immediately from Proposition 4.5.3 and Proposition
6.2.6 applied to K*(F) : K*(C) — D*(C"). q.e.d.

It is vizualised by the diagram

k() — k(e
’
K*(J)/NT(T) ¢
l EX(F)n)
DH(C) v = D).

Since Ob(K*(J)/N*(J)) = Ob(K*(J), we get that for X € K*(C), if
there is a qis X — Y with Y € K7(J), then RF(X) ~ F(Y) in D*(C").
Note that if C admits enough injectives, then

(7.6) R*F = H* o RF.

Recall that the derived functor RF is triangulated, and does not depend
on the category J. Hence, if X' = X — X” 5 is a d.t. in D*(C), then
RF(X') — RF(X) — RF(X") =5 is a d.t. in D¥(C’). (Recall that an
exact sequence 0 — X' — X — X” — 0 in C gives rise to a d.t. in D(C).)

Applying the cohomological functor H?, we get the long exact sequence in
"

. = RFF(X') = RFF(X) - RFF(X") = R FP(X') — -+
By considering the category C°P, one defines the notion of left derived

functor of a right exact functor F.

We shall study the derived functor of a composition.
Let F¥ : C — C' and G : C' — (" be left exact functors of abelian
categories. Then G o F' : C — C” is left exact. Using the universal property
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of the localization, one shows that if F, G and G o F' are right derivable, then
there exists a natural morphism of functors

(7.7) R(Go F) = RG o RF.

Proposition 7.4.3. Assume that there exist full additive subcategories J C
C and J' C C' such that J is F-injective, J' is G-injective and F(J) C J'.
Then J is (G o F)-injective and the morphism in (7.7) is an isomorphism:

R(GoF)~ RGo RF.

Proof. The fact that J is (G o F') injective follows immediately from the
definition. Let X € K7(C) and let Y € K*(J) with a qis X — Y. Then
RF(X) is represented by the complex F'(Y) which belongs to K*(J"). Hence
RG(RF(X)) is represented by G(F(Y)) = (Go F)(Y), and this last complex
also represents R(G o F)(Y') since Y € J and J is G o F' injective.  q.e.d.

Note that in general F' does not send injective objects of C to injective ob-
jects of C’, and that is why we had to introduce the notion of “F-injective”
category.

7.5 Bifunctors

Now consider three abelian categories C,C’,C" and an additive bifunctor:
F:CxC —=(C".

We shall assume that F' is left exact with respect to each of its arguments.

Let X € KT(C),X' € KT(C') and assume X (or X’) is homotopic to 0.
Then one checks easily that tot(F (X, X’)) is homotopic to zero. Hence one
can naturally define:

K*(F): K*(C) x K*(C') — K*(C")

by setting:
KT (F)(X, X") = tot(F(X, X")).

If there is no risk of confusion, we shall sometimes write I instead of K+ F.
Definition 7.5.1. One says (J,J’) is F-injective if:

(i) forall X € J, J'is F(X, *)-injective.

(ii) for all X' € J', J is F(+, X')-injective.
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Lemma 7.5.2. Let X € K*(J), X' € K*(J'). If X or X' is qis to 0, then
F(X,X") is qis to zero.

Proof. The double complex F(X,Y) will satisfy the hypothesis of Theo-
rem 4.6.10. q.e.d.

Using Lemma 7.5.2 and Proposition 6.2.7 one gets that F' admits a right
derived functor,
RF :D*(C) x DT(C") — D*(C").

Example 7.5.3. Assume C has enough injectives. Then
RHom, : D™(C)°® x D*(C) — D*(Z)

exists and may be calculated as follows. Let X € D=(C), Y € D(C). There
exists a qis in K7(C), Y — I, the I’’s being injective. Then:

RHom(X,Y’) ~ Hom? (X, I).

If C has enough projectives, and P — X is a qis in K~ (C), the P?’s being
projective, one also has:

RHom(X,Y) ~ Hom%(P,Y).
These isomorphisms hold in D*(Z).

Example 7.5.4. Let A be a k-algebra. The functor
L
*®,+: D7(A") x D" (4) = D" (k)
is well defined.

L
No,M ~ s(N®,P)
~ s(Q®, M)

where P (resp. Q) is a complex of projective A-modules qis to M (resp. N).

In the preceding situation, one has:
A k(g
TorZ,(N,M) = H*(N® ,M).

The following result relies the derived functor of Hom, and Hom D)
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Theorem 7.5.5. Let C be an abelian category with enough injectives. Then
for X € D=(C) and Y € D*(C)

H°RHom (X, Y) =~ Homp,(X,Y).

Proof. By Proposition 4.5.4, there exists Iy € Ct(Z) and a qis Y — Iy.
Then we have the isomorphisms:
HomD(C)(X,Y[k]) ~ HomK(C)(X,Iy[k])
~ H’(Hom?, (X, Iy[k]))
~ RFHom,(X,Y),

where the second isomorphism follows from Proposition 3.3.4. g.e.d.

Theorem 7.5.5 implies the isomorphism
Ext$(X,Y) ~ H"RHom,(X,Y).
Example 7.5.6. Let W be the Weyl algebra in one variable over a field k:
W = k[z, 0] with the relation [x,0] = —1.
L
Let O =W/W -0, Q=W/0-W and let us calculate Q2®,,O. We have

an exact sequence:

0=-WLHWwo0=0

hence €2 is gis to the complex
0 WL W -0

L
where W1 = W° = W and W is in degree 0. Then Q®,,O is qgis to the
complex

0012500 5o,

where Ot = 0% = O and O is in degree 0. Since 9 : O — O is surjective
and has k as kernel, we obtain:

0, O ~ k[1].

Example 7.5.7. Let k be a field and let A = k[zy,...,x,]. Thisis a commu-
tative noetherian ring and it is known (Hilbert) that any finitely generated
A-module M admits a finite free presentation of length at most n, i.e. M is
gis to a complex:

L= 0oL "—...5710 49
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where the L?’s are free of finite rank. Consider the functor
Hom ,(+,A) : Mod(A) — Mod(A).

It is contravariant and left exact.
Since free A-modules are projective, we find that RHom ,(M, A) is iso-
morphic in D?(A) to the complex

L' = 0L ™. ... 1% 0

where L7* = Hom , (L7, A). Set for short * = RHom ,(+, A) Using (7.7), we
find a natural morphism of functors

id — ™.
Applying RHom ,(+, A) to the object RHom , (M, A) we find:

RHom ,(RHom ,(M,A),A) ~ RHom ,(L*, A)
~ L
~ M.

In other words, we have proved the isomorphism in D*(A): M ~ M**.

Assume now n = 1, i.e. A = k[z| and consider the natural morphism in
Mod(A): f: A — A/Az. Applying the functor * = RHom ,(+, A), we get
the morphism in D?(A):

J*: RHom ,(A/Az, A) = A.

Remember that RHom ,(A/Az, A) ~ A/xA[—1]. Hence H/(f*) = 0 for all
J € Z, although f* # 0 since f** = f.

Let us give an example of an object of a derived category which is not
isomorphic to the direct sum of its cohomology objects (hence, a situation in
which Corollary 7.2.9 does not apply).

Example 7.5.8. Let k be a field and let A = k[z1, x5]. Define the A-modules
M' = AJ(Azy + Azy), M = A/(Az? + Axy25) and M" = A/Ax,. There is

an exact sequence
(7.8) 0—=>M —>M-—>M —0

and this exact sequence does not split since z; kills M’ and M” but not
M. For N an A-module, set N* = RHom ,(N, A), an object of D’(A) (see
Example 7.5.7). We have M"* ~ H*(M'*)[-2] and M"* ~ H'(M'*)[—1], and
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the functor * = RHom ,(+, A) applied to the exact sequence (7.8) gives rise
to the long exact sequence

0— H'(M") — H'(M*) - 0— 0— H*(M*) — H*(M") — 0.
Hence
HY(M*)[=1] ~ H (M"™)[=1] = M"*,  H2(M*)[=2] ~ H>(M")[=2] ~ M"".

Assume for a while M* ~ &;HI(M*)[—j]. This implies M* ~ M"™ & M"*
hence (by applying again the functor *), M ~ M’ & M", which is a contra-
diction.

Exercises to Chapter 7

Exercise 7.1. Let C be an abelian category with enough injectives. Prove
that the two conditions below are equivalent.

(i) For all X and Y in C, Ext’,(X,Y) = 0 for all j > n.

(ii) For all X in C, there exists an exact sequence 0 - X — X — ... —
X" — 0, with the X7’s injective.

In such a situation, one says that C has homological dimension < n and one
writes dh(C) < n.

(iii) Assume moreover that C has enough projectives. Prove that (i) is equiv-
alent to: for all X in C, there exists an exact sequence 0 — X" — - —
X% - X — 0, with the X?’s projective.

Exercise 7.2. Let C be an abelian category with enough injective and such
that dh(C) < 1. Let F': C — C’ be a left exact functor and let X € D*(C).
(i)Construct an isomorphism H¥(RF (X)) ~ F(H*(X)) ® R'F(H*}(X)).
(ii) Recall that dh(Mod(Z)) = 1. Let X € D™ (Z), and let M € Mod(Z).
Deduce the isomorphism

H’“(X(}%M) ~ (H*(X)® M) @ Tor% (H*(X), M).

Exercise 7.3. Let C be an abelian category with enough injectives and let
0= X' - X — X” — 0 be an exact sequence in C. Assuming that
Extt(X "' X") ~ 0, prove that the sequence splits.

Exercise 7.4. Let C be an abelian category and let X — Y — Z L bea
d.t. in D(C). Assuming that Extlc(Z, X) ~ 0, prove that Y ~ X & Z. (Hint:
use Exercise 6.3.)
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Exercise 7.5. Let C be an abelian category, let X € D*(C) andlet a < b € Z.

Assume that H’/(X) ~ 0 for j # a,b and Extl;;‘zg)l(Hb(X),Ha(X)) ~ 0.

Prove the isomorphism X ~ H(X)[—a] ® H*(X)[—b]. (Hint: use Exercise
7.4 and the d.t. 7.3.

Exercise 7.6. We follow the notations of Exercise 4.9. Hence, k is a field
of characteristic 0 and W := W, (k) is the Weyl algebra in n variables. Let
1 < p < n and consider the left ideal

L=W-z214+ - 4+W- -2, + W 01 +---+W-0,.
Define similary the right ideal

Jy=a1 WA da, W+ - W +0, W

L
For 1 < p < q < n, calculate RHom ,,(W/I,, W/I,) and W/J, @, W/I,.



Bibliography

[1]

2]

8]

[9]

M. Atiyah and 1.G. Macdonald, Introduction to commutative algebra,
Addison-Weisley (1969)

M. Berger and B. Gostiaux, Geométrie différentielle, Armand Colin Ed.
(1972)

F. Borceux, Handbook of categorical algebra I, II, I1I, Encyclopedia of
Mathematics and its Applications 51, Cambridge University Press, Cam-
bridge (1994).

R. Bott and L.W. Tu, Differential forms in algebraic topology, Graduate
Texts in Math. 82, Springer (1982)

N. Bourbaki, Elements de Mathematiques, Algebre Ch 10, Masson (1980)

H. Cartan and S. Eilenberg, Homological algebra, Princeton University
Press (1956)

C. Chevalley, The construction and study of certain important algebras,
Publ. Soc. Math. Japan (1955)

P. Deligne, Fquations différentielles a points singuliers réguliers, Lecture
Notes in Math. 163, Springer Paris (1970)

G. De Rham, Variétés différentiables, Hermann, Paris (1960)

[10] J-P. Freyd, Abelian categories, Harper & Row (1964)

[11] P. Gabriel and M. Zisman, Calcul of fractions and homotopy theory,

Springer (1967)

[12] S.I. Gelfand and Yu.I. Manin, Methods of homological algebra, Springer

(1996)

[13] C. Godbillon, Eléments de topologie algébrique, Hermann (1971)

123



124 BIBLIOGRAPHY

[14] R. Godement, Topologie algébrique et théorie des faisceauxr, Hermann
(1958)

[15] M. Greenberg, Lectures on algebric topology, Benjamin (1967)

[16] A. Grothendieck, Sur quelques points d’algébre homologique, Tohoku
Math. Journ. 119-183 (1957)

[17] A. Grothendieck, Elements de géométrie algébrique III, Publ. THES 11
(1961), 17 (1963)

(18] S-G-A 4, Sém. Géom. Algébrique (1963-64) by M. Artin,
A. Grothendieck and J-L. Verdier, Théorie des topos et cohomolo-
gie étale des schémas, Lecture Notes in Math. 269, 270, 305 (1972/73)

[19] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20
Springer (1966)

[20] L. Hormander, An introduction to complex analysis, Van Norstrand
(1966)

[21] B. Iversen, Cohomology of sheaves, Springer (1987)

[22] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der
Math. Wiss. 292 Springer-Verlag (1990)

23] M. Kashiwara and P. Schapira, Categories and sheaves, Springer-Verlag,
to appear

24] J-P. Lafon, Les formalismes fondamentaux de [’algébre commutative,
Hermann

[25] S. MacLane, Categories for the working mathematician, Graduate Texts
in Math. 5 Springer 2nd ed. (1998)

[26] J.P. May, A concise course in algebraic toplogy, Chicago Lectures in
Mathematics, The University of Chicago Press (1999)

[27] P. Schapira, Categories and Homological Algebra, unpublished course at
Paris VI University,
http://www.math.jussieu.fr/~ schapira/polycopiés

28] P. Schapira, Sheaves, unpublished course at Paris VI University,
http://www.math.jussieu.fr/~ schapira/polycopiés



BIBLIOGRAPHY 125

[29] J-L. Verdier, Catégories dérivées, état 0 in SGA 43 Lecture Notes in
Math. 569 Springer (1977)

[30] J-L. Verdier, Des catégories dérivées des catégories abéliennes,
Astérisque—Soc. Math. France 239 (1996)

[31] C. Weibel, An introduction to homological algebra, Cambridge Studies
in Advanced Math. 38 (1994)

Institut de Mathématiques, Analyse Algébrique
Université Pierre et Marie Curie, Case 82

4, place Jussieu F-75252, Paris Cedex 05, France
email: schapira@math.jussieu.fr

Homepage: www.math.jussieu.fr/” schapira



