| Powrót do listy seminariów |
Seminarium Topologia Algebraiczna
Prowadzą: Marcin Chałupnik, Andrzej Weber i Krzysztof Ziemiański
Seminarium posiada własną stronę internetową.
| 2013-06-04, godz. 12:00, s. 4070 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Homotopijne reprezentacje grup unitarnych |
| Materiały dotyczące referatu |
Celem mojego odczytu będzie udowodnienie następującego twierdzenia Tw. Niech r:T(n)->U(d) będzie reprezentacją torusa maksymalnego U(n). Załóżmy, że - reprezentacja (r+id) rozszerza się do przekształcenia f:BU(n)->BU(d+n) - dla każdego p reprezentacja r rozszerza się do reprezentacji p-normalizatora T(n). Wówczas r rozszerza się do przekształcenia f':BU(n)->BU(d). Twierdzenie to umożliwia na konstrukcję wielu nowych, egzotycznych przykładów przekształceń pomiędzy przestrzeniami klasyfikującymi grup unitarnych. |
| 2013-05-28, godz. 12:00, s. 4070 |
| Antoine Touze (Université PARIS 13) |
| A functorial control of integral torsion in homological algebra |
| Materiały dotyczące referatu |
| 2013-05-21, godz. 12:00, s. 4070 |
| Andrzej Weber (Uniwersytet Warszawski) |
| O ekwiwariantnych klasach charakterystycznych rozmaitości osobliwych ciąg dalszy |
| Materiały dotyczące referatu |
| 2013-05-14, godz. 12:00, s. 4070 |
| Karol Srzałkowski (Uniwersytet Warszawski) |
| Ograniczone kohomologie |
| Materiały dotyczące referatu |
Ograniczone kohomologie przestrzeni topologicznej X otrzymujemy rozpatrując kohomologie podkompleksu standardowego kokompleksu singularnego o współczynnikach w R, złożonego jedynie z kołańcuchów ograniczonych. Pierwszy raz użył ich Gromov w swojej pracy "Volume and bounded cohomology" do dowodu pewnych nierówności dla objętości symplicjalnej. Okazało się, że kohomologie te (w różnych wariantach) znalazły zastosowanie w wielu innych problemach. Na seminarium postaram się przedstawić kilka takich problemów oraz udowodnić klasyczne twierdzenie z pracy Gromowa, zgodnie z którym można się ograniczyć do badania jedynie ograniczonych kohomologii grup nieśredniowalnych. |
| 2013-05-07, godz. 12:00, s. 4070 |
| Klasy charakterystyczne dla osobliwych rozmaitości z działaniem torusa |
| Materiały dotyczące referatu |
Badamy klasy charakterystyczne zespolonych rozmaitości algebraicznych. Brasselet-Schurmann-Yokura wykazali, że jedyną klasą charakterystyczną dopuszczającą funktorialne uogólnienie dla rozmaitości osobliwych jest klasa Hirzebrucha (i stowarzyszony z nia $\chi_y$-rodzaj). Opowiem o ekwiwariantnej wersji klasy Hirzebrucha dla działania torusa. Szczególną zaletą teorii ekwiwariantnej jest możliwość lokalizowania do zbioru punktów stałych. Przedstawię też kilka ciekawych obliczeń. |
| 2013-04-30, godz. 12:00, s. 4070 |
| Tomasz Filar (Uniwersytet Warszawski) |
| Płaskie rozmaitości jako wiązki torusów. |
| Materiały dotyczące referatu |
W 1970 roku A. T. Vasquez udowodnił, dla każdej grupy skończonej G wszystkie płaskie rozmaitości z grupą holonomii G można uzyskać jako pewne wiązki torusów nad skończoną rodziną rozmaitości. Używając odpowiedniości między płaskimi rozmaitościami z grupą holonomii G a elementami specjalnymi grupy H^2(A,G), gdzie A jest wierną G-kratą, możemy dla każdej grupy skończonej G skonstruować płaską rozmaitość M taką, że każda płaska rozmaitość z grupą holonomii G jest wiązką torusów nad taką rozmaitością M', że M' x R^k jest nakryciem M. Powiem też o konstrukcji Calabi, która każdą płaską rozmaitość z pierwszą liczbą Bettiego r pozwala uzyskać jako wiązkę nad r-wymiarowym torusem z włóknem będącym płaską rozmaitością z liczbą Bettiego równą 0. |
| 2013-04-23, godz. 12:00, s. 4070 |
| Piotr Nowak (Uniwersytet Warszawski) |
| Nierówności Poincare i znikanie kohomologii |
| Materiały dotyczące referatu |
Wlasność (T) Kazhdana dla grupy G jest równowazna temu, że kohomologie H^1(G,\pi) znikają dla dowolnej reprezentacji unitarnej pi grupy G na przestrzeni Hilberta. My zajmiemy się wzmocnieniem tej własności: będziemy zainteresowani znikaniem kohomologii H^1(G,\pi), gdzie reprezentacja pi jest reprezentacją izometryczną na przestrzeni Banacha, np. L_p. Zaprezentuję warunek gwarantujacy znikanie takich kohomologii, gdzie pi jest reprezentacją na refleksywnej przestrzeni Banacha. Warunek ten wyraża się w terminach nierowności Poincare i w przypadku przestrzeni Hilberta zredukuje się do tzw. warunku spektralnego na wlasnosc (T), rozważanego przez Pansu, Zuka, Ballmanna, Światkowskiego i wielu innych. Jako zastosowania pokażemy oszacowania na wymiar konforemny brzegu losowej grupy hiperbolicznej i oszacowania na znikanie kohomologii o wspołczynnikach w jednostajnie oganiczonych reprezentacjach na przestrzeniach Hilberta. |
| 2013-04-16, godz. 12:00, s. 4070 |
| Stefan Jackowski (Uniwersytet Warszawski) |
| "Characters and cohomology of finite groups" z perspektwy półwiecza. |
| Materiały dotyczące referatu |
W roku 1961 M.F.Atiyah opublikował w Publ. Math. IHES broszurkę pod tytułem "Characters and cohomology of finite groups" , której głównym twierdzeniem było obliczenie K-teorii przestrzeni klasyfikującej grupy skończonej w terminach jej pierścienia reprezentacji. Skomplikowane, topologiczne rozważania doprowadziły do ciągu spektralnego wiążącego dwa czysto algebraiczne niezmienniki grupy skończonej. W ciągu kolejnych 50 lat twierdzenie Atiyah stanowiło motywację wielu uogólnień i analogicznych twierdzeń w innym kontekście. Historyczna refleksja nad klasycznymi dziś wynikami oraz wskazanie kilku otwartych pytań, będzie przedmiotem referatu. |
| 2013-04-09, godz. 12:00, s. 4070 |
| Agnieszka Bojanowska (Uniwersytet Warszawski) |
| O homomorfizmach grup indukujących izomorfizm spektrów pierscieni kohomologii o Z_p współczynnikach i p-fuzji. |
| Materiały dotyczące referatu |
| Chcę mówić o pracy Bensona i Grodala, która wraca do problemu homomorfizmów grup indukujacych izomorfizm spektrów kohomologii o p-współczynnikach. To są wyniki wzmacniajace prace Quillena sprzed lat. |
| 2013-03-26, godz. 12:00, s. 4070 |
| Paweł Traczyk (Uniwersytet Warszawski) |
| Algebra Temperleya-Lieba w teorii węzłów. |
| Materiały dotyczące referatu |
| 2013-03-19, godz. 12:00, s. 4070 |
| Stanisław Betley (Uniwersytet Warszawski) |
| O topologicznych homologiach Hochschilda i geometryczności Z w stabilnej teorii homotopii |
| Materiały dotyczące referatu |
| Przypomnę definicję topologicznych homologii Hochschilda (THH_*) i ich związek z algebraiczną teoria Homologii Hochschilda (HH_*). Rozszerzenie pierścieni A---> B będziemy nazywać geometrycznym jeśli HH_1^A(B) nie jest grupa trywialną. Podobnie powiemy, że multiplikatywne odwzorowanie spektrów pierścieni ( w sensie stabilnej teorii homotopii) jest geometryczne jeśli odpowiednia grupa THH_1 jest nietrywialna. Celem wykładu jest analiza geometryczności spektrum Eilenberga-MacLane'a HZ. |
| 2013-03-12, godz. 12:00, s. 4070 |
| Wojciech Lubawski (Uniwersytet Warszawski) |
| Maps between classifying spaces of unitary groups |
| Materiały dotyczące referatu |
We give a classification theorem for maps between classifying spaces of unitary groups in certain range of dimensions. We show a construction of families of exceptional (i.e. not induced by homomorphisms of groups and Adams operations) maps and show that for each n these include exceptional representations of U(n) of the smallest possible dimension. In particular we closely investigate and calculate in several cases obstructions needed to lift a map from a colimit to a homotopy colimit. We give a criterion for lifting a map from homotopy colimit by a fibration. |
| 2013-03-05, godz. 12:00, s. 4070 |
| Stefan Jackowski, Wojciech Lubawski (Uniwersytet Warszawski) |
| Odwzorowania przestrzeni klasyfikujących |
| Materiały dotyczące referatu |
S. jackowski - Odwzorowania przestrzeni klasyfikujących: Wstęp W. Lubawski - Maps between classifying spaces of unitary groups We give a classification theorem for maps between classifying spaces of unitary groups in certain range of dimensions. We show a construction of families of exceptional (i.e. not induced by homomorphisms of groups and Adams operations) maps and show that for each n these include exceptional representations of U(n) of the smallest possible dimension. In particular we closely investigate and calculate in several cases obstructions needed to lift a map from a colimit to a homotopy colimit. We give a criterion for lifting a map from homotopy colimit by a fibration. |
| 2013-02-26, godz. 12:00, s. 4070 |
| Wojciech Wojtyński (Uniwersytet Warszawski) |
| Strunowe grupy Liego-dodatek do teorii klasycznej |
| Materiały dotyczące referatu |
Jest to próba formalizmu Liego dla grup topologicznych posiadających bogate rodziny ciągłych podgrup jednoparametrowych. Metodę postaram sie zilustrować na przykładzie twierdzenia Epsteina-Hermana-Thurstona mówiącego, że składowa jedynki w grupie Diff^{\infty}(M), gdzie M jest zwartą rozmaitością bez brzegu, jest grupa prosta. |
| 2013-01-25, godz. 10:15, s. 5050 |
| Józef Przytycki (George Washington University i UG) |
| Zdegenerowana część rozdzielnych homologii |
| Materiały dotyczące referatu |
Większość klasycznych teorii homologii bazujących na łącznych strukturach (np. homologie grupowe czy Hochschilda) związana jest z pewnym modułem symplicjalnym. W tym przypadku zdegenerowany podkompleks jest acykliczny, możemy więc przez niego podzielić i otrzymany znormalizowany kompleks ma te same homologie co oryginalny kompleks. Jeśli łączność zastąpimy (prawą) rozdzielnością to kompleks elementów zdegenerowanych nie musi byc acykliczny (a zamiast modułu symplicjalnego otzymamy tylko słaby moduł symplicjalny). W szczególnym przypadku wraków i kwandli (rozdzielnych struktur ważnych w teorii węzłów), znormalizowane homologie i zdegenerowane homologie analizowane by ly od prawie 15 lat ale bez oczywistego ogólnego wyniku, który by je łaczył (poza faktem, ze homologie kwandlowe rozszczepiają się na część zdegenerowaną i część znormalizowaną). Z naszej pracy wynika, ze zdegerowane homologie kwandla można otzymać ze znormalizowanych komologii przy pomocy formuły typu Kunneta. (Jest to moja wspólna praca z Krzysztofem Putyrą, studentem Khovanova na Uniwersytecie Kolumbijskim; wynik otrzymalismy w ostatnim tygodniu grudnia 2012.) |
| 2013-01-22, godz. 12:00, s. 4070 |
| Martin Raussen (Aalborg University) |
| Spaces of directed paths as simplicial complexes |
| Materiały dotyczące referatu |
Concurrency theory in Computer Science studies the effects that arise when several processors run simultaneously sharing common resources. It attempts to advise methods to deal with the “state space explosion problem”, sometimes using models with a combinatorial/topological flavor. It is a common feature of these models that an execution corresponds to a directed path (d-path), and that d-homotopies (preserving the directions) have equivalent computations as a result. I will discuss particular classical examples of directed spaces, a class of Higher Dimensional Automata (HDA). For such a space, I will describe a (nerve lemma) method that determines the homotopy type of the space of traces (executions) as a prodsimplicial complex – with products of simplices as building blocks. A description of that complex opens up for (machine) calculations of homology groups and other topological invariants of the trace space. The determination of path components is particularly important for applications. This method leads to an algorithm yielding a representation of the prodsimplicial complex and implemented using the French ALCOOL software and allowing calculations of homological invariants using homology software by Mrozek et al. Unfortunately, the resulting prodsimplicial complexes grow quickly in both dimension and the number of cells. I shall sketch ongoing work with K. Ziemianski that tries to overcome this drawback by finding smaller homotopy equivalent simplicial complexes via suitable homotopy decompositions of path spaces. |
| 2013-01-15, godz. 12:00, s. 4070 |
| Karol Strzałkowski (Uniwersytet Warszawski) |
| Klasy Cherna rozmaitości Schuberta |
| Materiały dotyczące referatu |
Podczas seminarium postaram się krótko zdefiniować klasy charakterystyczne osobliwych rozmaitości algebraicznych, po czym obliczyć je dla rozmaitości Schuberta przy pomocy rozmaitości Botta-Samelsona. Na koniec sformułuję hipotezę o dodatniości współczynników przy takich klasach, która posiada również ciekawą interpretację kombinatoryczną w terminach liczby pewnych nieprzecinających się ścieżek na płaszczyźnie. |
| 2013-01-15, godz. 12:00, s. 4070 |
| Karol Strzałkowski (Uniwersytet Warszawski) |
| Klasy Cherna rozmaitości Schuberta |
| Materiały dotyczące referatu |
Podczas seminarium postaram się krótko zdefiniować klasy charakterystyczne osobliwych rozmaitości algebraicznych, po czym obliczyć je dla rozmaitości Schuberta przy pomocy rozmaitości Botta-Samelsona. Na koniec sformułuję hipotezę o dodatniości współczynników przy takich klasach, która posiada również ciekawą interpretację kombinatoryczną w terminach liczby pewnych nieprzecinających się ścieżek na płaszczyźnie. |
| 2013-01-08, godz. 12:00, s. 4070 |
| Magdalena Zielenkiewicz (Uniwersytet Warszawski) |
| Kohomologie przestrzeni jednorodnych wg Bernsteina-Gelfanda-Gelfanda |
| Materiały dotyczące referatu |
Opowiem o zaprezentowanym w pracy I.Bernsteina, I.Gelfanda oraz S.Gelfanda "Schubert cells and cohomology of the spaces G/P" podejściu do kohomologii przestrzeni postaci G/P, gdzie G jest zespoloną półprostą grupą algebraiczną, zaś P jej podgrupą algebraiczną. Opiszę zaprezentowaną w tej pracy konstrukcję, łączącą dwie klasyczne metody opisu kohomologii G/P: jeden z opisów używa komórek Schuberta, drugi identyfikuje kohomologie z pewnym pierscieniem ilorazowym pierścienia wielomianów na algebrze Liego podgrupy Cartana. |
| 2012-12-18, godz. 12:00, s. 4070 |
| Andrzej Szczepański (Uniwersytet Gdański) |
| Kohomologiczna sztywność orientowalnych rozmaitości Hantzsche-Wendta |
| Materiały dotyczące referatu |
(wspólna praca z A.Gąsior (Lublin) i J. Popko (Gdańsk)) Zwarta i spójna rozmaitość Riemanna wymiaru n z grupą holonomii (Z_2)^{n-1} jest nazywana rozmaitością Hantzsche-wendta. Celem odczytu jest udowodnienie twierdzenia, że dwie rozmaitości Hantzsche-Wendta są afinicznie równoważne wtedy i tylko wtedy gdy ich pierścienie kohomologii o współczynnikach w Z_2 są izomorficzne. |
| 2012-12-11, godz. 12:00, s. 4070 |
| Agnieszka Bodzenta (Uniwersytet Warszawski) |
| DG wzbogacenie kategorii triangulowalnych |
| Materiały dotyczące referatu |
Kategorie triangulowalne w matematyce pojawiają się jako kategorie pochodne kategorii abelowych (kategorie algebraiczne) lub jako kategorie homotopii stabilnych kategorii z korozwłóknieniami (kategorie topologiczne). Niestety, wydaje się że te konstrukcje zapominają zbyt wiele informacji i dlatego praktyczne wykorzystanie kategorii triangulowalnych często nastręcza wiele problemów. Podstawową wadą jest niefunktorialność stożka. Opiszę, jak pamiętając nieco więcej na temat kategorii abelowej, można rozwiązać ten problem w przypadku kategorii algebraicznych. W tym celu zdefiniuję DG kategorie, DG kategorie pretriangulowane i DG wzbogacenie kategorii triangulowalnych. Pokażę też na przykładach, jak istnienie DG wzbogacenia znacząco upraszcza niektóre dowody. |
| 2012-12-04, godz. 12:00, s. 4070 |
| Jolanta Słomińska (Uniwersytet Warszawski) |
| O pracy "Homologie grup automorfizmów grup wolnych o współczynnikach wielomianowych" A.Djamenta i C.Vespy |
| Materiały dotyczące referatu |
Opowiem o pracy, której autorami są Aurelian Djament i Christine Vespa. Praca dotyczy stabilnych grup homologii grup automorfizmów grup wolnych o współczynnikach zadanych przez funktory wielomianowe i została złożona w arXiv w październiku 2012. |
| 2012-11-27, godz. 12:00, s. 4070 |
| Andrzej Kozłowski (Uniwersytet Warszawski) |
| Przestrzenie ciągłych i algebraicznych odwzorowań pomiędzy rozmaitościami algebraicznymi |
| Materiały dotyczące referatu |
Dla dwóch danych rozmaitości algebraicznych, rozważamy przestrzeń ciągłych algebraicznych morfizmów i przestrzeń wszystkich ciągłych odwzorowań pomiędzy nimi. Pojawia się pytanie w jakim sensie i w jak dobrze ta pierwsza przestrzeń jest przybliżeniem drugiej. Pytanie można postawić za równo dla rozmaitości zespolonych jak i rzeczywistych. Po raz pierwszy w tej formie pojawiło się ono w pracy Graeme Segala przeszło 30 lat temu, dla odwzorowań z powierzchni Riemanna do przestrzeni rzutowych. Opowiem o najnowszych wynikach związanych z tym problemem dotyczących sytuacji kiedy obie przestrzenie mają wymiar większy niż 1 (prace Mostovoya, Mostovoya, Mostovoya i Munguia-Villanueva oraz Adamaszka-Kozłowskiego-Yamaguchiego). |
| 2012-11-20, godz. 12:00, s. 4070 |
| Piotr Przytycki (Uniwersytet Warszawski) |
| Separability of embedded surfaces in 3-manifolds |
| Materiały dotyczące referatu |
This is joint work with Dani Wise. Let S be an immersed incompressible surface in a 3-manifold M. Denote by M' the universal cover of M. Scott proved that the group pi_1S is separable in pi_1M iff any compact neighborhood of S in pi_1S\M' embeds in some finite cover of M. Rubinstein and Wang found an immersed surface which does not lift to an embedding in a finite cover, hence violates this condition. We prove that this is the only obstruction, i.e. that if S is already embedded, then pi_1S is separable. |
| 2012-11-13, godz. 12:00, s. 4070 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Lokalne osobliwe rodzaje |
| Materiały dotyczące referatu |
| Rozpoczynając od klasycznego twierdzenia Riemanna-Rocha dla krzywych omówię ewolucję pojęcia rodzaju (genusa). Dla gladkich rozmaitości algebraicznych przypomnę konstrukcję Chi_y-rodzaju Hirzebrucha. Okazuje się, że definicję Chi_y-rodzaju można rozszerzyć dla rozmaitości osobliwych. Dla rozmaitości z działaniem grupy istnieje ekwiwariantna wersja tej konstrukcji. Twierdzenie o lokalizacji dla działania torusa pozwala wyrazić globalny Chi_y-rodzaj za pomocą lokalnych niezmienników osobliwości w punktach stałych. Przedstawię parę przykładów obliczeń. |
| 2012-11-06, godz. 12:15, s. 4070 |
| Piotr Karwasz (Uniwersytet Gdański) |
| Spektrum i symetria (a,b)-modułów |
| Materiały dotyczące referatu |
| Streszczenie: Podstawowym niezmiennikiem izolowanych osobliwości hiper-powierzchni jest spektrum osobliwości, które posiada naturalną symetrię. Omówimy podobną symetrię dla modułu Brieskorna i skutki tej symetrii dla struktury (a,b)-modułów. |
| 2009-10-21, godz. 16:00 - 18:00, s. |
| Tilman Baue (Vrije Universiteit) |
| STABLE HOMOTOPY THEORY AND FORMAL GROUPS |
| ex. session |
| 2009-10-21, godz. 16:00 - 18:00, s. |
| Tilman Baue (Vrije Universiteit) |
| STABLE HOMOTOPY THEORY AND FORMAL GROUPS |
| Constructing homology theories from algebraic groups: K- theory and elliptic cohomology Summary: I will apply the ideas from the second talk to construct (with some details omitted) homology theories from formal groups that arise in nature. This will lead, for example, to various versions of K- theory and to the recent new theory of elliptic cohomology and topological modular forms. |
| 2009-10-20, godz. 16:00-18:00, s. 5870 |
| Tilman Baue (Vrije Universiteit) |
| STABLE HOMOTOPY THEORY AND FORMAL GROUPS |
| ex. session |
| 2009-10-20, godz. 12:00-14:00, s. 5870 |
| Tilman Baue (Vrije Universiteit) |
| STABLE HOMOTOPY THEORY AND FORMAL GROUPS |
| Complex oriented ring spectra and formal groups Summary: I will study the structure of a class of spectra, called complex oriented ring spectra, that admit a theory of Chern classes for complex vector bundles. Examples include singular homology, complex K-theory, and bordism. In many cases, these spectra can be completely described by an algebraic invariant associated to them, namely their formal group. Formal groups are objects from algebraic geometry resembling Lie algebras. |
| 2009-10-19, godz. 16:00-18:00, s. |
| Tilman Baue (Vrije Universiteit) |
| STABLE HOMOTOPY THEORY AND FORMAL GROUPS |
| Spectra and cohomology theories Summary: The category of spectra is obtained by formally making the suspension functor on the category of pointed spaces invertible. This category is important because it is where homology theories live: every (generalized) homology theory is representable by a spectrum, and every spectrum represents a homology theory. |
| 2009-05-26, godz. 12:00, s. 5810 |
| Marcin Świeca (Uniwersytet Warszawski) |
| Bifunktory ściśle wielomianowe. |
| Przedstawię zastosowanie algebry homologicznej w kategorii bifunktorów ściśle wielomianowych do liczenia kohomologii grupy liniowej. |
| 2009-05-19, godz. 12:00, s. 5810 |
| Stanisław Betley (Uniwersytet Warszawski) |
| Homologie pełnych grup liniowych z funktorialnymi współczynnikami - według A.Djamanta i C.Vespy |
| Niech C będzie kategoria z sumami a F funktorem z C do kategorii abelowej (np. przestrzeni liniowych nad ciałem K). Dla obiektu c w C zaprezentujemy (za Aurelianem Djamantem i Christiną Vespą) nowe podejscie do obliczania grup colimH_(Aut(c^n),F(c^n)), które leży pomiedzy obliczaniem granicy w teorii homologii grup a podejściem czysto poprzez homologie w kategorii funktorów. |
| 2009-05-12, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Loop Groups |
| Let G be a compact connected Lie (or linear reductive complex algebraic) group. I will present a sketch of a proof that the category of some sheaves (namely invariant perverse sheaves) on the loop group \Omega G is equivalent to the category of representations of the Langlands dual group. This theorem is due to Ginzburg and Mirkovich-Vilonen (and probably others). |
| 2009-04-28, godz. 12:00, s. 5810 |
| Bill Bogley (University Honors College/ Oregon State University) |
| Effective Aspects of Grushko's Theorem: A Tribute to John Stallings, 1935 - 2008 |
| In his 1959 Princeton Ph. D. dissertation, John Stallings gave a topological proof of a 1940 theorem of I. Grushko about generating sets of free products of groups. Stallings' proof is actually a method that has "a certain effectiveness" based on a subtle combinatorial fact that I will describe. As inspiration for his proof, after the fact, Stallings cited a 1929 paper of H. Kneser on decompositions of three-manifolds. Stallings went on to pioneer theories about decompositions of infinite groups, which reamins an active area of research. |
| 2009-04-21, godz. 12:00, s. 5810 |
| Paul F. Baum (Penn State University/ IM PAN) |
| Equivariant Chern character for discrete groups |
| 2009-03-17, godz. 12:00, s. 5810 |
| Andrzej Kozlowski (Tokyo Denki University) |
| Przestrzenie odwzorowań wymiernych miedzy przestrzeniami rzutowymi |
| 2009-03-10, godz. 12:00, s. 5810 |
| Jerzy Jezierski (SGGW) |
| Teoria Nielsena punktów periodycznych odwzorowan gładkich. Przypadek jednospójny. |
| Dane jest odwzorowanie ciagłe f : M --> M zwartej rozmaitosci (wieloscianu) w siebie. Teoria Nielsena bada minimalna ilosc punktów stałych (min_g # Fix(g) , g ~ f) w klasie homotopii f . Koncentrujemy sie na przypadku jednospójnym. Wówczas kazde f : M --> M (M jednospójna, dim M > 2) jest homotopijne z odwzorowaniem ciagłym majacym tylko jeden punkt stały (tw.Weckena). Okazuje sie, ze równiez ilosc punktów k periodycznych (k liczba naturalna ustalona a priori) mozna zredukowac do jednego punktu. Z drugiej zas strony redukcja taka nie jest mozliwa w przypadku odwzorowan gładkich co spowodowane jest, miedzy innymi, przez to ze ciag indeksów iteracji odwzorowania gładkiego podlega wiekszym ograniczeniom anizeli w przypadku ciagłym. Podajemy niezmiennik homotopijny bedacy (optymalnym) ograniczeniem dolnym ilosci punktów n-periodycznych odwzorowan gładkich. Podane wyniki maja równiez swoje uogólnienia na przypadek niejednospójny. |
| 2009-02-24, godz. 12:00, s. 5870 |
| Andrzej Szczepański (Uniwersytet Gdański) |
| Wlasnosci grup Hantsche - Wendta |
| 2007-06-05, godz. 12:00, s. 5870 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Homotopijne charaktery grup unitarnych |
| Niech G będzie zwartą grupą Liego. Homotopijnym p-charakterem grupy G nazywamy zgodną rodzinę reprezentacji zespolonych p-torycznych (lub równoważnie p-upartych) podgrup G. Homotopijne charaktery pojawiają się w naturalny sposób przy konstruowaniu przekształceń BG->BU(n). Głównym celem odczytu będzie przedstawienie kombinatorycznego opisu 2-charakterów grup unitarnych. |
| 2007-05-29, godz. 12:00, s. 5870 |
| Piotr Mieczysław Hajac (PAN) |
| Noncommutative join construction |
| The aim of this talk is to show how to carry out the join construction of compact quantum groups avoiding braiding and replacing the unit interval by an arbitrary unital C*-algebra (noncommutative compact Hausdorff space). This is done in terms of equivariantly projective Hopf-Galois extensions of C*-algebras. The completion of the extended algebra is a natural candidate for a non-crossed product example of a principal extension of C*-algebras in the sense of Ellwood (non-trivial noncommutative principal bundle). The main point is a general and explicit formula for a strong connection, which puts us directly into the framework of the index pairing between K-theory and K-homology. (Based on a joint work with L. Dąbrowski and T. Hadfield.) Piotr M. Hajac (Instytut Matematyczny, Polska Akademia Nauk / Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski). Joint Noncommutative Geometry and Algebraic Topology Seminar. |
| 2007-05-22, godz. 12:00, s. 5870 |
| Marcin Świeca (Politechnika Warszawska) |
| Relacje Adema w algebrze Steenroda. |
| Udowodnię relacje Adema dla kwadratów i potęg Steenroda. Dowód będzie polegał na interpretacji relacji Adema, w terminach równości pewnych formalnych szeregów potęgowych. |
| 2007-05-15, godz. 12:00, s. 5870 |
| Michał Adamaszek (Uniwersytet Warszawski) |
| O przestrzeni funkcji holomorficznych CP^m --> CP^n. |
| Dokończenie |
| 2007-05-08, godz. 12:00, s. 5870 |
| Piotr Przytycki (Uniwersytet Warszawski) |
| Twierdzenie o punkcie stałym dla niedodatniej krzywizny symplicjalnej. |
| Przypomnimy pojęcie kompleksu o niedodatniej krzywiźnie symplicjalnej. Podamy plan dowodu twierdzenia, że każda skończona grupa działająca na takim kompleksie posiada niezmienniczy podkompleks średnicy <=5. (Analogiczne twierdzenie dla metrycznie niedodatnio zakrzywionych przestrzeni mówi, że każda skończona grupa posiada punkt stały.) |
| 2007-04-24, godz. 12:00, s. 5870 |
| Michał Adamaszek (Uniwersytet Warszawski) |
| O przestrzeni funkcji holomorficznych CP^m --> CP^n raz jeszcze. |
| Nawiązując do referatu prof. Kozłowskiego sprzed nieco ponad roku, przedstawię dowód Mostovoya stabilnej homotopijnej równoważności tytułowej przestrzeni z przestrzenią wszystkich ciągłych odwzorowań CP^m --> CP^n, uzupełniony o nasz pomysł naprawienia luki (błędu?) w oryginalnym dowodzie. |
| 2007-04-17, godz. 12:00, s. 5870 |
| Feliks Przytycki (IM PAN) |
| Hipoteza Entropijna na (infra)nilrozmaitościach. |
| Po wstępie historycznym naszkicuję dowód twierdzenia, mówiącego że entropia topologiczna dowolnego przekształcenia ciągłego na zwartej (infra)nilrozmaitości jest niemniejsza niż logarytm promienia spektralnego operatora liniowego indukowanego przez to przekształcenie w algebrze kohomologii o współczynnikach rzeczywistych. To są moje wyniki uzyskane niedawno wspolnie z W. Marzantowiczem. |
| 2007-04-03, godz. 12:00, s. 5810 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Uogólnienia asocjahedrów i ich realizacje. |
| Kontynuacja |
| 2007-03-20, godz. 12:00, s. 5870 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Uogólnienia asocjahedrów i ich realizacje |
| Opowiem o dwóch konstrukcjach uogólnień wielościanów Stasheffa (asocjahedrów) oraz podam pewne ich zastosowania w szczególnych przypadkach. Odczyt będzie nawiązywał do odczytu J.-L. Loday'a z poprzedniego semestru. |
| 2007-03-13, godz. 12:00, s. 5870 |
| Stanisław Betley (Uniwersytet Warszawski) |
| Algebra homologiczna Z nad pierscieniem F. |
| Opowiem o historii i najnowszych próbach zdefiniowania na Z struktury F-algebry, dla różnych F, tak aby otrzymywać nietrywialne homologie Hochschilda. Celem (wciąż jeszcze niezrealizowanym) jest uzyskanie takiego obrazu, w którym Z jest nietrywialnym obiektem geometrycznym nad "ciałem" F, najlepiej krzywą algebraiczną. |
| 2007-02-27, godz. 12:00, s. 5870 |
| Józef Przytycki (George Washington University) |
| Jak zbudować homologie grafów bazujące na nieprzemiennych algebrach. |
| 2007-02-20, godz. 12:00, s. 5870 |
| Józef Przytycki (George Washington University) |
| Od homologii Hochschilda algebr do homologii Khovanova splotów. |
| W 1945 roku G. Hochschild wzorując się na bar-kompleksie używanym do definicji homologii grup zdefiniował kompleks łancuchowy dla dowolnej algebry. Homologie tego kompleksu nazywamy homologiami Hochschilda. W 1997 roku M. Khovanov dla dowolnego splotu skonstruował homologie, których charakterystyka Eulera jest wielomianem Jonesa. Pokażemy jak te dwie teorie związane są ze sobą. W przypadku algebry obciętych wielomianów Z[x]/(x^2) i splotu torusowego typu (2,n) związek jest bardzo konkretny. W ogólniejszym przypadku np. homologii Khovanova-Rozanskiego i algebry Z[x]/(x^n) spekulujemy jak homologie węzlów powiązane są z homologiami Hochschilda. |
| 2007-01-23, godz. 12:00, s. 5870 |
| Piotr Przytycki (Uniwersytet Warszawski) |
| Rozwijalność lokalnie wypukłych grupoidów lokalnych izometrii według Bridsona i Haefligera |
| Omówię język, w którym Bridson i Haefliger decydują się w swojej monografii dowodzić twierdzeń o rozwijalności. Dotyczy to m.in. niedodatnio zakrzywionych kompleksów grup i niedodatnio zakrzywionych orbifoldów. Przedstawię szkic dowodu. |
| 2007-01-16, godz. 12:00, s. 5870 |
| Marcin Chałupnik (Uniwersytet Warszawski) |
| Kohomologie przestrzeni jednorodnych jako reprezentacje grupy Weyla |
| Opowiem o zagadkowych związkach między grupami Ext w kategorii funktorów nad ciałem dodatniej charakterystyki a kohomologiami przestrzeni flag w charakterystyce zero. W pierwszej części odczytu naszkicuję ciekawą, a może niezbyt szeroko znaną, teorię Springera realizacji reprezentacji grupy Weyla w kohomologiach przestrzeni jednorodnych reduktywnych grup Lie (nie mylić z teorią Botta-Weila!!). |
| 2007-01-09, godz. 12:00, s. 5810 |
| Jean-Louis Loday (Université Louis Pasteur) |
| The multifacettes of the Stasheff polytope |
| The Stasheff complex is a polytope whose vertices are in bijection with the planar binary trees (one polytope for each n). It plays a role in many problems in algebraic topology (loop spaces, compactification). Recently it appeared also in algebraic combinatorics and in noncommutative geometry. In this lecture I will present a simple construction of these polytopes and show that the minimal triangulation is related to the "parking functions". Wspólne posiedzenie seminarium z Topologii Algebraicznej i seminarium z Geometrii Nieprzemiennej. |
| 2006-12-12, godz. 12:00, s. 5810 |
| Jacek Świątkowski (Uniwersytet Wrocławski) |
| O niedodatniej krzywiźnie symplicjalnej |
Więcej informacji: http://www.mimuw.edu.pl/~topalg/index.html |
| 2006-11-28, godz. 12:00, s. 5810 |
| Jolanta Słomińska (Politechnika Warszawska) |
| Topologia w Madrycie |
| Sprawozdanie z ICM. |
| 2006-11-21, godz. 12:00, s. 5810 |
| Olga Ziemiańska (Uniwersytet Warszawski) |
| Trójkąty grup. |
| 2006-11-14, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Dodatniość wielomianów Thoma i innych wielomianów pochodzących od funktorów wielomianowych. |
| Opowiem o wspólnej pracy z Piotrem Pragaczem "Positivity of Schur function expansions of Thom polynomials". Więcej informacji: http://www.mimuw.edu.pl/~topalg |
| 2006-11-07, godz. 12:00, s. 5810 |
| Mariusz Wodzicki (Berkeley) |
| Algebra bi-zewnętrzna i "symplektyczne spinory". |
| W wykładzie będzie mowa o interesującej nowej algebrze, którą ochrzciłem mianem algebry bi-zewnętrznej i nowym świetle w jakim ukazuje teorię reprezentacji symplektycznej algebry Lie'go $\mathfrak{sp}_2n$. |
| 2006-10-31, godz. 12:00, s. 5810 |
| Maciej Próchniak (Uniwersytet Warszawski) |
| Gładkie działania grupy SU(2) na dyskach. |
| 2006-10-24, godz. 12:00, s. 5810 |
| Andrzej Szczepański (Uniwersytet Warszawski) |
| Istnienie Spin struktury na rozmaitościach płaskich. |
| Wiadomo, że wiele własności zwartych rozmaitości Riemanna (bez brzegu) z zerową krzywizną sekcyjną (tzw. rozmaitości płaskich) można przetłumaczyć na język teorii reprezentacji grup. W proponowanym odczycie będę starał się (bardzo wstępnie) własność posiadania spin struktury przedstawić przy pomocy języka teorii reprezentacji. Przypadkiem, ktory będzie rozważany to płaskie rozmaitości z cykliczną grupą holonomii rzędu 2^n. Jest to omówienie wspólnej pracy z G. Hissem z Akwizgranu. |
| 2006-10-17, godz. 12:00, s. 5810 |
| Wojciech Hury, Paweł Witkowski (Uniwersytet Warszawski) |
| Grupy dyfeomorfizmów jako grupy dyskretne. |
| Dokończenie |
| 2006-10-10, godz. 12:00, s. 5810 |
| Wojciech Hury, Paweł Witkowski (Uniwersytet Warszawski) |
| Grupy dyfeomorfizmów jako grupy dyskretne. |
| 2006-10-03, godz. 12:00, s. 5810 |
| Zebranie organizacyjne |
| 2006-06-06, godz. 12:00, s. 5810 |
| Andrzej Szczepański (Uniwersytet Gdański) |
| Grupy Hantzsche-Wendta a skoczńone grupy extra-specjalne. |
| 2006-05-30, godz. 12:00, s. 5810 |
| Wojciech Hury (Uniwersytet Warszawski) |
| Teoria p-lokalnych skończonych grup. |
| Przestrzenie klasyfikujące abstrakcyjnych p-lokalnych grup uogólniają przestrzenie klasyfikujące BG^p grup skończonych uzupełnione w p. W referacie przypomnę konstrukcję p-lokalnej grupy dla danej skończonej grupy G, przytoczę niektóre wyniki uzyskane przy pomocy tej konstrukcji, opowiem o abstrakcyjnym sposobie zdefiniowania p-lokalnej grupy i analogiach z BG^p. |
| 2006-05-23, godz. 12:00, s. 5810 |
| Błażej Szepietowski (Uniwersytet Gdański) |
| Grupa klas odwzorowań powierzchni nieorientowalnej. |
| 2006-05-16, godz. 12:00, s. 5810 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Normalizatory torusów maksymalnych 2-zwartych grup. |
| 2006-05-09, godz. 12:00, s. 5810 |
| Paul F. Baum (Uniwersytet Warszawski) |
| Equivariant Chern Character |
| Let G be a (countable) discrete group acting by a smooth action on a manifold M. There is no further hypothesis on the action. C*(G,M) denotes the reduced crossed-product C*-algebra arising from the action of G on M. If G is finite, then the K-theory of C*(G,M) is Atiyah-Segal equivariant K-theory. When G is not finite, the K-theory of C*(G,M) can be viewed as the natural generalization of Atiyah-Segal equivariant K-theory. What should be the target of the Chern character whose source is the K-theory of C*(G,M)? In this talk, the target is defined in terms of classical homological algebra. Two extreme cases are then examined: the case when the action of G on M is proper - and the case when the manifold M is a point. |
| 2006-04-25, godz. 12:00, s. 5810 |
| Paweł Witkowski (Uniwersytet Warszawski) |
| Ekwiwariantny charakter Cherna dla grup nieskończonych (wg W. Luecka) |
| 2006-04-11, godz. 12:00, s. 5810 |
| Adam Piwocki (Uniwersytet Warszawski) |
| 2006-04-04, godz. 12:00, s. 5810 |
| Marcin Chałupnik (Uniwersytet Warszawski) |
| Rekreacje kombinatoryczne: od zabaw z szachownicą do hipotezy Nakayamy |
| 2006-03-28, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Jak za pomocą osobliwości wyliczyć klasy charakterystyczne. Wielomiany Thoma. |
| 2006-03-21, godz. 12:00, s. 5810 |
| Andrzej Kozłowski (Toyama International University) |
| O przestrzeni funkcji holomorficznych CP(n) --> CP(m) dla n>1. |
| Dokończenie. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2006-03-14, godz. 12:00, s. 5810 |
| Andrzej Kozłowski (Toyama International University) |
| O przestrzeni funkcji holomorficznych CP(n) --> CP(m) dla n>1 |
| 2006-02-28, godz. 12:00, s. 5810 |
| Olga Ziemiańska (Uniwersytet Warszawski) |
| Nieskończone rodziny asferycznych 2-kompleksów o tej samej charakterystyce Eulera. |
| Dokończenie. |
| 2006-02-21, godz. 12:00, s. 5810 |
| Olga Ziemiańska (Uniwersytet Warszawski) |
| Nieskończone rodziny asferycznych 2-kompleksów o tej samej charakterystyce Eulera. |
| Niech p i q będą liczbami pierwszymi, takimi że p dzieli (q-1). Zanurzając graf Cayleya grupy dihedralnej rzędu 2q (wybór generatorów będzie zależny od p) w powierzchnię S(p,q) otrzymujemy grupę automorfizmów F_pq tej powierzchni. Używając tej grupy skonstruujemy rozwijalny p-kąt grup, a następnie 2 wymiarowy asferyczny kompleks komórkowy Q(p,q), którego charakterystyka Eulera równa jest p. |
| 2006-01-24, godz. 12:00, s. 5810 |
| Paweł Traczyk (Uniwersytet Warszawski) |
| Homologie Khovanova |
| 2006-01-17, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Geometryczne własności grupy i torsja w H*BG. |
| Dokończenie |
| 2006-01-10, godz. 14:30, s. 5810 |
| Piotr Nowak (Vanderbilt University) |
| Zgrubnie zanurzalne przestrzenie bez własności A. |
| Guoliang Yu wprowadził własność A jako słabszą, metryczną wersję własności posiadania średniej przez grupę i udowodnił że (w szczególności) dla grup z własnością A spełniona jest hipoteza Novikova. Własność A jest na tyle słaba, że trudno jest skonstruować przestrzenie metryczne nie posiadające jej - jedyne znane przykłady to grupy Gromova zawierające ekspandery oraz skonstruowane przez Johna Roe "przestrzenie pudełkowe" (box spaces) i "skręcone stożki" (warped cones). W szczególności otwartym problemem było czy własność A jest równoważna zgrubnej zanurzalności w przestrzeń Hilberta. Głównym celem referatu jest ogólna konstrukcja (wykorzystująca grupy średniowalne) przestrzeni które rozróżniają te dwa pojęcia. |
| 2006-01-10, godz. 12:00, s. 5810 |
| Jarek Kedra (University of Aberdeen) |
| Homomorfizmy przepływu i entropia |
| Homomorfizm przepływu jest określony na grupie podstawowej grupy dyfeomorfizmów zachowujących zamkniętą formę różniczkową na rozmaitości. Jego wartości są w odpowiednich kohomologiach rozmaitości. W referacie skupię się na homomorfizmie przepływu dla formy objętości. Pokażę, że jeśli jest nietrywialny to rozmaitośc zachowuje się trochę tak jakby działał na niej okrąg bez punktów stałych. Mówiąc bardziej precyzyjnie, udowodnię, że znika wówczas tzw entropia wolumiczna rozmaitości. Jest to homotopijny niezmiennik, który mówi jak szybko rosną kule w nakryciu uniwersalnym względem dowolnej metryki riemannowskiej. |
| 2005-12-20, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Geometryczne własności grupy i torsja w H*BG. |
| Dokończenie. |
| 2005-12-13, godz. 12:00, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Geometryczne własności grupy i torsja w H*BG. |
| Nie każda algebraiczna wiązka główna jest lokalnie trywialna w topologii Zariskiego. Jest tak jedynie dla wąskiej klasy grup, które zostały opisane przez Grothendiecka. Są to dokładnie te grupy, które nie maja torsji w H*BG. Dowód tej równoważności (w trudniejszą stronę) używa klasyfikacji. Nie dowiadujemy się za jakie własności grupy odpowiada znikanie p-torsji. W referacie sformułuję naturalne pytania, na które znamy jedynie częściowe odpowiedzi. |
| 2005-12-06, godz. 12:00, s. 5810 |
| Adam Charles Rennie (University of Copenhagen) |
| Commutative Geometries are Spin Manifolds |
| I will describe the tools and approach that Joe Varilly and myself employ to reconstruct a manifold from a spectral triple. This will include some discussion of the axioms/conditions employed, as well the role they play in the reconstruction. |
| 2005-11-22, godz. 12:00, s. 5810 |
| Adam Przeździecki (Uniwersytet Warszawski) |
| Mierzalne liczby kardynalne. Próba dowodu nieistnienia. |
| Podczas referatu przedstawię, mam nadzieję poprawny, dowód że liczby mierzalne nie istnieją. Główne narzędzia wykorzystane w dowodzie to uzwarcenie Cecha-Stonea i grupa podstawowa. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2005-11-15, godz. 12:00, s. 5810 |
| Michele Intermont (Kalamazoo) |
| Good spaces and Complexity. |
| Fixing a space A, the class of spaces C(A) is the collection of spaces which can be built out of A by using weak equivalences and homotopy colimits. The A complexity of a space X measures how difficult it is to built X from A with these operations. In this talk we will discuss some formulae for A-complexity, a special collection of spaces A called good, and A-complexity of spaces when A is good. |
| 2005-11-08, godz. 12:00, s. 5810 |
| Jan Kubarski (Politechnika Łódzka) |
| Homomorfizm uniwersalny dla egzotycznych plaskich klas charakterystycznych i jego monomorficznosc. Algebroidowa unifikacja. |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2005-10-25, godz. 12:00, s. 5810 |
| Paweł Witkowski (Uniwersytet Warszawski) |
| Grupy algebraiczne i ekwiwariantne teorie kohomologii. |
| 2005-10-18, godz. 12:00, s. 5810 |
| Wojciech Hury (Uniwersytet Warszawski) |
| Topology for Computing |
| Referat opowie o ksiażce Afry Zomorodiana "Topology for Computing". |
| 2005-10-04, godz. 12:00, s. 5810 |
| Dariusz Miklaszewski (UMK Toruń) |
| Rola różznych rodzajów ciągłości w teorii punktów stałych odwzorowań wielowartościowych. Zastosowanie pewnych klas charakterystycznych. |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2005-06-01, godz. 12:15, s. 5820 |
| Jesper Moller (Uniwersity of Copenhagen) |
| Crash-course on p-compact groups and homotopy Chevalley groups |
| p-zwarte grupy (dla ustalonej liczby pierwszej p) to teorio-homotopijne uogolnienie zwartych grup Lie; egzotyczne przyklady takich grup sa zwiazane z klasycznymi pytaniami o istnienie przestrzeni z zadana algebra kohomologii o wspolczynnikach w ciele p-elementowym. W cyklu 3 wykladow (kolejne 2 i 3 czerwca o tej samej porze i miejscu) J.Moeller, wybitny ekspert w tej dziedzinie, przedstawi rozwoj teorii od jej poczatkow po aktualnie badane problemy. Przezrocza do wykladow mozna obejrzec pod adresem: http://www.math.ku.dk/~moller/preprints/pcgtalk.pdf |
| 2005-05-17, godz. 12:00, s. 5810 |
| Paul Baum (Pennsylvania State University) |
| Equivariant Chern character in K-theory and K-homology. |
| If a group G acts on a topological space X, then the quotient space G/X is obtained by collapsing each orbit to a point. A different kind of quotient is obtained by replacing each orbit by the set of conjugacy classes of its isotropy group. This talk will describe how this extended quotient can be used to construct the Chern character for equivariant K-theory, equivariant K-homology, and equivariant bivariant K-theory. |
| 2005-05-16, godz. 16:15, s. 3210 |
| Adam Sikora (University at Buffalo) |
| O związkach między kwantowymi niezmiennikami węzła a topologią jego dopełnienia. |
| 2005-05-10, godz. 12:00, s. 5810 |
| Światosław Gal (Uniwersytet Warszawski) |
| Rozmaitości asferyczne, flagowe wielościany i nierzeczywiste pierwiastki. |
| Hipoteza Hopfa przewiduje znak charakterystyki Eulera zwartej asferycznej rozmaitości M. Davis konstruuje dla danego kompleksu symplicjalnego L, zwarty kompleks kostkowy M_L, taki że linkiem każdego wierzchołka jest L. Łatwo sprawdzić, kiedy M_L jest asferyczną rozmaitością. Hipoteza Hopfa dla M_L nazywa się Hipotezą Charney i Davisa dla L. Postępując zgodnie z uswięconą tradycją, uogólnimy hipotezę Charney i Davisa i znajdziemy kontrprzykład na to uogólnienie. |
| 2005-04-26, godz. 12:00, s. 5810 |
| Agnieszka Bojanowska (Uniwersytet Warszawski) |
| Deconstructing Hopf spaces. |
| 2005-04-12, godz. 12:00, s. 5810 |
| Andrzej Szczepański (Uniwersytet Gdański) |
| Endomorfizmy grup relatywnie hiperbolicznych |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2005-04-05, godz. 12:00, s. 5810 |
| Joze Malesic (University of Ljubljana) |
| On Sato-Levine invariant and Conway polynomial |
| 2005-03-22, godz. 12:00, s. 5810 |
| Jola Słomińska |
| Przestrzenie kosymplicjalne i operady (wg McClure'a i Jeff'a Smith'a) |
| 2005-03-15, godz. 14:30, s. 5810 |
| Wojtek Chachólski (KTH) |
| Lokalizacje Bousfielda i grupowe uzupełnienia Quillena. |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2005-03-08, godz. 12:00, s. 5810 |
| Paweł Witkowski (Uniwersytet Warszawski) |
| Delokalizowanie ekwiwariantnych teori kohomologii. |
| 2005-03-01, godz. 12:00, s. 5810 |
| Tadeusz Koźniewski (Uniwersytet Warszawski) |
| Topologia w ekonomii. |
| 2005-02-22, godz. 12:00, s. 5810 |
| Renata Gruszka (Uniwersytet Warszawski) |
| O odpetlaniu K-teorii. |
| 2004-12-21, godz. 12:00, s. 5810 |
| Jan Gorski (Uniwersytet Warszawski) |
| Reprezentowalność pochodnego schematu Quot (częsc 2) |
| W mojej pracy doktorskiej konstruuję pochodny funktor Quot (RQuot) w kategorii D-stogów. Następnie pokazuję, że jest on D-stogiem reprezentowanym w słabym sensie (jest geometryczny). Na drugim spotkaniu przedstawię główne etapy konstrukcji.
Istnienie pochodnego snopa RQuot oraz RHilb jest pierwszym krokiem do zdefiniowania innych rozszerzeń klasycznych funktorów jak RVect czy RM g,n(X). Potrzebę takich konstrukcji przy klasyfikowaniu wiązek wektorowych oraz w teorii niezmienników Gromova-Wittena komunikowano w pracach K.Behrenda, Y. Manina, B. Fantechi oraz M. Kontsevicha "na przełomie wieków". Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2004-12-14, godz. 12:00, s. 5810 |
| Jan Gorski (Uniwersytet Warszawski) |
| Reprezentowalność pochodnego schematu Quot (częsc 1) |
| Celem pierwszego spotkania jest opisanie motywacji i źródeł historycznych związanych z tematyką mojej rozprawy doktorskiej. Opiszę problematykę, którą się zajmuję, z perspektywy zastosowania moich wynikłw do rozwiązania klasycznych problemów. Postaram się kłaść nacisk na naturalność wyboru takiej ścieżki badań.
Ponadto naszkicuję konstrukcje kategorii stogów pochodnych (D-stacks) zdefiniowanej przez B.Toëna i G.Vezzosi. Kategoria D-stogów ma przewagę nad innymi definicjami globalnej pochodnej geometrii algebraicznej między innymi, ma dobrze określony produkt włóknisty oraz wewnętrzny Hom. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2004-12-07, godz. 12:00, s. 5810 |
| Matilde Marcolli (Max-Planck-Institut fuer Mathematik, Bonn) |
| Towards the fractional Quantum Hall Effect: a noncommutative geometry perspective |
| In this joint work with Varghese Mathai we propose an approach to the fractional Quantum Hall Effect within the framework of noncommutative geometry, using hyperbolic geometry to simulate electron-electron interactions. By computing the range of the higher cyclic traces on K-theory for cocompact Fuchsian groups, we determine the range of values of the Connes-Kubo Hall conductance in the discrete model of the quantum Hall effect on the hyperbolic plane. The new phenomenon that we observe in our case is that the Connes-Kubo Hall conductance has plateaux at integral multiples of a fractional valued topological invariant, namely the orbifold Euler characteristic. The set of possible fractions obtained in this model can be compared with recently available experimental data.
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2004-11-23, godz. 12:00, s. 5810 |
| Olga Ziemiańska (Uniwersytet Warszawski) |
| Teoria kompleksów grup |
| Teoria kompleksów grup została wprowadzone przez M.R. Bridsona i A. Haefligera. Pojęcie to można zinterpretować w języku lax funktorów, czyli tak zwanych prawie funktorów. Opowiem o wynikach i wnioskach jakie udało mi się otrzymać patrząc na kompleks grup jako na lax funktor o wartościach w katgorii grup. Między innymi pokażę, że przestrzeń klasyfikująca kompleksu grup ma własności granicy homotopijnej. |
| 2004-11-16, godz. 12:00, s. 5810 |
| Marcin Sawicki (Uniwersytet Warszawski) |
| Wprowadzenie do grup automatycznych |
| Dokończenie i przedstawienie otwartych problemów |
| 2004-11-09, godz. 12:00, s. 5810 |
| Marcin Sawicki (Uniwersytet Warszawski) |
| Wprowadzenie do grup automatycznych |
| Przypomnienie definicji automatu skonczonego, języka regularnego. Definicje grup automatycznych i biautomatycznych. Klasyczne przykłady (grupy hiperboliczne, warkocze, grupy podstawowe rozmaitości trójwymiarowych). Przegląd podstawowych własności (niezależność od wyboru generatorów, kwadratowa nierówność izoperymetryczna, efektywne rozwiązanie problemu słów i elementów sprzężonych, ...). Związki z niedodatnią krzywizną. Przegląd kilkunastu bardziej i mniej znanych problemów otwartych. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-11-02, godz. 12:00, s. 5810 |
| Agnieszka Bojanowska (Uniwersytet Warszawski) |
| Co nowego w H-przestrzeniach? |
| Zostaną omówione wyniki dot. H-przestrzeni
przedstawione na konferencji w Arolli latem br. Więcej informacji: http://duch.mimuw.edu.pl/~adamp/topalg/ |
| 2004-10-26, godz. 12:00, s. 5810 |
| Adam Piwocki (Uniwersytet Warszawski) |
| Problem slow w grupie warkoczy |
| Przeglad rozwiazan problemu slow w grupie warkoczy: Oryginalne rozwiazanie Artina, nowatorskie rozwiazanie Garside'a plus jego ulepszenia, rozwiazanie zespolu Birman-Ko-Lee na innych generatorach oraz szybki algorytm Dehornoya. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-10-19, godz. 12:00, s. 5810 |
| Wojciech Wojtynski (Uniwersytet Warszawski) |
| Nowa metoda calkowania algebr Liego |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-10-12, godz. 12:00, s. 5810 |
| Swiatoslaw Gal (Uniwersytet Warszawski) |
| Konfiguracje symplektyczne |
| Referat dotyczy wpolnych wynikow z Jaroslawem Kedra. Definiujemy klase rozwloknien symplektycznych (konfiguracje symplektyczne), ktora okazuje sie byc naturalnym uogolnieniem rozwloknien hamiltonowskich. Omowione zostana geometryczne i topologiczne wlasnosci takich rozwloknien. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-05-25, godz. 12:00, s. 5810 |
| Sprawozdanie z konferencji w Bedlewie "Geometric Group Theory" |
| 2004-05-18, godz. 12:00, s. 5810 |
| Piotr Hajac (IM PAN) |
| Charakter Cherna-Galois |
| Celem seminarium jest zaprzyjaznienie topologow algebraicznych z nieprzemienna geometria. Jednym z klasycznych zadan topologii jest wyliczanie niezmiennikow wiazek wektorowych. Okazuje sie ze problem ten ma duzo szersza nature polegajaca na rozumieniu tych niezmiennikow jako niezmiennikow K-teorii odpowiednich algebr. Ich przemiennosc nie jest potrzebna i otwiera caly swiat nowych naturalnych przykladow. Podstawowe narzedzia topologiczne takie jak charakter Cherna czy twierdzenie o indeksie znajduja swoje odzwierciedlenie w niekomutatywnej geometrii. Charakter Cherna-Galois jest jawnym wzorem pozwalajacym wyprodukowac z koreprezentacji koalgebry, przy pomocy glownego rozszerzenia Galois nieprzemiennych algebr, element cyklicznej homologii. Odpowiada to formalizmowi Cherna-Weila ktory pozwala przy pomocy wiazki glownej wyprodukowac z reprezentacji grupy charakter Cherna wiazki stowarzyszonej. Podczas seminarium bedzie przedstawiona konstrukcja charakteru Cherna-Galois oraz podane przyklady jego zastosowania do wyliczenia topologicznych niezmiennikow kwantowej geometrii. |
| 2004-05-11, godz. 12:00, s. 5810 |
| Jarek Kedra (Uniwersytet Szczecinski) |
| Grupa symplektomorfizmow S^2xS^2 jest produktem z amalgamacja zwartych grup Liego |
| Zreferuje prace S.Anjos, G.Granja Homotopy decomposition of a group of symplectomorphisms of S2 (math.AT/0303091). Glowny argument bazuje na pomysle Gromova o tym ze topologie grupy symplektomorfizmow mozna zbadac patrzac sie na jej dzialanie na sciagalnej przestrzeni struktur prawie zespolonych. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-05-04, godz. 12:00, s. 5810 |
| Agnieszka Bojanowska (Uniwersytet Warszawski) |
| "Algebra Liego" grup p-zwartych |
| 2004-04-06, godz. 12:00, s. 5810 |
| Wojtek Chacholski (University of Minnesota) |
| Reprezentacje przestrzeni |
| Reprezentacja przestrzeni X to funktor indeksowany kategoria sympleksow X ktory odwraca morfizmy degeneracji. Przedstawie dlaczego reprezentacje przestrzeni sa latwiejsze do zrozumienia niz reprezentacje dowolnych kategorii. Wyjasnie jaki efekt maja niektore konstrukcje geometryczne (na przyklad podzial barycentryczny) na reprezentacje. Przedstawie niektore zastosowania. |
| 2004-03-30, godz. 12:00, s. 5810 |
| Pawel Witkowski (Uniwersytet Warszawski) |
| Konstrukcja ekwiwariantnego charakteru Cherna o wartosciach w ekwiwariantnych periodycznych kohomologiach C*-algebry funkcji gladkich na rozmaitosci. |
| Zamierzam omowic prace Jonathan Block, Ezra Getzler "Equivariant cyclic homology and equivariant differential forms". Konstruuje sie w niej uzywajac pewnego kompleksu form rozniczkowych ekwiwariantne periodyczne cykliczne homologie algebry funkcji gladkich na rozmaitosci. Nowoscia jest to, ze tym razem dziala zwarta grupa Lie. W pracy konstruuje sie rowniez ekwiwariantny charakter Cherna z ekwiwariantnej K-teorii algebry funkcji gladkich do ekwiwariantnych periodycznych cyklicznych homologii tej algebry. Konstrukcja ta jest zdelokalizowana w sensie Paula Bauma, ale nie ma w pracy twierdzenia o izomorfizmie ekwiwariantnej K-teorii pomnozonej tensorowo przez C z ww. teoria homologii. Ten referat bedzie juz bardziej szczegolowy, gdyz konstrukcje te sa chyba nieznane ogolowi. |
| 2004-03-23, godz. 12:00, s. 5810 |
| Pawel Witkowski (Uniwersytet Warszawski) |
| Konstrukcja ekwiwariantnego charakteru Cherna o wartosciach w ekwiwariantnych periodycznych kohomologiach C*-algebry funkcji gladkich na rozmaitosci. |
| Zostanie przypomniana konstrukcja homologii Hochschilda, cyklicznych oraz periodycznych cyklicznych dla zespolonej algebry. Nastepnie podam szkice dowodow izomorfizmow tych teorii z kompleksem form rozniczkowych i kohomologiami de Rhama, po zastosowaniu tych funktorow do algebry funkcji gladkich na rozmaitosci. W tym celu pokaze konstrukcje odwzorowania Kostanta-Hochschilda-Rosenberga, ktore zada nam quasiizomorfizm kompleksu liczacego periodyczne homologie cykliczne i kompleksu de Rhama. Nastepnie chcialbym powiedziec o konstrukcji charakteru Cherna. W tym celu przypomne definicje K-teorii C*-algebr charakteru Cherna w tym kontekscie. Nastepnie chcialbym podac podstawowe informacje o ekwiwariantnych odpowiednikach homologii Hochschilda cyklicznych i periodycznych cyklicznych, dla dzialania grupy skonczonej. Pokaze rowniez w tym kontekscie konstrukcje charakteru Cherna i szkic dowodu izomorfizmu ekwiwariantnej K-teorii C*-algebry funkcji gladkich na rozmaitosci, pomnozonej tensorowo przez C, z ekwiwariantnymi homologiami periodycznymi cyklicznymi tejze C*-algebry. Naszkicuje rowniez dowod izomorfizmu ekwiwariantnych periodycznych cyklicznych homologii algebry funkcji gladkich na rozmaitosci, z kohomologiami Bredona tej rozmaitosci. Rozwazania te beda mialy raczej szkicowy charakter, gdyz sa juz znane od dawna. Beda mi jednak potrzebne w nastepnym referacie. |
| 2004-03-16, godz. 12:00, s. 5810 |
| Jakub Antosz (Uniwersytet Warszawski) |
| Algebra homologiczna w kategoriach funktorow i jej zwiazki z kohomologiami grup symetrycznych i algebra Steenroda. |
| Kontynuacja |
| 2004-03-09, godz. 12:00, s. 5810 |
| Jakub Antosz (Uniwersytet Warszawski) |
| Algebra homologiczna w kategoriach funktorow i jej zwiazki z kohomologiami grup symetrycznych i algebra Steenroda. |
| Kohomologie grup symetrycznych w naturalny sposob pojawiaja sie w obliczeniach funktorow pochodnych w kategorii \Omega-modulow (funktorow ze zbiorow skonczonych i epimorfizmow w kategorie przestrzeni wektorowych). Komplikuje to obliczenia ze wzgledu na bardzo zlozona strukture wyzej wymienionych kohomologii i homologii, z drugiej jednak strony zaowocowac moze nowym ich opisem i ponownym obliczeniem w nowym jezyku. Szczegolnie interesujaca wydaje sie byc perspektywa nowego, prostszego opisu struktury multiplikatywej kohomologii grup symetrycznych oraz ich zwiazkow z algebra Steenroda.
W pierwszej czesci referatu przedstawie klasyczne obliczenia na podstawie prac M. Nakaoki i H. Cardenasa. W drugiej czesci zaprezentuje obliczenia w kategorii \Omega-modulow. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-03-02, godz. 12:00, s. 5810 |
| Paul Baum (Pennsylvania State University) |
| On the equivariant Chern character. |
| This talk begins with a brief review of the classical Chern character. Then the equivariant Chern character for K-theory and for the dual theory, K-homology, will be considered. The connection to cyclic (co)homology will be exposed. Finally, all the preceding will be viewed as special cases of the Chern character for equivariant-bivariant K-theory. Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2004-02-24, godz. 12:00, s. 5810 |
| Marcin Chalupnik (Uniwersytet Warszawski) |
| wprowadzenie do referatu Paula Bauma |
| 2004-02-17, godz. 12:00, s. 5810 |
| Stanislaw Betley (Uniwersytet Warszawski) |
| K-teoria kategorii parametryzowanych endomorfizmow. |
| 2004-01-06, godz. 12:15, s. 5810 |
| Marcin Chalupnik (Uniwersytet Warszawski) |
| Ciag spektralny Adamsa II |
| 2003-12-16, godz. 12:15, s. 5810 |
| Marcin Chalupnik (Uniwersytet Warszawski) |
| Ciag spektralny Adamsa I |
| 2003-12-09, godz. 12:15, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Kohomologie przestrzeni, bedacych suma skonczonej ilosci orbit. |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2003-12-02, godz. 12:15, s. 5810 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Ciag Eilenberga Moore'a i jego zastosowania |
| 2003-11-25, godz. 12:00, s. 5810 |
| Olga Weber (Uniwersytet Warszawski) |
| Przestrzen konfiguracji punktow na okregu. |
| Ciag dalszy Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2003-11-18, godz. 12:00, s. 5810 |
| Olga Weber (Uniwersytet Warszawski) |
| Przestrzen konfiguracji punktow na okregu |
| 2003-11-04, godz. 12:00, s. 5810 |
| Marcin Chalupnik (Uniwersytet Warszawski) |
| Rozszerzenia reprezentacji grupy liniowej i funktory wielomianowe |
| Zaczne od opisania stosunkowo nowego podejscia do reprezentacji grupy linowej pochodzacego od Henna, Lannesa, Schwartza, oraz Kuhna. Polega ono na porownywaniu kategorii reprezentacji z kategoria funktorow z przestrzeni liniowych do przestrzeni liniowych. Podejscie to okazalo sie szczegolnie owocne w badaniu algebry homologicznej w kategorii reprezentacji modularnych. Nastepnie przedstawie glowne wyniki mojej rozprawy doktorskiej w ktorej uzywajac funktorow oraz metod z klasycznej teorii reprezentacji uzyskalem wiele obliczen grup Ext miedzy reprezentacjami. Innym moim waznym narzedziem jest pewne teorioreprezentacyjne uogolnienie kompleksu De-Rhama, ktore pozwala zinterpretowac homologicznie znane z modularnej teorii reprezentacji niezmienniki diagramow Younga takie jak p-rdzen i p-iloraz diagramu. |
| 2003-10-28, godz. 12:00, s. 5810 |
| Adam Piwocki (Uniwersytet Warszawski) |
| Wyznacznik zorientowanych rotantow |
| Przedstawie prace magisterska. W pracy przypatrujemy sie niezmiennikowi splotow, tzw. wyznacznikowi, par rotantow - pewnych splotow, ktorych diagramy roznia sie jedynie pewna symetryczna czescia. Okazuje sie, ze wyznaczniki pary moga roznic sie co najwyzej znakiem. W dodatku przedstawiono przyklad, ktory nie pozwala na uogolnienie twierdzenia P. Traczyka, z ktorego korzystano w pracy.
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2003-10-21, godz. 12:00, s. 5810 |
| Andrzej Szczepanski (Uniwersytet Gdanski) |
| Spin struktury na plaskich rozmaitosciach. |
| Referat bedzie dotyczyl spin struktur na plaskich rozmaitosciach. Zostana podane warunki konieczne i dostateczne istnienia spin struktury na takich rozmaitosciach. Nastepnie zostana podane dwie nieskonczone rodziny plaskich rozmaitosci i szczegolowo zastana omowione spin struktury na nich. Zastosowania do liczenia \eta nizmiennika takze zostana podane. Wiecej informacji mozna zobaczyc w arXive (wspolna praca z M.Sadowskim pod tytulem: "Flat manifolds, harmonic spinors, and eta invariants" DG/0310183) Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2003-10-14, godz. 12:00, s. 5810 |
| Pawel Witkowski (Uniwersytet Warszawski) |
| Ekwiwariantny charakter Cherna |
| Kontynuacja Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/ |
| 2003-10-07, godz. 12:15, s. 5810 |
| Pawel Witkowski (Uniwersytet Warszawski) |
| Ekwiwariantny charakter Cherna |
| Konstrukcja ekwiwariantnego charakteru Cherna, o wartosciach w ekwiwariantnych kohomologiach Bredona wywodzi sie z pracy dr. hab J. Slominskiej "Equivariant Chern homomorphism". W pracy tej zostal podany dowod izomorizmu ekwiwariantnej K-teorii i kohomologii Bredona dla grup skonczonyh. Zamierzam przedstawic dalsze osiagniecia, roznych autorow, uogolniajace wymieniona konstrukcje. |
| 2003-05-27, godz. 14:30, s. 5081 |
| Sylvain Cappell (Courant Institute, New York University) |
| Charactersitic classes and monodromy |
| 2003-05-20, godz. 14:30, s. 5081 |
| Alexander S. Mishchenko (Moscow State University) |
| On signature of transitive Lie algebroid |
| 2003-05-13, godz. 14:30, s. 5081 |
| Jolanta Slominska (Politechnika Warszawska) |
| Ciagi spektralne w (ko)homologiach wolnych przestrzeni petli |
| Omowione zostana prace M. Bocksteda i I. Ottosena oraz R. Cohena, J. Jonesa i J. Yan. |
| 2003-05-06, godz. 14:30, s. 5081 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Reprezentacje homotopijne grupy SU(2)^n |
| Okazuje sie, że homotopijne 2-adyczne reprezentacje unitarne iloczynów dwuwymiarowej grupy unitarnej, czyli odwzorowania BSU(2)^n ---> BU(n)^_2 zachowuja sie zupelnie inaczej niz reprezentacje liniowe. |
| 2003-04-15, godz. 14:30, s. 5081 |
| Matthias Franz (Uniwersytet Grenoble 1, Francja) |
| Koszul duality and equivariant cohomology for tori |
| Koszul duality (in its simplest form) refers to the equivalence of derived categories of differential modules over symmetric and exterior algebras. Goresky, Kottwitz, and MacPherson have shown that one can use Koszul duality to compute the real equivariant cohomology of a $G$-space as $H^*(BG)$-module from the non-equivariant cochain complex. Similarly, the equivariant cochain complex determines the ordinary cohomology as $H_*(G)$-module. For the case of torus actions and singular cohomology, I will present a different approach which extends to arbitrary coefficients. It permits moreover to recover the product structure in equivariant cohomology. As application I will describe the integral cohomology of smooth toric varieties. This complements a result of Buchstaber and Panov. |
| 2003-04-08, godz. 14:30, s. 5081 |
| Krzysztof Ziemianski (Uniwersytet Warszawski) |
| Poczatek referowania pracy doktorskiej. |
| Nastepne odcinki (3-4) poza posiedzeniami seminarium. |
| 2003-04-01, godz. 14:30, s. 5081 |
| Adrian Langer (Uniwersytet Warszawski) |
| Program Langlandsa według Lafforgue'a |
| Wyklad poswiecony bedzie wynikom L. Lafforgue'a. W 2002 roku otrzymal on medal Fieldsa za swoje prace dotyczace programu Langlandsa, a dokladniej za dowod odpowiedniosci Langlandsa dla ogolnej grupy liniowej nad cialami funkcyjnymi krzywych w dodatniej charakterystyce. Odpowiedniosc ta dotyczy zwiazkow miedzy teoria liczb i teoria grup, a jej dowod uzywa geometrii algebraicznej. Na wykladzie postaram sie wyjasnic, na czym ta odpowiedniosc polega i co jest glownym elementem dowodu. |
| 2003-03-25, godz. 14:30, s. 5081 |
| Cornel Pintea ("Babes-Bolyai" University of Cluj-Napoca, Romania) |
| Some aspects of the critical point theory. |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/index.html |
| 2003-03-25, godz. 16:00, s. 5081 |
| Wojciech Chacholski (Uniwersytet Minnesota, USA) |
| Injektywnosc i Pro-homotopia. |
| Wiele homotopijnych wlasnosci przestrzeni mozna rozszerzyc do bardziej ogolnych Pro-homotopijnych wlasnosci. Te ogolniejsze wlasnosci znacznie dokladniej opisuja przestrzenie. Zilustruje to przez kilka motywujacych przykladow. |
| 2003-03-11, godz. 14:30, s. 5081 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Czyste homologie rozmaitosci algebraicznych |
| Dokonczenie |
| 2003-03-04, godz. 14:30, s. 5081 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Czyste homologie rozmaitosci algebraicznych |
Więcej informacji: http://www.mimuw.edu.pl/~aweber/ps/pur.ps |
| 2003-02-25, godz. 14:30, s. 5081 |
| Adam Przezdziecki (Uniwersytet Warszawski) |
| Lokalizacje kohomologiczne |
| Przedstawie dowod istnienia lokalizacji kohomologicznych, czyli funktorow idempotentnych w kategorii homotopijnej, ktore dla ustalonej teorii kohomologii h przeprowadzaja h-rownowaznosci na slabe homotopijne rownowaznosci. |
| 2003-02-18, godz. 14:30, s. 5081 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| O wiernej reprezentacji liniowej 2-zwartej grupy DI(4) |
| 2003-02-11, godz. 14:30, s. 5081 |
| Krzysztof Ziemianski (Uniwersytet Warszawski) |
| O wiernej reprezentacji liniowej 2-zwartej grupy DI(4) |
| 2003-01-14, godz. 14:30, s. 5081 |
| Stefan Jackowski (Uniwersytet Warszawski) |
| Lekcja klasyki: obliczenie pierscienia bordyzmu z pomoca grup formalnych. |
| Przedstawie geodezyjne wyliczenie pierscienia bordyzmu niezorientowanego, pochodzace od Boardmana, tom Diecka i Quillena oraz kilka komentarzy na temat teorii kohomologii stowarzyszonych z grupami formalnymi. |
| 2003-01-07, godz. 14:30, s. 5081 |
| Zbigniew Marciniak (Uniwersytet Warszawski) |
| O liniowosci grupy warkoczy |
| 2002-12-17, godz. 14:30, s. 5081 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Wygładzanie przestrzeni pętli. |
| dokończenie |
| 2002-12-10, godz. 14:30, s. 5081 |
| Krzysztof Ziemiański (Uniwersytet Warszawski) |
| Wygładzanie przestrzeni pętli. |
| Omówiona zostanie praca T. Bauer i E.K. Pedersen
"Smoothing loop spaces" Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/2002_03.zima/loop.ps |
| 2002-12-03, godz. 14:30, s. 5081 |
| Wojciech Hury (Wydział MIM UW) |
| Operacje Steenroda w ekwiwariantnych kohomologiach Bredona |
| 2002-11-19, godz. 14:30, s. 5081 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Hipoteza Bauma-Connesa (kontynuacja) |
| 2002-11-12, godz. 14:30, s. 5081 |
| Andrzej Weber (Uniwersytet Warszawski) |
| Hipoteza Bauma-Connesa |
| 2002-11-05, godz. 14:30, s. 5081 |
| Renata Gruszka (Uniwersytet Warszawski) |
| Dowod twierdzenia Botta o periodycznosci |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/2002_03.zima/bott.ps |
| 2002-10-29, godz. 14:30, s. 5081 |
| Stanislaw Betley (Uniwersytet Warszawski) |
| Kontrprzyklad na lim1 |
Więcej informacji: http://www.mimuw.edu.pl/~adamp/topalg/2002_03.zima/seminar.ps |
| 1000-03-06, godz. 12:00, s. 5870 |
| TBA |

