
DIXER User Manual
for version 2.0.1

Rafał Latkowski
rlatkows@mimuw.edu.pl

http://logic.mimuw.edu.pl/~rses/dixer/

mailto:rlatkows@mimuw.edu.pl
http://logic.mimuw.edu.pl/~rses/dixer/

2

Contents

1 Introduction 5
1.1 DIXER . 5
1.2 DIXER Server . 5
1.3 DIXER Client . 6

2 Installation 7
2.1 Setup program . 7
2.2 Package content . 7
2.3 Java Runtime Environment . 7
2.4 Executing . 8

3 Configuration 9
3.1 Server Configuration . 9
3.2 Client Configuration . 9

3.2.1 Server address . 9
3.3 Configuration file . 10

3.3.1 Connection . 10
3.3.2 Graphical User Interface . 11
3.3.3 Task specification . 11
3.3.4 Command specification . 12
3.3.5 Debugging and verbosity . 13

4 Operating Server 15
4.1 Command line parameters . 15
4.2 Server window . 15
4.3 Creating new tasks . 17
4.4 Monitoring server status . 17

4.4.1 Server status . 17
4.4.2 Tasks . 18
4.4.3 Cluster hosts . 18

4.5 Dismissing tasks . 18
4.6 Configuring tasks . 18

5 Operating Client 19
5.1 Command line parameters . 19
5.2 Client window . 20
5.3 Monitoring client status . 21

6 Branch’n’Bound Module 23
6.1 Introduction . 23
6.2 Module specific parameters . 23
6.3 Task creation . 24
6.4 Results file . 24

3

4 CONTENTS

7 RSParallel Module 25
7.1 Introduction . 25
7.2 Module specific parameters . 25
7.3 Script language description . 25

7.3.1 Experiment Type . 26
7.3.2 Data Tables . 26
7.3.3 Experiment Parameters . 26
7.3.4 Examples . 27

7.4 Task creation . 28
7.5 Result file . 28

8 FAQ 29

Bibliography 31

Chapter 1

Introduction

1.1 DIXER
DIXER (DIstributed eXEcutoR) is a part of Rough Set Exploration System (RSES, [2]). DIXER is
designed to help experimenters that would like to run their experiments on many computers. DIXER
allows to employ computers connected with an intranet or internet to distribute experiments on them
automatically. It creates a virtual cluster of computers for this particular purpose. DIXER takes care on
all aspects of scheduling, communication and data transfer, so it requires no additional network services
(like e.g. ftp or nfs). It is mainly designed for experiments based on RSES-Lib software, but as an open
architecture allows to plug-in new modules without modification of the source code. DIXER consist of
two applications: Server and Client. This manual descSribes how to use DIXER Server, DIXER Client
and also plugable modules Branch’n’Bound and RSParallel. See also DIXER Module Developers Guide.

1.2 DIXER Server
DIXER consist of two applications: Server and Client. DIXER Client should be run on all computers that
should cooperate in distributed computations. DIXER Server should be run only once, on administrator’s
computer. DIXER Server schedules experiments (jobs) for all executed DIXER Clients. It contains a
graphical user interface that allows managing whole DIXER Cluster, (see fig. 1.1). To clarify some
concepts and make this manual more precise we specify here distinction between jobs, taks and types.

Task type. At the DIXER Server runtime there are fixed number of task types. They can be more
or less identified with installed plugable modules1. Task types are configured in a configuration file
named dixer.conf which is described in detail in section 3.3.

Task. Tasks are created and dismissed dynamically by a user during runtime. User can create a new
task of any previously specified task type. There can by more than one task of a particular task
type. The computation time of each task vary a lot and can take from a couple of minutes up to
weeks (usually 1–100 hours). Each plugable module implements2 a mechanism to restart from the
interruption point and to do not repeat already computed jobs. This is extremely important in a
case of e.g. power or computer failure.

Job. Created tasks are non-elementary beings and consist of jobs that can be interpreted as elementary
operations on DIXER Cluster. These jobs are sent to client and are visualized at the DIXER Client
GUI. The computation time of each job vary and can take from a couple of seconds up to about
two hours (usually about five minutes). If there is any failure during job evaluation, the results are
dropped and the job returns to queue of scheduled jobs3.

1A plugable module can be specified as a task type multiply times. They will be identified by different names (labels)
(c.f. section 3.3), but they will share all module specific configuration parameters.

2It is at least true for all modules that are distributed with the DIXER software.
3It returns only a specified, finite number of times to avoid permanent blocking of jobs queue

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: DIXER Server

Figure 1.2: DIXER Client

Usually, DIXER Server consumes a little of system resources, both CPU time and system memory.
Exact values, however, depend on current work. DIXER Server can also require some additional files on
disc that are used by plugable modules as data files needed in experiments.

1.3 DIXER Client
DIXER consist of two applications: Server and Client. DIXER Client should be run on all computers that
should cooperate in distributed computations. DIXER Server should be run only once on administrator’s
computer. DIXER Client executed all experiments scheduled by DIXER Server. It contains simply
graphical user interface on which one can supervise a program status (see fig. 1.2). On demand this GUI
can be disabled and then DIXER Client runs completely silent. Usually, DIXER Client consumes a lot of
system resources, both CPU time and system memory. Exact values, however, depend on current work
that is scheduled by DIXER Server. DIXER Client can also require some disc space in order to store
data files needed in experiments.

Chapter 2

Installation

2.1 Setup program
The DIXER Software is provided for continency with a MS-Windows setup program (see fig. 2.1). This
program simplifies a lot the installation procedure. In few mouse clicks user can install the full DIXER
Software package, this documentation, sample files and shortcut icons that executes the DIXER Server
and Client. For a special purposes also similar setup program is provided for separately: DIXER Server
and DIXER Client. The DIXER Client package is sufficient for the workstations that will be used only
as a working elements of the DIXER Cluster. The DIXER Server package contains this documentation
and files necessary to run the DIXER Server and manage the cluster of working elements.

2.2 Package content
The full package of the DIXER Software contains:

1. This DIXER User Manual,

2. dixer.jar— the binary archive with the DIXER Software,

3. RS-Lib — the computational core of the Rough Sets, Exploration System (RSES)

4. Examples for provided plugable modules,

5. Set of shortcuts and batch scripts for executing different parts of the DIXER Software.

The DIXER Server package does not contain the RS-Lib computational core and scripts for the DIXER
Client part. The DIXER Client package does not contain this manual, scripts and examples for the
DIXER Server.

The batch script files allows to customize the execution of the DIXER software. The most im-
portant is the customization of the available memory for the DIXER Client (see files client.bat and
runclient.bat that executes the DIXER Client in an infinite loop).

The files rsp_rules.txt and rsp_decomptree.txt in the directory server are the example scripts for
RSParallel plugable module. The files in directory server/data contains a data files for these examples
and also an example file for the Branch’n’Bound plugable module. The default settings of these plugable
modules make a use of provided example files.

2.3 Java Runtime Environment
To properly run any of DIXER software components a Java Runtime Environment in version at least
1.4 is required (c.f. [5, 6]). The Java Runtime Environment (JRE) is included also in any Java
Software Development Kit (JDK or J2SE_SDK). The JRE or JDK can be downloaded directly from

7

8 CHAPTER 2. INSTALLATION

Figure 2.1: DIXER Setup program.

http:\\java.sun.com\. The DIXER Software was deeply tested with various versions of Sun’s JRE 1.4
and should operate also on any new version of Java Virtual Machine (c.f. [4]). The DIXER Software
does not work with Java Runtime Environment 1.0, 1.1, 1.2 and 1.3.

2.4 Executing
The provided dixer.jararchive contains all necessary files to execute the DIXER Software. The execution
of the parts of the DIXER Software can proceed as follows:

1. by selecting a program shortcut in the Start/Programs menu or at the user desktop,

2. by executing a batch script from the program directory,

3. by executing Java Virtual Machine with special options.

The special parameters mentioned above should be analogous to the provided here examples:

1. java -cp ../lib/dixer.jarrslib.dixer.client.Server — for executing the DIXER Server,

2. java -Xmx512M -cp ../lib/dixer.jar -Djava.library.path=../lib/ rslib.dixer.client.Cli-
ent — for executing the DIXER Client,

3. java -cp ../lib/dixer.jarrslib.dixer.client.ClientConfigurator — for executing the DIXER
Client Configurator.

For details and explanation of the above parameters see the Java Tools Documentation [6].

Chapter 3

Configuration

3.1 Server Configuration

The configuration of the DIXER Server is stored in a configuration file that can be shared with DIXER
Client. This configuration file concern with advanced properties of server itself and plugable modules
and can be leaved for experienced users or an administrator. A default version of this file is attached to
each distribution of DIXER software, so there is no need (especially for beginners) to alter mentioned
configuration file.

3.2 Client Configuration

The configuration of the DIXER Client consist of two stages. The first stage concern with selection of
server in an intra- or internet. Such a configuration is in scope of interest of all users. The second stage
concern with advanced properties of client itself and plugable modules and can be leaved for experienced
users or an administrator. The first stage of configuration can be made by a graphical user interface. The
advanced properties are accessible in textual configuration file. A default version of this file is attached
to each distribution of DIXER software, so there is no need (especially for beginners) to alter mentioned
configuration file.

3.2.1 Server address

DIXER Client requires an address of DIXER Server that will schedule jobs for remote execution. One
cannot execute the DIXER Client without specifying a server to connect to. User can define server name
or address1 in two ways:

1. as a command line parameter to client class2,

2. as a file named dixer.connection in current directory.

If the command line parameter is specified than it will be used first. If client class is started without
parameter then there will be an attempt to read settings from dixer.connection file in current directory.
If this also fails than program will ask about server name or address by showing a ClientConfiguration
window (see fig. 3.1).

DIXER Client Configurator can be executed as a standalone application by running rslib.dix-
er.client.ClientConfigurator class. When a client can not connect with a server (cf. fig. 5.1) it does
not necessarily means that configuration is wrong. It may also happen that server is shut down or that
there are some network problems (e.g. broken cable).

1IP address is required or any other name that can be resolved by gethostbyname.
2rslib.dixer.client.Client, see chapter 5 for details.

9

10 CHAPTER 3. CONFIGURATION

Figure 3.1: DIXER Client Configurator window.

If dixer.connection file is already written (e.g. by the Client Configurator) than it will be implicitly
used without notification. If user want to change the server address (name) it is necessary to delete the
dixer.connection file in current path. If DIXER Client is executed without additional command line
parameters than it will prompt about new server address or name.

3.3 Configuration file

Configuration file contains advanced parameters for the DIXER Sever and Client. The name of the config-
uration file should be passed to the main server class (i.e. rslib.dixer.client.Server) as a command
line parameter (c.f. 4.1). If such a parameter is omitted than the standard name “dixer.conf” is used.
The DIXER Server searches for the specified file in available class paths (c.f. ClassLoader.getResourceAsStream()
in Java API Documentation [5]). If a resource of a specified name cannot be found than the server searches
for this file in the current directory. It is safe and recommended to use the same configuration file for
both server and client, especially when they share the same version of code. It is not recommended to
share configuration file across the different versions of code (e.g. when the set of accompanying modules
is changed).

The DIXER Client uses the same method for reading the configuration file and for passing the name
of this file (c.f. 5.1).

In the configuration file each parameter is described in following way:

< parameter > = < value >

Whitespace characters before and after equation sign are not important3. Empty lines and lines that
begins with “#” character are ignored. Below the description of each parameter is provided.

3.3.1 Connection

• version (mandatory, for server and client). Specifies version number of software. Usually modified
only by a developer that made changes in source code. No default value. Set to 2.0.1.

• server.port (mandatory, for server and client). IP port number on which server listen for client.
No default value. Set to 7333. If there are any problems because of network firewall or user privileges
than one can try to modify this value e.g. to port below 100, to port above 4096 etc.4

• server.clienttimeout (mandatory, for server only). Time (in ms) that server waits for an answer
from a client. After that time server assumes that client failed and closes communication channel.
This time should be longer than execution time of any job on any computer that will be used during
experiments. Some times it is reasonable to set this value not too large, especially when we have
some computers with small amount of memory (due to trashing, i.e. running out of the physical
memory). The server attempts to shutdown client before closing connection by sending a “kill”
command. No default value. Set to 3600000 (1 hour).

3See java.util.Properties in Java API Documentation for details [5].
4See respective documentation or manual of used operating system.

3.3. CONFIGURATION FILE 11

• server.waittimeout (mandatory, for server only). Maximal time (in ms) that server will sleep
when there are no more jobs to send. This time This time should be shorter than client.server-
timeout time. No default value. Set to 240000 (4 minutes).

• client.querytimeout (mandatory, for client only). Time (in ms) that client sleeps after unsuc-
cessful attempt to connect with a server. No default value. Set to 10000 (10 seconds). After that
time client will attempt to reconnect with a specified server.

• client.servertimeout (mandatory, for client only). Maximal time (in ms) that client will wait
for answer from a server. If server is overloaded or network (physical) connection is temporarily
broken answer could be delayed. No default value. Set to 300000 (5 minutes).

• server.buffersize (mandatory, for server only). Size in bytes of data blocks transferred at once
during “filetransfer” job. No default value. Set to 1024.

• hostname.<HOSTNAME> (optional, for server only). Creates a dictionary of IP addresses. Each client
that contacts to the host is recognized by IP address. If the searching for name fails5 this client will
be displayed as its IP address. To avoid this problem user can create its own dictionary of hosts
that overrides any other method of assigning a name. The value of this parameter should be a IP
address in textual form ”X.X.X.X”. No default value. Some entries can be already written at the
bottom of the default configuration file.

3.3.2 Graphical User Interface

• client.gui (optional, for client only). Whether client should display a window or not (yes or no
and true or false). Default value: true. Set to true.

3.3.3 Task specification

Parameters described in this section specify the scope of jobs (tasks) that a client can remotely execute.

• tasks (mandatory, for server and client). A number of specified task types. No default value. Set
to 2. Usually modified to add new plugable module.

• task1 (mandatory6, for server and client). Name (label) of the task type 1. No default value. Set
to branchnbound.

• task2 (mandatory6, for server and client). Name (label) of the task type 2. No default value. Set
to rsparallel.

• . . .

• task1.serverclass (mandatory6, for server only). Name of the class file responsible for scheduling
jobs (and processing their results) for task type 1. This class should be a subclass of rslib.dix-
er.client.ServerTask (see DIXER Module Developer Guide for details). The class declared here
should be provided at the execution time by including in dixer.jar or by entering an entry in the
class path of JVM7. No default value. Set to rslib.dixer.branchnbound.ServerBranchNBound.

• task1.clientclass (mandatory6, for client only). Name of the class file responsible for evaluating
jobs of task type 1. This class should be a subclass of rslib.dixer.client.ClientTask (see
DIXER Module Developer Guide for details). In current release of DIXER dynamic class loader
is removed. This means that declared here class should be provided at the execution time by
including in dixer.jar or by entering an entry in the class path of JVM. No default value. Set to
rslib.dixer.branchnbound.ClientBranchNBound.

5See InetAddress.getHostName() for details.
6Depends on the number of configured tasks.
7Java Virtual Machine (see [4]). Usually one can start JVM by executing java.

12 CHAPTER 3. CONFIGURATION

• task2.serverclass (mandatory6, for server only). Name of the class file responsible for scheduling
jobs (and processing their results) for task type 2. This class should be a subclass of rslib.dix-
er.client.ServerTask (see DIXER Module Developer Guide for details). The class declared here
should be provided at the execution time by including in dixer.jar or by entering an entry in the
class path of JVM. No default value. Set to rslib.dixer.rsparallel.ServerRSPar.

• task2.clientclass (mandatory6, for client only). Name of the class file responsible for evaluating
jobs of task type 2. This class should be a subclass of rslib.dixer.client.ClientTask (see
DIXER Module Developer Guide for details). In current release of DIXER dynamic class loader
is removed. This means that declared here class should be provided at the execution time by
including in dixer.jar or by entering an entry in the class path of JVM. No default value. Set to
rslib.dixer.rsparallel.ClientRSPar.

• . . .

• tasks.maxfailed (mandatory, for server only). Number of maximal allowable fails of job before
dropping job permanently. When a job evaluation fails than it is inserted at the end of the current
scheduled jobs queue, but up to the specified here number of times. No default value. Set to 10.

• Module specific settings. Each plugable module (declared before as a task type) can require addi-
tional settings. The parameters begins with name of the module instead of task prefix. Usually the
parameters begins with the same name as the name specified in taskX=<name> parameter8. For ex-
ample the value maxfailed is usually implemented by each module (in form of <name>.maxfailed
and can overwrite the standard value specified in tasks.maxfailed. See a particular module User
Manual for details.

3.3.4 Command specification

Parameters described in this section specify binary codes of commands that server and client send to
each other. It is very important that client and server work with identical codes.

• command.echo (mandatory, for server and client). Code for command requesting an identification
string (with version number) from a client. No default value. Set to 1.

• command.kill (mandatory, for server and client). Code for command requesting client to die. No
default value. Set to 2.

• command.verifyfile (mandatory, for server and client). Code for command requesting verification
of particular file. No default value. Set to 3. Verification consist in checking file name, existence,
its length and in comparing CRC16 of the first 4KB of file.

• command.transferfile (mandatory, for server and client). Code for command requesting storing
of a file relative (or not, if it is directly requested) to current directory. No default value. Set to 4.

• command.servermessage (mandatory, for server and client). Code for command displaying message
on a client window. No default value. Set to 5.

• command.answer (mandatory, for server and client). Stamp code of answer for command. No
default value. Set to 65536.

• command.<task 1 name> (mandatory9, for server and client). Code for command related with task
1. If task 1 is specified as branchnbound than this parameter should be written as command.branchnbound.
No default value. Set to 100.

8The prefix name for the task specific parameters is encoded in source code, while the name for a task type can be
arbitrarily chosen in the configuration file. It is recommended to use the same name for both purposes to maintain the
clarity of the configuration file.

9Depends on the configured task type name.

3.3. CONFIGURATION FILE 13

• command.<task 2 name> (mandatory9, for server and client). Code for command related with task
2. If task 2 is specified as rsparallel than this parameter should be written as command.rsparallel.
No default value. Set to 101.

• . . .

3.3.5 Debugging and verbosity
• config.warnings (optional, for server and client). Whether warnings should be displayed on a

java console (yes or no). Default value no. Set to yes.

• config.debug (optional, for server and client). Whether debug messages should be displayed on a
java console (yes or no). Default value no. Set to yes.

14 CHAPTER 3. CONFIGURATION

Chapter 4

Operating Server

The DIXER Server should by running only once, at the administrator’s computer. It manages all clients
that are reachable in used network. It is possible to safely run more than one server if they operate on
different computers or on different port numbers (see 3.3). In such a case a server will manage only those
clients that have it host address selected as a server address and operate on the same port number.

The DIXER Server can be executed by running a java class named rslib.dixer.client.Server.
For convenience this is usually done in a batch script.

4.1 Command line parameters
It is possible to pass command lines parameters to the main server class rslib.dixer.client.Server
(see tools description in [6] for details). The server parameters are not case sensitive except the file names,
which depends on the used operating system.

• -VERSION — shows version and exits. The version number is read from the configuration file (c.f.
3.3).

• -C <filename> — specifies the name for the configuration file. At first the server will search for
such a file in class path (c.f. ClassLoader.getResourceAsStream() in Java API Documentation [6]).
Than it will search in a current (or else, if specified in name) path for a such file in a regular file
system. If this parameter is not specified it is assumed to use dixer.confconfiguration file. A
standard version of this file is included inside dixer.jar.

• -DEBUG — enables debugging messages (overrides the settings in configuration file).

• -NODEBUG — disables debugging messages (overrides the settings in configuration file).

• -WARNINGS — enables warnings messages (overrides the settings in configuration file).

• -NOWARNINGS — disables warnings messages (overrides the settings in configuration file).

• -VERBOSE — enables warnings and debugging messages (overrides the settings in configuration file).

• -SILENT — disables warnings and debugging messages (overrides the settings in configuration file).

• -QUIET — a synonym for -SILENT.

4.2 Server window
At the figure 4.1 one can see a server window. If server is properly configured such a window appears in
few seconds after execution of the server class.

The server window provides following information:

15

16 CHAPTER 4. OPERATING SERVER

Figure 4.1: DIXER Client without connection

• Refresh rate — time in seconds in which the whole window will be periodically refreshed. User can
change this time by entering a number in right text input filed and pressing enter key.

• Server uptime — says how much time server is operating.

• Memory: total x free y max z — size of total memory allocated by JVM (x in KB), size of free
memory in already allocated memory (y in KB, 0<=y<=x) and maximal size of memory that JVM
can allocate (z in KB, 0<=x<=z). Helpful to diagnose status of consumed resources.

• Task statistics selection — on the left side is a request for selecting appropriate task and on the
right side user can select task for which it would like to see statistics messages.

• Task specific statistics — the content of this text area is directly implemented in a selected plugable
module. User should carefully read the information displayed here, because this reflect the current
status of computations for selected task1.

• Report on connected clients — the DIXER Clients currently connected to the server are displayed
identified by its dictionary name, network name or IP address. Also some additional data is provided
like number of processed jobs, approximated time spent on computations and last communication
time.

• Update now button — pressing this button will update the content of window immediately.

• Shutdown button — pressing this button will kill the server.

• Create task button — pressing this button will open a dialog where user can choose a task type for
newly created task.

1It should be stress here one more time that there can be more than one task related with the same task type — plugable
module. All of them operate separately and display different statistics messages.

4.3. CREATING NEW TASKS 17

Figure 4.2: Selecting a task to creation.

Figure 4.3: The error message is displayed when the user executes the DIXER Server more than once.

• Dismiss task button — pressing this button will stop currently selected task. The task is not killed
immediately. It waits for all clients to finish their jobs related with this task (if any). Task is perma-
nently destroyed if there are no more jobs related with this task (see also server.clienttimeout
parameter in the configuration file).

• Configure task button — pressing this button will open the task specific window related with
currently selected task. If this option is not implemented in a plugable module than the standard
window appears “Task configuration not available”.

4.3 Creating new tasks

By pressing “Create task” it is possible to create new tasks, i.e. a new instance of a task type. The newly
created task will be executed on the server and than it will schedule jobs for connected clients.

After pressing button “Create task” the task selection dialog appears as on figure 4.2. When the
selection is approved by pressing button “Create” on this dialog (fig. 4.2) the task is created. For some
task types it may be followed by a task-specific configuration dialog (as it is for e.g. Branch’n’Bound
and RSParallel modules). After successful creation of a new task the first available task number will be
assigned to this task and the task will appear in task selector in main server window (c.f. 4.2).

4.4 Monitoring server status

4.4.1 Server status

It the server works fine it shows the time how much it is working (up-time) and current memory usage at
the bottom of the window (c.f. 4.2). These fields are systematically updated each “refresh rate” seconds.

It is not allowed to run the DIXER Server more than once on the same network port. Such a situation
is detected and the error message as on the figure 4.3 is displayed. It is however possible to run the DIXER
Server more than once on the different port numbers. It may also happened that the user does not have
necessary privileges to execute the DIXER Server on the specified port number. See the configuration
file details (sec. 3.3) to solve this problem.

18 CHAPTER 4. OPERATING SERVER

Figure 4.4: A default task configuration window is displayed when a module does not provide an additional
run-time configuration.

4.4.2 Tasks
One can choose in task selector to see the statistics for a particular task. The tasks are described in task
selector by its consecutive number and task type name. After selecting a particular task its statistics
appear in the upper text area (c.f. 4.2).

4.4.3 Cluster hosts
List of the connected hosts that form a DIXER Cluster is displayed in the lower text area (c.f. 4.2). These
statistics show time of the last contact with a host and a number of computed jobs for each defined task
type. They are extremely useful for monitoring problems with network communication or client software
and memory assignment2.

4.5 Dismissing tasks
Pressing “Dismiss task” button will stop currently selected task. The currently selected task is the
task displayed at the task statistics selector and in the tasks statistics text area (c.f. 4.2). The task
is not killed immediately. It waits for all clients to finish their jobs related with this task. Task is
permanently destroyed if there are no more clients that process jobs related with this task (see also
server.clienttimeout parameter in the configuration file).

4.6 Configuring tasks
Some of modules provides additional configuration possibility at the run-time of a task instance. Pressing
“Configure task” button will open the task specific window related with currently selected task. The
currently selected task is the task displayed at the task statistics selector and in the tasks statistics text
area (c.f. 4.2). If this option is not implemented in a plugable module (that is a case for current version
of Branch’n’Bound and RSParallel modules) than the standard window appears “Task configuration not
available” (see figure 4.4).

2The assignment of the reasonable amount of memory for DIXER Client is a very important issue, see also 8.

Chapter 5

Operating Client

The DIXER Client can be executed by running a java class named rslib.dixer.client.Client. This
is usually done in a batch script. Some plugable modules have problems with leak of memory1 so in
standard distribution the batch file loops forever in executing client class. If a client dies because of out
of memory error than it will be restarted.

It is strictly forbidden to execute more than one DIXER Client in the same working directory (on the
same or different computer). It is also not recommended to execute more than one DIXER Client on the
same computer as the some RS-Lib operations may interfere.

5.1 Command line parameters

It is possible to pass command lines parameters to the main client class rslib.dixer.client.Client
(see tools description in [6] for details). The client parameters are not case sensitive except the file names,
which depends on the used operating system.

• -VERSION — shows version and exits. The version number is read from the configuration file (c.f.
3.3).

• -C <filename> — specifies the name for the configuration file. At first the server will search for
such a file in class path (c.f. ClassLoader.getResourceAsStream() in Java API Documentation [6]).
Than it will search in a current (or else, if specified in name) path for a such file in a regular file
system. If this parameter is not specified it is assumed to use dixer.confconfiguration file. A
standard version of this file is included inside dixer.jar.

• -GUI — enables Graphical User Interface (overrides the settings in configuration file).

• -NOGUI — disables Graphical User Interface (overrides the settings in configuration file).

• -NO_GUI — a synonym for -NOGUI (left for backwards compatibility).

• -DEBUG — enables debugging messages (overrides the settings in configuration file).

• -NODEBUG — disables debugging messages (overrides the settings in configuration file).

• -WARNINGS — enables warnings messages (overrides the settings in configuration file).

• -NOWARNINGS — disables warnings messages (overrides the settings in configuration file).

• -VERBOSE — enables warnings and debugging messages (overrides the settings in configuration file).

• -SILENT — disables warnings and debugging messages (overrides the settings in configuration file).

1Java Garbage Collector works pretty poor with complex data structures.

19

20 CHAPTER 5. OPERATING CLIENT

Figure 5.1: The DIXER Client not connected to the DIXER Server.

• -QUIET — a synonym for -SILENT.

• <serveraddress> — the first parameter that is not recognized as a one of the above will be used
as a server address. If server address is not specified than the content of the dixer.connection
will be used. See section 3.2.1 for details.

5.2 Client window
At the figure 5.1 we can see a client window. If client is properly configured such a window appears in
few seconds after execution of the client class.

The client window provides following information:

• Alive time — time that client staying alive. Helpful in diagnosing out of memory or other errors
frequency.

• Connected with server — name of a server when client is connected (cf. fig. 5.2) or “- - -” string
when client is not connected (cf. fig. 5.1).

• Computed x results — number of computed results related with all defined tasks.

• Task name — name of currently processed task or empty string if idle.

• Phase name — name of current phase of processed job (if any). Helpful to diagnose status of client
computations.

• Memory: total x free y max z — size of total memory allocated by JVM (x in KB), size of free
memory in already allocated memory (y in KB, 0<=y<=x) and maximal size of memory that JVM
can allocate (z in KB, 0<=x<=z). Helpful to diagnose status of consumed resources.

• Server messages — free text messages from server that inform about intercommunication and server
status.

5.3. MONITORING CLIENT STATUS 21

Figure 5.2: The DIXER Client connected to the DIXER Server. The Server currently has no jobs for
this computer.

• Shutdown button — pressing this button will kill the client. If the client is executed in an infinite
loop (in batch script) than this action restarts client.

5.3 Monitoring client status
At the beginning server checks client version by an echo command. In result of that in a “Server messages”
will appear one of the following messages: “Client version ok” — if the client version is in accordance
with server version or “Client version obsolete” otherwise.

Mainly we can say that client operates under two conditions: there are jobs to compute or there are
no jobs to compute. If there are jobs to compute the current job is described in the client window as
described in previous section (cf. fig. 5.3). If there are no more jobs the server will inform client by a
free-text message (cf. fig. 5.2). How frequently server informs a client can be changed in the configuration
file.

If the communication with server is broken (i.e. due to the server shutdown) the client is be able
to notice this fact when it is communicating with the server. During computations the communication
is disabled to save the network overload and time-delays. It means that if the communication is bro-
ken during computations the client will notice it after finishing its computations (both successfully or
erroneously).

22 CHAPTER 5. OPERATING CLIENT

Figure 5.3: DIXER Client

Chapter 6

Branch’n’Bound Module

6.1 Introduction

The Branch’n’Bound Dixer plugable module allows to carry out experiments with very expensive feature
selection based on the wrapper method (see e.g. [3]). The strategy for searching int the space of the
possible attribute subsets is similar to the branch and bound search. Here, however, this strategy is not
complete and is used rather to selecting the first candidate to visit in the lattice of the possible feature
subsets. The results are saved in the special file that can be vieved both manually and with a help of
the text-processing tools, such as: awk or gawk that is the GNU Project’s implementation of the AWK
programming language, Microsoft r© Excel or OpenOffice Spread spreadsheet editor or any programming
language that support textual string manipulation and I/O operations.

As the wrapper classifier the decision tree is used here. The settings of the used decision tree are 0.98
for the minimal purity of the leaf and 5 for the indivisible leaf size. The decision tree with clustering of
the symbolic values and the indiscernibility as the split evaluator is used.

The Branch’n’Bound module is implemented package rslib.dixer.branchnbound, but uses also
classes from other packages to perform experiments. The server class is rslib.dixer.branchnbo-
und.ServerBranchNBound and the client class is rslib.dixer.branchnbound.ClientBranchNBound.
These class identifiers should be specified in configuration file dixer.conf as task<N>.serverclass
and task<N>.clientclass respectively (see sec. 3.3 for details).

6.2 Module specific parameters

• branchnbound.resultsfilename (optional, for server only). Default name for the results file.
Useful in serial or batch experiments. No Default value. Set to bnb_results.txt.

• branchnbound.trainfilename (optional, for server only). Default name for the file name of train-
ing set. Useful in serial or batch experiments. No Default value. Set to data\iris.trn.

• branchnbound.testfilename (optional, for server only). Default name for the file name of testing
set. Useful in serial or batch experiments. No Default value. Set to data\iris.tst.

• branchnbound.attributefilename (optional, for server only). Default name for the file name of
attribute list. Useful in serial or batch experiments. No Default value. data\bnb_irisattr.txt.

• branchnbound.attributelimit (optional, for server only). No Default value. Set to 50.

• branchnbound.maxfailed (optional, for server only). Number of maximal allowable fails of job
before dropping job permanently. When a job evaluation fails than it is inserted at the end of
the current scheduled jobs queue, but up to the specified here number of times. Default value
tasks.maxfailed. Set to 5.

23

24 CHAPTER 6. BRANCH’N’BOUND MODULE

Figure 6.1: Creating the Branch’n’Bound task in DIXER Server.

6.3 Task creation
The create dialog for this task is presented on the figure 6.1. In configuration of this type of task is
necessary to provide following settings:

• Results file — the file where the results (evaluated elements of the subset lattice) are stored,

• Train file — the decision table used for training the decision tree,

• Test file — the decision table used for evaluation of the induced decision tree (can be the same as
the training file),

• Attributes mask file — the plain list of attributes (each attribute in a separate line) that should be
used in searched lattice of subsets.

• Maximal number of attributes — the maximal number of used attributes in a evaluated subset (i.e.
an upper cut of the lattice),

• Maximal number of attempts — the same as the maxfailed parameter.

6.4 Results file
The results file contains the already computed nodes of the subset lattice. A node can be not opened,
opened or closed. The not opened node it is a node that was not evaluated. An opened node is a node
that system has already computed the classifier accuracy for corresponding subset of attributes. A closed
node is a node for which all successors (subsets that have at most on one attribute more) are either
opened or closed.

In the results file are stored opened and closed nodes in the following form:

• o=0,0,1,1,1:0.9 — an opened node,

• c=0,0,1,1,1:0.9 — a closed node.

The letter at the beginning of the line indicate whether a node is opened (“o”) or closed (“c”). After the
equation mark the node description is written as the characteristic function of used attributes. The 1
means that subsequent attribute was used in classifier induction, while 0 means that respective attribute
wasn’t used. At the end of the line, after the semicolon character, the accuracy of the classifier is written.
The accuracy is measured as the number of answers compatible with the test decision table.

Chapter 7

RSParallel Module

7.1 Introduction
The RSParallel Dixer plugable module allows to carry out experiments based on methods implemented
in Rough Set Exploration System (RSES) and particularly in RSES-Lib (c.f. [2]). It process a special
script language described in section 7.3 that allows to prepare a individual scenario for experiments. It is
strongly recommended to prepare scripts in some semi-automatic manner. There are a lot of suitable tools
for this task such as: awk or gawk that is the GNU Project’s implementation of the AWK programming
language, Microsoft r© Excel or OpenOffice Spread spreadsheet editor or any programming language that
support textual string manipulation and I/O operations.

The RSParallel module is implemented package rslib.dixer.rsparallel, but uses also classes from
other packages to perform experiments. The server class is rslib.dixer.rsparallel.ServerRSPar and
the client class is rslib.dixer.rsparallel.ClientRSPar. These class identifiers should be specified in
configuration file dixer.conf as task<N>.serverclass and task<N>.clientclass respectively (see sec.
3.3 for details).

7.2 Module specific parameters
The RSParallel Module uses following parameters in configuration file (c.f. sec. 3.3):

• rsparallel.forcerecompute (optional, for server only). Whether the job that was previously
computed should be recomputed from the beginning or not (yes or no and true or false). Default
value false. Set to false.

• rsparallel.maxfailed (optional, for server only). Number of maximal allowable fails of job before
dropping job permanently. When a job evaluation fails than it is inserted at the end of the current
scheduled jobs queue, but up to the specified here number of times. Default value tasks.maxfailed.
Set to 20.

• rsparallel.scriptfilename (optional, for server only). Default name for the script file. Useful
in serial or batch experiments. No default value. Set to rsp_rules.txt.

• rsparallel.resultsfilename (optional, for server only). Default name for the results file. Useful
in serial or batch experiments. No default value. Set to rsp_rules.log.

7.3 Script language description
The RSParallel Module uses a special script language to schedule experiments across cluster of computers.
This script language is interpreted line by line from the beginning of the file to its end and each line
contains description of separate experiment.

25

26 CHAPTER 7. RSPARALLEL MODULE

The line that describes an experiment consist of three main parts:
<Experiment Type> <Data Tables> <Experiment Parameters>

The meaning of these three parts will be explained in following sections. Besides the experiment
description lines the script language allows special lines that are insignificant from the experimental
point of view:

• Comment. The line can be a comment line if its begins with character # or if it is an empty line.

• Echo. If the line contains a string “echo” at the beginning of this line the whole content of this line
will be copied to output log file. This allows to add some comments in this log file.

7.3.1 Experiment Type
There are two experiment types in this version of script language:

• TT — Train&Test mode. The experiment will be executed in Train&Test mode. This means that
user should support a separate data set (table) for training classifier and separate data set (table)
for testing classifier.

• CV — Cross Validation mode. This mode is not supported in version 2.0. The experiment will be
executed in Cross Validation mode. The Cross Validation uses only one data set for training and
testing. This set is partitioned into a number (let say N) of subsets of possibly equal size and in N
steps each of this subsets is assumed to be a testing set. As a training set N − 1 remaining subsets
are taken in such a way that the same subset cannot be used for training and testing in the same
step. After all N steps each part of original data set is used for training and testing.

This keywords are not case-sensitive.

7.3.2 Data Tables
In the second part of experiment description the description of data sets (tables) are provided. The
specification of data sets depends on the mode in which the experiment will be carried out.

• If as the experiment mode the Train&Test was chosen than it is necessary to specify a file name for
the training table and for the testing table: my_training.tab my_testing.tab. The data tables
should be written in RSES Data Table Format described in [1].

• If as the experiment mode the Cross Validation was chosen than it is necessary to specify a file
name of one table used for both training and testing and the number of steps (folds). For example
“my_data.tab 5” means that the 5-fold Cross Validation will be performed on the “my_data.tab”
data file.

The host Operating System rules apply whether the file names are case-sensitive or not. But to achieve
the portability we should assume that file names are case-sensitive.

7.3.3 Experiment Parameters
Description of the experiment parameters is the most important part, as it describes the classifier to
be used. This description does not depends on the experiment mode. In both Train&Test and Cross
Validation experiments any classifier can be used. The keywords are not case-sensitive.

Rule-based classifiers

RULES <algorithm> <discretization> <shortening factor>

• Algorithm. There are three different algorithms:

1. ALL — induces all rules.

7.3. SCRIPT LANGUAGE DESCRIPTION 27

2. COV — induces minimal covering set of rules.

3. GEN — induces genetically optimized set of rules.

• Discretization. There are four different discretization (scaling) methods:

1. NO_SCAL — without discretization at all (tables should contain only symbolic attributes).

2. GLOBAL_SCAL — global discretization (in current version of RSES-Lib available only on MS-
WindowsTM platform).

3. LOCAL_SCAL — optimized local discretization.

4. LOCAL_SCAL_WS — optimized local discretization with additional discretization (clustering) of
symbolic attributes.

• Shortening factor. A number between 0.0 and 1.0 that adjust the shortening of induced rules. The
1.0 means no shortening and 0.0 means empty rules.

Decomposed-rules classifier

The decision tables can be decomposed by a template based decomposition tree before inducing the
decision rules. It is advised especially for the huge decision tables for which the standard rule induction
works unacceptably long.
DECOMP_RULES <leaf size> <discretization> <shortening factor>.

• Leaf size. The maximal leaf size. If a node contains equal or less objects (cases) than it will
automatically become a leaf and will be used as a decision table for inducing the minimal covering
set of rules (as above RULES COV).

• Discretization. Set to true if the decision subtables should be discretized after the decomposition.

• Shortening factor. The shortening factor of the decision rules.

7.3.4 Examples

• tt train.tab test.tab rules all local_scal 1.0
The Train&Test experiment with training table “train.tab” and testing table “test.tab” that use
the all decision rules induction algorithm as a classifier. The data will be discretized locally (with
optimization) and rules will not be shortened.

• tt train.tab test.tab rules all global_scal 0.8
The Train&Test experiment with training table “train.tab” and testing table “test.tab” that use the
all decision rules induction algorithm as a classifier. The data will be discretized globally and rules
will be shortened by a factor 0.8.

• tt train.tab test.tab rules cov local_scal 0.7
The Train&Test experiment with training table “train.tab” and testing table “test.tab” that use the
minimal covering decision rules induction algorithm as a classifier. The data will be discretized
locally (with optimization) and rules will be shortened by a factor 0.7.

• tt train2.tab test2.tab rules gen global_scal 0.9
The Train&Test experiment with training table “train2.tab” and testing table “test2.tab” that use
the genetic decision rules induction algorithm as a classifier. The data will be discretized globally
and rules will be shortened by a factor 0.9.

• tt train2.tab test2.tab rules all local_scal_ws 0.6
The Train&Test experiment with training table “train2.tab” and testing table “test2.tab” that use
the all decision rules induction algorithm as a classifier. The data will be discretized locally with
clustering of all symbolic attributes and rules will be shortened by a factor 0.6.

28 CHAPTER 7. RSPARALLEL MODULE

Figure 7.1: Creating the RSParallel task in DIXER Server.

• tt train3.tab test3.tab rules all no_scal 0.5
The Train&Test experiment with training table “train3.tab” and testing table “test3.tab” that use
the all decision rules induction algorithm as a classifier. The data will be not be discretized and
rules will be shortened by a factor 0.5.

• tt my_tab.rses my_tab.rses decomp_rules 100 true 1.0
The Train&Test experiment with decomposition tree. The “my_tab.rses” decision table will be
decomposed into the subtables of no more than 100 objects. The formed subtables will be used to
induce minimal covering decision rules with discretization and shortening factor 1.0.

7.4 Task creation
The create dialog for this task is presented on the figure 7.1. The necessary settings are the name of the
script file to execute (as describe in the previous section) and the result file (as described in the next
section). Additionally user can specify if the results that are already present in the result file should be
recomputed.

7.5 Result file
The results of the script processing are written to the result file. This file is designed to both looking
manually or processing automatically. The corresponding lines in the script file generates output lines
(one or more) in the result file.

The echo lines in script file write message included in echo command. The content of the echoed
message is not interpreted and could be used to special tagging or making the result file more readable.

The experiment lines in script file write the experiment description and experiment results. The
structure of such line is as follow:

<Result flag><Experiment description> | <Experiment results>

• Result flag. If the computations were successful the ’+’ character is written here. If the computa-
tions failed the ’-’ sign is written here.

• Experiment description. Exactly the same experiment description as in the script file.

• Experiment results. After the separator character come the computed results. If the computation
were successful the results include the classifier accuracy, number of rules, true positive rates and
other parameters that describe the classifier performance. If the computations failed the error
message is written here.

Chapter 8

FAQ

• Q: The DIXER Server as well as DIXER Client does not even start.

• A: Make sure that there is a Java Runtime Environment in version at least 1.4 installed on this
computer. Make sure that installation is not corrupted and java executable is in the executable
path. If it is necessary modify the PATH environment variable.

• Q: The DIXER Client shows the following message: “DIXER Cluster failure. Incompatibile DIXER
Server/Client or Java Virtual Machine version.”

• A: Make sure that you are using Java version 1.4 or higher. This DIXER Client is taken from the
other, incompatible distribution of the DIXER Software. Reinstall the DIXER Client in the release
version compatible with the DIXER Server.

• Q: The DIXER Client cannot compute even one job.

• A1: Try to increase maximal available memory for JVM by executing with -Xmx parameter1. For
example java -Xmx256M rslib.dixer.client.Client.

• A2: The DIXER Client cannot find the dynamic (shared) library RSLib. Please verify location of
the file RSLib.dll or RSLib.so and adjust the -Djava.library.path JVM parameter.

1See java -X for details. The -X options are non-standard and subject to change without notice.

29

30 CHAPTER 8. FAQ

Bibliography

[1] J. G. Bazan, M. Mikołajczyk, and M. Szczuka. Rough Set Exploration System version 2.0, User
Manual. Warsaw University, 2003.

[2] J. G. Bazan, M. S. Szczuka, and J. Wróblewski. A new version of rough set exploration system.
In J. J. Alpigini, J. F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends
in Computing, Third International Conference, RSCTC 2002, LNAI 2475, pages 397–404. Springer,
2002.

[3] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1(3):131–156,
1997.

[4] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification, Second Edition. Addison-
Wesley, 1999.

[5] Sun Microsystems Inc. JavaTM 2 SDK, Standard Edition Documentation, Version 1.4.0, February
13, 2002.

[6] Sun Microsystems Inc. JavaTM 2 SDK, Standard Edition Documentation, Version 1.4.1, September
16, 2002.

31

	Introduction
	DIXER
	DIXER Server
	DIXER Client

	Installation
	Setup program
	Package content
	Java Runtime Environment
	Executing

	Configuration
	Server Configuration
	Client Configuration
	Server address

	Configuration file
	Connection
	Graphical User Interface
	Task specification
	Command specification
	Debugging and verbosity

	Operating Server
	Command line parameters
	Server window
	Creating new tasks
	Monitoring server status
	Server status
	Tasks
	Cluster hosts

	Dismissing tasks
	Configuring tasks

	Operating Client
	Command line parameters
	Client window
	Monitoring client status

	Branch'n'Bound Module
	Introduction
	Module specific parameters
	Task creation
	Results file

	RSParallel Module
	Introduction
	Module specific parameters
	Script language description
	Experiment Type
	Data Tables
	Experiment Parameters
	Examples

	Task creation
	Result file

	FAQ
	Bibliography

