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1. Introduction

A hyperkähler manifold (HK) is a simply connected compact Kähler manifold whose space of global

holomorphic two-forms is spanned by a symplectic form1. The above definition may be motivated by

the following result.

Theorem 1.1 (Beauville-Bogomolov decomposition [5]). Let X be a compact Kähler manifold with

c1(X) = 0. There exists an étale finite cover ∏
d
i=1Mi Ð→ X where each of the factors Mi is either

a compact complex torus, a HK manifold or a Calabi-Yau variety i.e. a compact Kähler manifold of

dimension n ≥ 3 with trivial canonical bundle and such that h0
(ΩpMi

) = 0 for 0 < p < n.

A 2-dimensional HK manifold is nothing else but a K3 surface. These surfaces were known classically

as complex smooth projective surfaces whose generic hyperplane section is a canonically embedded

curve (example: a smooth quartic surface in P3) and they have proved to have a very rich geometry.

Beauville [5] constructed two distinct deformation classes of HK’s in every even dimension greater

than 2 (a HK manifold has even complex dimension because an odd-dimensional vector-space cannot

be equipped with a non-degenerate symplectic form), and the author [41, 42] constructed two extra

deformation classes in dimensions 6 and 10. In these notes we will describe members of each of these

deformation classes. No other deformation class of HK manifolds is known. It has proved hard to

construct HK manifolds which are not deformations of the known examples, on the other hand we do

not know whether the set of deformation classes of a given dimension greater than 2 is finite (see [15, 48]

for work in that direction, and [47] for constraints on the topology of HK manifolds). Each of the known

deformation classes has representatives which are moduli spaces of semistable sheaves on projective

K3 surfaces or abelian surfaces (i.e. projective symplectic surfaces) or modifications of such moduli

spaces. The general theory shows that a generic projective deformation of such a moduli space is not

isomorphic (not even birational) to a moduli space of sheaves on a symplectic surface. Thus one is

naturally led to ask for explicit models of HK varieties2 which are not birational to Moduli spaces of

sheaves on symplectic surfaces: this has been accomplished for some choices of deformation classes and

polarization type [6, 19, 20, 43, 9, 27, 1]. On the other hand an intensive study of the geometry of

moduli spaces of sheaves and of semistable objects in the derived category of symplectic surfaces, joined

with Verbitsky’s global Torelli [16, 52, 32] has produced deep results on the ample/nef/movable cone

of HK manifolds in some of the known deformation classes [33, 4]. The moral is that moduli spaces

of sheaves on symplectic surfaces play a fundamental rôle in the theory of HK manifolds although

Date: June 13 2014.
1Our terminology is at odds with the Riemannian notion of hyperkähler metric, which makes sense on a possibly

non-compact manifold, but there will be no cause for confusion because we will deal exclusively with compact Kähler

manifolds.
2A HK variety is a projective HK manifold.
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the generic HK manifold is not birational to such a moduli space. In these notes we will sketch the

construction of all the known deformation classes of HK manifolds via moduli of sheaves on symplectic

surfaces.

2. Beauville’s examples

2.1. Zero-dimensional subschemes of smooth surfaces. Let S be a smooth complex projective

surface and S[n] be the Hilbert scheme parametrizing length-n subschemes of S. A point of S[n] is

a subscheme Z ⊂ S such that H0
(OZ) is finite-dimensional of dimension n. It is known [11] that

the generic such Z is reduced i.e. it consists of n distinct points and that S[n] is a smooth complex

projective variety3 of dimension 2n. Let S(n) be the symmetric n-th power of S i.e. the quotient of Sn

by the natural action of the symmetric group on n elements Σn. An element of S(n) may be written

as a finite formal sum ∑imipi where mi ∈ N for each i and ∑imi = n. There is a regular Hilbert-Chow

map

S[n] γ
Ð→ S(n)

Z ↦ ∑p∈S `(OZ,p)p.
(2.1.1)

Here the sum is a formal sum. Let ∑imipi ∈ S
(n) where the points pi are pairwise distinct : by a result

of Iarrobino [18]

dimγ−1
(∑

i

mipi) = ∑
i

(mi − 1). (2.1.2)

Let ∆n ⊂ S
[n] be the subset of non-reduced subschemes. By (2.1.2) ∆n is the exceptional set of γ. Since

S(n) is Q-factorial it follows that ∆n has pure codimension 1: by (2.1.2) we get that ∆n is irreducible.

We will give an explicit description of the subset Un ⊂ S
[n] defined by

Un ∶= {Z ∈ S[n]
∣ ∣ suppZ ∣ ≥ (n − 1)}. (2.1.3)

In other words Z ∈ Un if either Z is reduced or it is the disjoint union of (n − 2) reduced points

and a subscheme of length 2. Since γ(Un) is open and Un = γ−1
(γ(Un)) the subset Un is open.

Equation (2.1.2) gives that

dim(S[n]
∖Un, S

[n]
) = 2. (2.1.4)

An explicit description of Un goes as follows. Let Vn ⊂ S
n be defined by

Vn ∶= {(x1, . . . , xn) ∈ S
n
∣ ∣{x1, . . . , xn}∣ ≥ (n − 1)}. (2.1.5)

In other words (x1, . . . , xn) ∈ Vn if there exists at most one couple 1 ≤ i < j ≤ n such that xi = xj .

The tautological closed subset W ⊂ Vn × S consisting of couples ((x1, . . . , xn), y) such that y = xi for

some 1 ≤ i ≤ n is not a flat family of length-n subschemes of S unless n = 1. In fact an explicit

computation shows that the length of the fiber of W → Vn over a point (x1, . . . , xn) with a repetition

(i.e. xi = xj for some 1 ≤ i < j ≤ n) is equal to (n + 1) instead of n; the point is that as xi gets close to

xj the subscheme {x1, . . . , xn} approaches different subschemes, they are parametrized by the limiting

direction of (xi − xj) (if xi, xj belong to a coordinate patch in the classical topology). In order to get

a flat family we must blow-up the large diagonal. More precisely for 1 ≤ i < j ≤ n let

Dij ∶= {(x1, . . . , xn) ∈ S
n
∣ xi = xj}. (2.1.6)

The large diagonal Dn ⊂ S
n is the union of all the Dij . We let

f ∶ Ṽn → Vn (2.1.7)

be the blow-up of Dn ∩Vn. There is a subscheme Z ⊂ Ṽn ×S flat over Ṽn such that Zt ∶= Z ∩({t}×S)

is a length-n subscheme for every t ∈ Ṽn and if f(t) = (x1, . . . , xn) where the xi’s are pairwise distinct

then Zt is the reduced scheme {x1, . . . , xn}. Thus Z induces a regular surjective map

g∶ Ṽn Ð→ Un. (2.1.8)

The group Σn on n elements acts on Ṽn and on Z : it follows that g is invariant under the action of

Σn on Ṽn and hence it descends to a regular map

h∶Σn/Ṽn Ð→ Un. (2.1.9)

Since h is injective and S[n] is smooth it follows that h is an isomorphism.

3A variety is integral i.e. reduced and irreducible.
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2.2. Topology of S[n]. We will study the topology of S[n] for n ≥ 2. We start by analyzing the

fundamental group. Let p1, . . . , pn ∈ S be pairwise distinct and

S∖{p1, . . . , pn−1}
h
↪ S[n]

p ↦ {p1, . . . , pn−1, p}.
(2.2.1)

One proves easily that the homomorphism

π1(S∖{p1, . . . , pn−1};pn)
h#

Ð→ π1(S
[n];{p1, . . . , pn})

is surjective and the image is a commutative subgroup (the latter holds because n ≥ 2). Since

H1(S∖{p1, . . . , pn−1}) ≅H1(S;Z) we get that h# induces a surjective homomorphism

H1(S;Z) Ð→ π1(S
[n];{p1, . . . , pn}). (2.2.2)

Proposition 2.1. Keep assumptions and notation as above, in particular n ≥ 2. Then (2.2.2) is an

isomorphism.

Proof. Let Alb(S) =H0
(Ω1

S)
∨
/H1(S;Z) be the Albanese variety of S. Choose a base point p0 ∈ S and

let
S

u
Ð→ Alb(S)

p ↦ (ω ↦ ∫
p
p0
ω)

(2.2.3)

be the Albanese map. Let

S[n] sn
Ð→ Alb(S)

Z ↦ ∑p∈S `(OZ,p)u(p)
(2.2.4)

where the sum is not a formal sum, it is the sum in the group Alb(S) (the notation is consistent with

that of (2.4.2)). Composing (2.2.2) and the map

π1(S
[n];{p1, . . . , pn})

sn,♯
Ð→ π1(Alb(S);u(p1) + . . . + u(pn))

we get a homomorphism H1(S;Z) → π1(Alb(S);u(p1) + . . . + u(pn)) ≅ H1(S;Z) which is the identity.

It follows that (2.2.2) is injective; since it is surjective it is an isomorphism. �

Next we will describe the low-dimensional cohomology groups of S[n]. The rational cohomology of

S(n) is naturally identified with the Σn-invariant summand of the rational cohomology of Sn i.e.

Hp
(S(n);Q) ≅Hp

(Sn;Q)
Σn . (2.2.5)

Thus Poincarè duality for Sn gives that

Hp
(S(n);Q) ×H2n−p

(S(n);Q) Ð→ Q
(α,β) ↦ ∫S(n) α ∪ β

(2.2.6)

is a perfect pairing for all p. It follows that Hp
(γ)∶Hp

(S(n);Q) → Hp
(S[n];Q) is injective for all p.

Since γ is an isomorphism outside the irreducible divisor ∆n we get that Hp
(γ) is an isomorphism for

p ≤ 1 and that

H2
(S[n];Q) ≅H2

(S(n);Q) ⊕Qc1(OS[n](∆n)). (2.2.7)

Let’s pass to integral cohomology. It is not difficult to prove that for p ≤ 2 every integral Σn-invariant

p-cohomology class on Sn descends to an integral cohomology class on S(n). More precisely there exists

a symmetrization homomorphism

tp∶H
p
(S;Z) Ð→Hp

(S(n);Z), p ≤ 2 (2.2.8)

characterized as follows. Let q∶Sn → S(n) be the quotient map and πi∶S
n
→ S the projection to the

i-th factor: then

q∗ ○ t∗p(α) = π
∗
1α + . . . + π

∗
nα, α ∈Hp

(S;Z). (2.2.9)

For simplicity we will assume from now on that H∗
(S;Z) has no torsion. It follows by Künneth’s

decomposition that H∗
(Sn;Z) has no torsion and that we have an isomorphism

Hp
(S(n);Z) ≅Hp

(Sn;Z)
Σn , p ≤ 2. (2.2.10)

Thus we have a series of isomorphisms

Hp
(S;Z)

tp
∼
Ð→Hp

(S(n);Z)
∼
Ð→Hp

(S[n];Z), p ≤ 1. (2.2.11)



4 KIERAN G. O’GRADY “SAPIENZA”UNIVERSITÀ DI ROMA

For p = 1 this is the same isomorphism which one gets from Proposition 2.1. In order to describe

integral 2-cohomology we must analyze c1(OS[n](∆n)). Let Ṽn be as in (2.1.7). The alternating group

An < Σn acts on Ṽn, let Wn ∶= An/Ṽn. Let Un ⊂ S
n] be the open subset given by (2.1.9). The natural

map ρ∶Wn Ð→ Un is a double cover ramified over ∆n ∩ Un. The action of Z/(2) on ρ∗OWn gives an

eigenspace decomposition

ρ∗OWn = OUn ⊕L −
n (2.2.12)

where L −
n is the (−1)-eigensheaf - an invertible sheaf. By (2.1.4) there is an invertible sheaf Ln on

S[n], unique up to isomorphism, extending L −
n . Let ξn ∶= c1(L

−1
n ). By construction

2ξn = c1(OS[n](∆n)). (2.2.13)

Proposition 2.2. Let S be a smooth complex projective surface. Assume that H∗
(S;Z) has no torsion.

Then

H2
(S[n];Z) = Im t2⊕

2

⋀ Im t1⊕Zξn ≅H2
(S;Z)⊕

2

⋀H1
(S;Z)⊕Z. (2.2.14)

Moreover t1 and t2 are embeddings of Hodge structures.

Proof. By Proposition 2.1 and the hypothesis that H∗
(S;Z) has no torsion we get that H1(S

[n];Z)

has no torsion; by the Universal coefficients Theorem it follows that H2
(S[n];Z) has no torsion.

By (2.2.7) we know that (2.2.14) holds when we tensor all members by Q. It follows that in order to

prove that (2.2.14) holds it suffices to find classes β1, . . . , βm ∈ H2(S
[n];Z) (notice: we know b2(S

[n]
)

by (2.2.7)) such that the pairing matrix between β1, . . . , βm and a basis of (Im t2⊕⋀
2 Im t1⊕Zξn) is

unimodular. We leave this as an exercise except for one point. Let p1, . . . , pn−1 ∈ S be pairwise distinct

and

Γn ∶= γ
−1

(2p1 + p2 + . . . + pn−1) ⊂ S
[n]. (2.2.15)

Then Γn is isomorphic to P1. In fact let f ∶ Ṽn → Vn be as in (2.1.7) and

Γ̃n ∶= f
−1

(2p1 + p2 + . . . + pn−1). (2.2.16)

Then Γ̃n is isomorphic to P1 (it is the typical fiber of the map from the exceptional divisor of f to the

big diagonal Dn) and the restriction of g (see (2.1.8)) to Γ̃n defines an isomorphism Γ̃n
∼
Ð→ Γn. Since

g is simply ramified along Dn we get that

∆n ⋅ Γn = (h∗∆n) ⋅ Γ̃n = 2Dn ⋅ Γ̃n = −2. (2.2.17)

Thus ∫Γn
ξn = −1. The statement about t1 and t2 being embeddings of Hodge structures follows directly

from their definition. �

Remark 2.3. The Betti numbers of S[n] have been computed by Göttsche [10], the Hodge numbers

have been computed by Göttsche-Soergel [13]. See also the paper of J. Cheah [8].

2.3. Holomorphic 2-forms on S[n]. Let ϕ ∈H0
(Ω2

S): we will associate to ϕ a regular 2-form on S[n].

For 1 ≤ i ≤ n let ρi∶ Ṽn → S be the composition of the blow-down map (2.1.7) and projection to the i-th

factor. The regular 2-form
n

∑

i=1
ρ∗i ϕ is Σn-invariant. Let h be quotient map (2.1.9). A local computation

shows that
n

∑

i=1
ρ∗i ϕ descends to a regular 2-form on Un. By (2.1.4) we get that the descended 2-form

extends to a regular 2-form ϕ[n] on S[n]. We have defined a homomorphism

H0
(Ω2

S) ↪ H0
(Ω2

S[n])

ϕ ↦ ϕ[n] (2.3.1)

In order to describe div(⋀n ϕ[n]
) we introduce a piece of notation. Let D be an integral curve on S:

we let ΣD be the prime divisor on S(n) given by

Σ
(n)
D ∶= {A ∈ S(n)

∣ A ∩D /= ∅}. (2.3.2)

Extending by linearity we get a map

Div(S) Ð→ Div(S(n)
)

D ↦ Σ
(n)
D

(2.3.3)

Proposition 2.4. Keep notation as above and let 0 /= ϕ ∈H0
(Ω2

S). Let D = div(ϕ) ∈ ∣KS ∣. Then

div(ϕ[n]
) = γ∗(Σ

(n)
D ). (2.3.4)
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Proof. By (2.1.4) it suffices to prove that Equality (2.3.4) holds on the open subset Un. This is clear

away from ∆n ∩ Un. Thus div(⋀n ϕ[n]
) = a∆n + γ

∗
(Σ

(n)
D ) for some a ≥ 0. Let ω∆n be the dualizing

sheaf of ∆n. By adjunction we get that ω∆n ≅ O∆n((a + 1)∆n). The restriction of the Hilbert-Chow

map to the open dense γ−1
(Vn ∩∆n) ⊂ ∆n is a P1-fibration; the fibers are the Γn given by (2.2.15). It

follows that ω∆n ∣Γn ≅ OΓn(−2). By (2.2.17) we get that a = 0. �

2.4. Beauville’s examples. Throughout the present subsection n ≥ 2. Let S be a projective K3 sur-

face. Then S[n] is a smooth projective variety of dimension 2n. We will prove that S[n] is hyperkähler

and that

b2(S
[n]

) = 23. (2.4.1)

First S[n] is simply-connected by Proposition 2.1. Let ϕ ∈H0
(Ω2

S) be non-zero. Then ϕ is symplectic

because S is a K3 surface and hence ϕ[n]
∈H0

(Ω2
S[n]) is symplectic by Proposition 2.4. Lastly Pro-

position 2.2 gives that h2,0
(S[n]

) = 1 and that (2.4.1) holds (the second Betti number of a K3 surface

equals 22 by Noether’s formula). Now we pass to Beauville’s other examples. Let T be an abelian

surface. The Hilbert scheme T [n+1] carries a holomorphic symplectic form but it is not HK: in fact the

fibration

T [n+1] sn+1
Ð→ T

Z ↦ ∑p∈T `(OZ,p)p
(2.4.2)

(the sum is in the group T and `(OZ,p) is equal to the dimension of OZ,p as C-vector space) shows that

H1(T
[n+1];Q) /= 0 and also that T [n+1] carries non-zero holomorphic 2-forms which are not symplectic.

Let

K[n]
(T ) ∶= s−1

n+1(0). (2.4.3)

Since T [n+1] has dimension 2(n + 1) and the summation map sn+1 is locally trivial (in the classical or

étale topology) the dimension of K[n]
(T ) is equal to 2n. The variety K[n]

(T ) is known as a generalized

Kummer variety because if n = 1 it is isomorphic to the Kummer surface of T (here by Kummer surface

we mean the minimal desingularization of the singular Kummer of T given by the quotient T /⟨(−1)⟩

where (−1) is multiplication by (−1)). We will prove that K[n]
(T ) is a hyperkähler variety and that

b2(K
[n]

(T )) = 7. (2.4.4)

First let’s prove that K[n]
(T ) is simply-connected. The long exact sequence of homotopy groups

associated to Fibration (2.4.2) gives an exact sequence

π2(T ) Ð→ π1(K
[n]

(T )) Ð→ π1(T
[n+1]

)

sn+1,♯
Ð→ π1(T ) (2.4.5)

The map sn+1,♯ is an isomorphism, see the proof of Proposition 2.1. Since π2(T ) is trivial it follows

that K[n]
(T ) is simply-connected. Next one shows that restriction gives a surjection

H2
(T [n+1];Q) ↠H2

(K[n]
(T );Q). (2.4.6)

The assertion about surjectivity follows from irreducibility of ∆n+1∣K[n](T ) (that is why we need to

assume that n ≥ 2) and from a surjectivity statement involving

V 0
n+1 ∶= {(x1, . . . , xn+1) ∈ Vn+1 ∣ x1 + . . . + xn+1 = 0}, (2.4.7)

namely that restriction gives a surjectionH2
(Vn+1;Q) →H2

(V 0
n+1;Q). This proves surjectivity of (2.4.6).

Now look at Equation (2.2.14) for S = T with n replaced by (n+1). Since K[n]
(T ) is simply connected

we get that restriction defines a surjection

H2
(T ;Q)⊕Qξn+1 ↠H2

(K[n]
(T );Q). (2.4.8)

In order to prove that the above map is an isomorphism we consider the regular map

K[n]
(T ) × T

f
Ð→ T [n+1]

(Z,a) ↦ τa(Z)

(2.4.9)

where τa∶T → T is translation by a. The map f is Galois with group T [n+1] (the group of (n+1)-torsion

points of T ). Since K[n]
(T ) is simply connected the Künneth decomposition gives an isomorphism

H2
(K[n]

(T ) ×T ;Q) ≅H2
(K[n]

(T );Q)⊕H2
(T ;Q). Thus H2

(f) defines an injection H2
(T [n+1];Q) ↪

H2
(K[n]

(T );Q) ⊕H2
(T ;Q); keeping in mind (2.4.8) we get that

2b2(T ) + 1 = b2(T
[n+1]

) ≤ b2(K
[n]

(T )) + b2(T ) ≤ 2b2(T ) + 1. (2.4.10)
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Thus the inequalities above are equalities and hence (2.4.8) is an isomorphism. This proves (2.4.4) and

hence also that h2,0
(K[n]

(T )) = 1 (see the claim about Hodge structures in the statement of Proposi-

tion 2.2). It remains to prove that there exists a holomorphic 2-form on K[n]
(T ). Let 0 /= ϕ ∈H0

(Ω2
T ).

By Proposition 2.4 the holomorphic 2-form ϕ[n+1] on T [n+1] is symplectic. Since f is śtale the pull-

back f∗ϕ[n+1] is a symplectic form on K[n]
(T ) × T . Since K[n]

(T ) is simply-connected there exist a

holomorphic 2-form α on K[n]
(T ) and a holomorphic 2-form β on T such that f∗ϕ[n+1]

= p∗α + q∗β

where p, q are the projections of K[n]
(T )×T onto the first and second factor respectively. Since f∗ϕ[n+1]

is symplectic both α and β are simplectic; thus α is a holomorphic symplectic form on K[n]
(T ).

Remark 2.5. By Proposition 2.4 the variety T [n+1] has trivial first Chern class: Map (2.4.9) is its

Beauville-Bogomolov decomposition of T [n+1].

Remark 2.6. The Hodge numbers of generalized Kummer varieties have been computed by Göttsche

and Soergel [13].

3. Moduli of sheaves on symplectic surfaces

3.1. Moduli of semistable sheaves. A general reference for moduli of semistable sheaves is [17]. Let

X be a complex projective variety and H an ample Cartier divisor on S. We let OX(1) ∶= OX(H). Let

F be a coherent sheaf on X (unless we state the contrary sheaves are always assumed to be coherent).

Let Ann(F ) ⊂ OX be the annihilator of F . Thus Ann(F ) is an ideal sheaf; the support of F is the

subscheme of X defined by supp(F ) ∶= V (Ann(F )). The dimension of F is equal to the dimension of

supp(F ); we denote it by dim(F ). The sheaf F is pure if any non-zero subsheaf G ⊂ F has dimension

equal to dim(F ).

Example 3.1. If dimX = 1 then a sheaf is pure if and only if it is torsion-free. If dimX = 2 a sheaf

is pure of dimension 2 if and only if it is torsion-free. An example of a pure sheaf of dimension 1 on

a surface X is given by F ∶= ι∗V where ι∶C ↪ X is the inclusion of an irreducible curve and V is a

torsion-free sheaf on C.

Given a sheaf F on X we let F (n) ∶= F ⊗OX(n). Suppose that F is non-zero and let d ∶= dim(F ) ≥ 0.

The Hilbert polynomial χ(F (n)) is integer-valued, it follows that there exists a unique sequence of

integers ai for 0 ≤ i ≤ d such that

χ(F (n)) =
d

∑

i=0

ai(
n

i
) ∀n ∈ Z. (3.1.1)

Furthermore ad(F ) > 0; the multiplicity of F is equal to ad(F ).

Example 3.2. Suppose that dim(F ) = dimX. Then F is locally-free on an open dense subset X0 ⊂ X

and the rank of F , denoted by rk(F ), is equal to the rank of the vector-bundle F ∣X0 . Then ad(F ) =

rk(F ) ∫X c1(H)
d.

Definition 3.3. Let F be a sheaf on X. Let d ∶= dim(F ). The reduced Hilbert polynomial of F ,

denoted by pF is defined by

pF (n) ∶=
χ(F (n))

ad(F )

. (3.1.2)

The set of isomorphism classes of sheaves on X with fixed Hilbert polynomial does not have a natural

structure of quasi-projective variety except in special cases. The largest family of sheaves having a good

moduli space is that of pure semistable sheaves.

Definition 3.4. Let X be a smooth irreducible projective variety equipped with an ample divisor H.

A non-zero pure sheaf F on X is H-semistable if for every non-zero subsheaf E ⊂ F we have

pE(n) ≤ pF (n) ∀n≫ 0. (3.1.3)

If strict inequality holds whenever E /= F then F is H-stable.

Example 3.5. If dimF = dimX and F has rank 1 then F is stable for arbitrary H. Suppose that

F = F1 ⊕ F2 with Fi /= 0; then F is H-semistable if and only if each Fi is semistable and pF1 = pF2 .

We notice that in general (semi)stability does depend on the choice of H.
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Claim 3.6. Let X be a complex projective variety with ample Cartier divisor H and F a pure H-stable

sheaf on X. Then F is simple i.e. Hom(F,F ) = C IdF .

Proof. Let d ∶= dimF . Assume that ϕ∶F → F is a non-zero morphism of sheaves. We claim that ϕ is

an isomorphism. In fact assume that E ∶= kerϕ /= 0 and let G ∶= Imϕ. We have an exact sequence of

pure d-dimensional sheaves

0Ð→ E Ð→ F Ð→ GÐ→ 0. (3.1.4)

In particular ad(F ) = ad(E) + ad(G). It follows that

pF (n) =
ad(E)

ad(E) + ad(G)

pE(n) +
ad(G)

ad(E) + ad(G)

pG(n) (3.1.5)

i.e. pF (n) lies in the segment spanned by pE(n) and pG(n). By stability of F we have that pE(n) <

pF (n) for n ≫ 0. It follows that pF (n) < pG(n) for n ≫ 0: that is a contradiction because G is a

subsheaf of F . We have proved that ϕ is injective. Thus ϕ is an injection F ↪ F . By stability we get

that ϕ(F ) = F . This proves that an endomorphism ϕ∶F → F is either zero or an isomorphism. Thus

Hom(F,F ) is a finitely generated division C-algebra: since C is algebraically closed it follows4 that

Hom(F,F ) = C IdF . �

For pure sheaves of dimension equal to dimX there is the notion of µ(slope)-semistability: one

replaces the reduced Hilbert polynomial by the slope. The slope of a sheaf F of dimension equal to

dimX is

µ(F ) ∶=

1

rk(F )
∫
X
c1(F ) ⋅ c1(H)

dimX−1. (3.1.6)

F is µ-semistable (with respect to H) if for every non-zero subsheaf E ⊂ F we have

µ(E) ≤ µ(F ). (3.1.7)

If strict inequality holds whenever E /= F then F is µ-stable. Notice that for a pure sheaf of dimension

equal to dimX we have the following implications:

F is semistableÔ⇒ F is µ-semistable (3.1.8)

F is µ-stableÔ⇒ F is stable (3.1.9)

In order to obtain a separated moduli space we need to consider an equivalence relation which is weaker

than isomorphism. Let F be a pure H-semistable sheaf on X. There exists (see [17]) a Jordan-Hölder

(J-H) filtration of F

0 = F0 ⊂ F1 ⊂ ⋯ ⊂ F` = F (3.1.10)

with the property that each quotient Fi/Fi−1 is pure, H-stable with reduced Hilbert polynomial equal

to PF . A trivial example: if F is H-stable then a J-H filtration of F is necessarily trivial. Another

example: F = L⊗CV where L is a line-bundle on X and V is a vector-space of dimension r. In this case

the set of J-H filtrations of F is in bijective correspondence with the set of complete flags on V . As we

see from the last example a J-H filtration is not unique. One proves that although the J-H filtration is

not unique the associated graded sum

grJH(F ) ∶= ⊕
`
i=1Fi/Fi−1 (3.1.11)

is unique up to isomorphism.

Definition 3.7. Let F and G be pure H-semistable sheaves on X. Then F is S-equivalent to G if

grJH(F ) ≅ grJH(G).

If F is H-stable then F is S-equivalent to G if and only if F ≅ G. On the other hand assume that

F fits into the exact sequence

0Ð→ E Ð→ F Ð→ GÐ→ 0 (3.1.12)

where E,G are pure with pE = pF = pG. Then F is S-equivalent to E ⊕G. Let P be an integer-valued

polynomial of degree at most dimX; we let

MX(P ) ∶= {F pure H-s.s. sheaf on X ∣ χ(F (n)) = P (n)}/S-equivalence (3.1.13)

(We do not include H in the notation although the isomorphism class of the moduli space does depend

on H in general.) The main general theorem on moduli of pure sheaves is the result of research that was

4Suppose that ϕ ∈ (Hom(F,F ) ∖ C IdF ): then ϕ generates a non-trivial algebraic field extension of C, that is a

contradiction.
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done during several years. Among the main constributors we quote Mumford, Seshadri, Narasimhan,

Gieseker, Maruyama, Simpson. The most general result is due to Simpson [49].

Theorem 3.8. There exists a projective scheme MX(P ) with the following properties:

(1) Let T be a scheme and F be a sheaf on X × T which is OT -flat and such that for all t ∈ T

the restriction F ∣X×{t} is pure H-semistable with Hilbert polynomial P . Then there exists a

regular map T →MX(P ) which associates to closed points their S-equivalence class.

(2) MX(P ) “dominates”any other scheme satisfying Item (1).

Given a pure H-semistable sheaf with Hilbert polynomial P we let [F ] ∈ MX(P ) be the point

corresponding to the S-equivalence class of F . Let MX(P )
st
⊂ MX(P ) be the subset parametrizing

stable sheaves: then MX(P )
st is open. Let [F ] ∈ MX(P )

st: there is a natural identification between

the germ of MX(P ) at [F ] and the universal deformation space of F . In particular we get the following

result.

Proposition 3.9. Let [F ] ∈ MX(P )
st. There is a natural isomorphism

Θ[F ]MX(P ) ≅ Ext1
(F,F ). (3.1.14)

Let F be a (coherent) sheaf on X; one can define a trace map

Tri∶Exti(F,F ) →Hi
(OX) (3.1.15)

which is the obvious map for i = 0 - see [17]. (If F is locally-free then Tri is induced by the sheaf map

EndF
Tr
Ð→ OX .) We let

Exti(F,F )
0
∶= ker Tri. (3.1.16)

Theorem 3.10 (Mukai [37], Artamkin [3]). Suppose that [F ] ∈ MX(P )
st and that Ext2

(F,F )
0
= 0.

Then MX(P ) is smooth at [F ] and its tangent space is canonical identified with Ext1
(F,F ).

3.2. Semistable sheaves on symplectic surfaces. Let S be a symplectic projective surface i.e. a

projective K3 or an abelian surface. We let

H̃(S) ∶=H0
(S) ⊕H2

(S) ⊕H4
(S) (3.2.1)

We denote elements of H̃(S) by (r, `, s) where ` ∈ H2
(S) and r, s ∈ C (we identify H4

(S) with C via

the orientation class η of S). Given α = (r, `, s) ∈ H̃(S) we let

α∨ ∶= (r,−`, s). (3.2.2)

One gives H̃(S) a Hodge structure of weight 2 as follows:

H̃(S)2,0
=H2,0

(S), H̃(S)0,2
=H0,2

(S), H̃(S)1,1
=H0

(S) ⊕H1,1
(S) ⊕H4

(S). (3.2.3)

Thus H̃(S) has an integral Hodge structure - the integral structure coming from H̃(S;Z). The Mukai

lattice [36] of S is the group H̃(S;Z) equipped with the symmetric bilinear form

⟨(r, `, s), (r′, `′, s′)⟩ ∶= deg(` ∪ `′) − rs′ − r′s = deg((r + ` + sη) ∪ (r′ + `′ + s′η)∨). (3.2.4)

(Here η ∈ H4
(S) is the orientation class of S.) Notice that ⟨, ⟩ is even, unimodular, of signature

(4, b2(S)−2) i.e. (4,20) if S is a K3 and (4,4) if S is an abelian surface. Let F be a coherent sheaf on

S; following Mukai [36] one sets

v(F ) ∶= ch(F )

√

Td(S) = ch(F )(1 + εη), (3.2.5)

where η ∈ H4
(S;Z) is the orientation class and ε is equal to 1 if S is a K3 surface and is equal to 0 if

S is an abelian surface. Notice that v(F ) ∈ H̃1,1
Z (S). By Hirzebruch-Riemann-Roch we have

⟨v(E), v(F )⟩ = −χ(E,F ) ∶= −

2

∑

i=0

(−1)i dim Exti(E,F ). (3.2.6)

By Serre duality we have Ext2
(F,F ) ≅ Hom(F,F )

∨ and hence (3.2.6) gives

dim Ext1
(F,F ) = 2 dim Hom(F,F ) + ⟨v(F ), v(F )⟩. (3.2.7)

Definition 3.11. A Mukai vector is a

v = (r, `, s) ∈ H̃1,1
Z (S) (3.2.8)

such that r ≥ 0 and such that ` is effective if r = 0.
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Notice that if F is a pure sheaf of dimension 2 or 1 then v(F ) is a Mukai vector. Now let H be an

ample divisor on S and let OS(1) ≅ OS(H). One indicizes moduli spaces of H-semistable pure sheaves

on S by Mukai vectors. Let v ∈ H̃1,1 be a Mukai vector: the Hilbert polynomial χ(F (n)) of a sheaf F

such that v(F ) = v is independent of F , call it Pv. Let

MS(v) ∶= {[F ] ∈ MS(Pv)∣ v(F ) = v}. (3.2.9)

The above subset of MS(Pv) is open hence it inherits a natural structure of scheme. Of course MS(v)

depends on H: whenever there is the potential for confusion we will denote MS(v) by MS,H(v).

Proposition 3.12. Let S be a projective symplectic surface and H an ample divisor on S. Let v be a

Mukai vector. Then

(1) MS(v) is a projective scheme.

(2) Suppose that [F ] ∈ MS(v)
st. Then MS(v) is smooth at [F ] and

dim[F ] MS(v) = 2 + ⟨v,v⟩. (3.2.10)

In particular if v2
< (−2) then M st

S (v) is empty.

Proof. (1): This is because MS(v) is a union of connected components of MS(Pv) (it is both open

and closed). (2): Since F is stable Claim 3.6 gives that Hom(F,F ) = C IdF . By Serre duality

it follows that Ext2
(F,F )

0
= 0. By Theorem 3.10 we get that MS(v) is smooth at [F ] with

tangent space canonically identified with Ext1
(F,F ). Thus Equation (3.2.10) follows from (3.2.7) and

Hom(F,F ) = C IdF . �

Example 3.13. Let S be a K3 surface. We have an isomorphism

S[n] ∼
Ð→ MS(1,0, (n − 1))

[Z] ↦ [IZ].
(3.2.11)

Moduli spaces of semistable sheaves on a symplectic surface S are relevant for the theory of HK

manifolds because one can (following Mukai) associate to a homolorphic symplectic form on S a ho-

molorphic symplectic form on MS(v)
st. In fact let ϕ ∈ Γ(Ω2

S): one defines a 2-form τ(ϕ) on MS(v)
st

by setting

τ(ϕ)(α,β) ∶= ∫
S
ϕ ∧Tr2

(α ∪ β), (3.2.12)

where ∪ denotes Yoneda product. If F is locally-free ∪ is induced by the map of sheaves

EndF ⊗EndF Ð→ EndF

(φ,ψ) ↦ φ ○ ψ
(3.2.13)

Proposition 3.14 (Mukai [37]). Keep notation and hypothese as above. Then τ(ϕ) is holomorphic

and closed. If ϕ is non-zero then τ(ϕ) is symplectic at each point of MS(v)
st.

(Actually closedness of τ(ϕ) without the assumption that MS(v)
st is closed is proved elsewhere -

see for example [39].) Notice that non-degeneracy of τ(ϕ) follows immediately from Serre-duality.

Remark 3.15. Let S be a K3 surface and ϕ ∈ H0
(Ω2

S). The Hilbert scheme S[n] is identified with the

moduli space MS(1,0,−(n−1)), see Example 3.13, and hence we have the holomorphic 2-forms ϕ[n]

and τ(ϕ). The relation between the forms is the following:

τ(ϕ) = −4π2ϕ[n]. (3.2.14)

In order to study moduli of semistable sheaves on K3 and abelian surfaces one must introduce the

notion of generic polarization. Let S be a smooth projective surface. Let NS(S) be the Néron-Severi

group of S i.e. H1,1
Z (S) and NS(S)R ∶= NS(S) ⊗Z R(S). Let A(S) ⊂ NS(S) be the ample cone and

A(S)R ⊂ NS(S)R be its tensor product with R. A wall consist of WD ∶= D�
∩ A(S)R where D is a

divisor on S with strictly negative self-intersection.

Proposition 3.16. Let S be a projective symplectic surface and v a Mukai vector for S. There exists

a union of walls W = ⋃D∈C WD with the following properties:

(1) W is locally finite and hence the complement in A(S)R is a dense open subset.

(2) Let H ∈ (A(S)∖W ) and F be a strictly H-semistable (i.e. semistable but not stable) sheaf with

v(F ) = v. Then grJH(F ) = ⊕iEi where for each i we have v(Ei) = aiv with ai ∈ Q.
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(3) Let H1,H2 ∈ (A(S) ∖W ) belong to the same connected component of (A(S) ∖W ). A sheaf F

with v(F ) = v is H1-semistable if and only if it is H2-semistable.

Definition 3.17. Let S be a projective symplectic surface and v a Mukai vector for S. An ample

divisor H on S is v-generic if it lies outside the minimal union of walls W for which the conclusions

of Proposition 3.16 hold.

The following result is an immediate consequence of Proposition 3.16.

Corollary 3.18. Let S be a projective symplectic surface and v be an indivisible Mukai vector for S.

Let H be an ample v-generic divisor. Then MS(v)
st
= MS(v).

Suppose that v is an indivisible Mukai vector for S and H is a v-generic ample divisor on S. If

MS(v) is non-empty then by Corollary 3.18 and Proposition 3.14 the moduli space MS(v) is a

smooth projective variety of dimension (2+v2
) carrying a holomorphic symplectic form. In Subsection

3.3 we will indicate how one proves that MS(v) is a deformation of K3[n] if S is a K3 (if S is an

abelian surface then the Beauville-Bogomolov decomposition of MS(v) is the product of S, its dual

variety and a deformation of the generalized Kummer K[n]
(S)).

Remark 3.19. Let S be a projective symplectic surface and v = (r, `, s) a Mukai vector for S with

−2 ≤ v2 (see Item (2) of Proposition 3.12) and r > 0. Let

k ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

r2

4
v2

+
r4

2
if S is a K3,

r2

4
v2 if S is an abelian surface.

(3.2.15)

Let W ⊂ A(S)R be the union of the walls WD where D runs through the set of divisors such that

−k ≤D ⋅D < 0. Then the conclusions of Proposition 3.16 hold for the above W .

3.3. Moduli of semistable sheaves on symplectic surfaces: indivisible Mukai vector. Let

(S,H) be a polarized symplectic surface and v ∈ H̃(S) a Mukai vector. Suppose that MS(v) =

MS(v)
st - this will be the case if v is indivisible and H is v-generic by Corollary 3.18. Following

Mukai [36] one define a map H̃(S) → H2
(MS(v)) as follows. Let us assume for the moment that

there exists a tautological sheaf F on S × MS(v) i.e. a sheaf which is flat over MS(v) and such

that for all [F ] ∈ MS(v) the restriction F ∣S×{[F ]} is isomorphic to F . Let π∶S × MS(v) → S and

ρ∶S ×MS(v) →MS(v) be the projections. We let

H̃(S) Ð→ H2
(MS(v))

α ↦ ρ∗ ([ch(F ) ∪ π∗
√

TdS ∪ π∗α∨]
3
)

(3.3.1)

where α∨ is as in (3.2.2) and [. . .]3 means the component lying in H6
(S×MS(v)). A tautological sheaf

does not necessarily exist, but a quasi-tautological sheaf exists and one may define a map as above

with F replaced by a quasi-tautological sheaf of similarity m and then divide by m, see [36] for details.

The above map depends on the (quasi)tautological sheaf, but its restriction to v� is independent of

the (quasi)tautological sheaf: one denotes it by

θv∶v
�
Ð→H2

(MS(v)). (3.3.2)

Clearly θv is a morphism of Hodge structures - the definition of Hodge structure on H̃(S) is motivated

by this observation.

Theorem 3.20 (Mukai, Göttsche - Huybrechts, O’Grady, Yoshioka). Let S be a projective K3 surface.

Let v be Mukai vector as in (3.2.8) and suppose that

(1) v is indivisible,

(2) −2 ≤ v2,

(3) (r, s) /= (0,0).

Let H be a v-generic ample divisor on S. Then MS(v) is an irreducible symplectic variety deformation

equivalent to S[n] where 2n = (2+v2
). Now suppose that 0 ≤ v2. Then the map θv of (3.3.2) is integral,

the restriction to integral cohomology surjects onto H2
(MS(v);Z), and

(1) ker(θv) = Cv if v2
= 0,

(2) θv is injective if 2 ≤ v2.
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Mukai [36] proved Theorem 3.20 when dimMS(v) = 2, Göttsche and Huybrechts [12] proved it

for rank 2 and c1 is indivisible, O’Grady [40] assumed that the rank is non-zero and c1 is indivisible,

Yoshioka [50, 51] proved it in general. Moreover the statements in [12, 40] are that MS(v) is an

irreducible symplectic variety which deforms to a variety birational to (K3)[n]; the stronger statement

follows by applying a general theorem of Huybrechts [14] which states that birational HK manifolds

are deformation equivalent.

Remark 3.21. Let (S,H), v be as in Theorem 3.20. In general the moduli space MS(v) is not

isomorphic to a Hilbert scheme F [n], not even birational. Thus Theorem 3.20 provides explicit

examples of HK deformations of K3[n] which are not isomorphic to a Hilbert scheme of a K3 surface.

There is a result valid for moduli spaces of semistable sheaves on a polarized abelian surface (T,Θ)

which is analogous to Theorem 3.20. Given a 0-cycle Z = ∑i ni(pi) on T we let σ(Z) ∈ T be given by

σ(Z) ∶= ∑i nipi (we take the sum in the group T ); if Z ′ is rationally equivalent to Z then σ(Z ′
) = σ(Z)

and hence we have a well-defined homomorphism σ∶CH0(T ) → T . Let v be a Mukai vector on T and

MT (v)
Av
Ð→ T × Pic(T )

[F ] ↦ (∑ cCH2 (F ), [cCH1 (F )])

(3.3.3)

where cCHi (F ) denotes the i-th Chern class in the Chow group of T . The map Av is regular. Choose

[F0] ∈ MS(v) (assuming MS(v) is non-empty) and let α0 ∶= c
CH
1 (F0). We let

MT (v)
0
∶= A−1

v (0, α0). (3.3.4)

The isomorphism class of MT (v)
0 is independent of the choice of F0 as soon as 4 ≤ ⟨v,v⟩.

Theorem 3.22 (Yoshioka [51]). Let T be an abelian surface. Let v be a Mukai vector as in (3.2.8)

and assume that

(1) v is indivisible,

(2) 4 ≤ v2,

(3) (r, s) /= (0,0).

Let Θ be a v-generic ample divisor on T . Then MT (v)
0 is an irreducible symplectic variety deformation

equivalent to K[n]
(T ) where 2n = (v2

− 2). Now suppose that 6 ≤ v2. Then the map θv of (3.3.2) is

integral and the restriction to integral cohomology is an isomorphism (v�)Z
∼
Ð→H2

(MT (v)
0;Z).

3.4. Moduli spaces of sheaves on symplectic surfaces: modifications. We will describe “oper-

ations” on moduli spaces of sheaves on symplectic surfaces; they are the main ingredients of the proofs

of Theorem 3.20 and Theorem 3.22 for Mukai vectors of strictly positive square. (The analysis of

MS(v) for indivisible v with v2
≤ 0 was done by Mukai [35, 36], and is more direct.) Lastly we will

sketch the proof of Theorem 3.20 in the case when r is coprime to the divisibility of `.

3.4.1. Deformations of the symplectic surface. Let S be a projective symplectic surface and H an

indivisible ample divisor on S. Let deg(H ⋅ H) = 2d. Let π∶S2d → T2d be a complete family of

deformations of (S,H) i.e. the following hold:

(1) π∶S2d → T2d is projective with a relativley ample divisor H .

(2) Given t ∈ T2d and letting St ∶= π
−1

(t), Ht ∶= H ∣St , the couple (St,Ht) is a deformation of

(S,H).

(3) If (S′,H ′
) is a deformation of (S,H) there exists t ∈ T2d such that (S′,H ′

) ≅ (St,Ht).

Since deformations of symplectic surfaces are unobstructed we may assume that T2d is smooth. We

may also assume that T2d is irreducible (for K3 surfaces this is a highly non-trivial result). Now let

r ∈ N and a, s ∈ Z: we assume that

vt ∶= (r, ac1(Ht), s) ∈ H̃(St)

is a Mukai vector for all t ∈ T2d (i.e. a ≥ 0 if r = 0). There exists a relative moduli space MS → T2d,

i.e. a projective map such that the fiber over t ∈ T2d is isomorphic M(St,Ht)(vt). Let T2d(v) ⊂ T2d (here

v = (r, a, s)) be the subset of t such that Ht is vt-generic. Then T2d(v) is open dense in T2d. We let

ϕ∶MS (v) → T2d(v) (3.4.1)

be the restriction of the relative moduli space. Now let’s make the following assumption

gcd(r, a, s) = 1. (3.4.2)
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Let t ∈ T2d(v): by Corollary 3.18 every sheaf F parametrized by M(St,Ht)(vt) is stable. It follows

that the trace-less part Ext2
(F,F )

0 vanishes and hence “sideways” deformations of F are unobstructed,

i.e. the differential of ϕ at [F ] is surjective. Thus ϕ is submersive and hence any two moduli spaces

M(St,Ht)(vt), M(Su,Hu)(vu) are equivalent by deformation. One also gets that the maps

θvt ∶v
�
t Ð→H2

(M(St,Ht)(vt)) (3.4.3)

are locally constant.

3.4.2. Tensorization by a line-bundle. Let S be a projective symplectic surface and H an indivisible

ample divisor on S. Let F be a sheaf on S which is H-slope-stable: if L is an invertible sheaf on S

then F ⊗L is H-slope-stable5. The following slight modification of Proposition 3.16 is useful in the

present context.

Proposition 3.23. Let S be a projective symplectic surface and v = (r, a`0, s) a Mukai vector for S

with `0 indivisible and r, a coprime. There exists a union of walls V = ⋃D∈C VD with the following

properties:

(1) V is locally finite and hence the complement in A(S)R is a dense open subset.

(2) Let H ∈ (A(S)∖V ) and F be H-sope-semistable sheaf with v(F ) = v. Then F is H-sope-stable.

(3) Let H1,H2 ∈ (A(S) ∖ V ) belong to the same connected component of (A(S) ∖ V ). A sheaf F

with v(F ) = v is H1-slope-stable if and only if it is H2-slope-stable.

Thus if v is a Mukai vector for S as in Proposition 3.23 and H ∈ (A(S) ∖ V ) then all sheaves

parametrized by MS(v) are slope-stable: it follows that tensorization by an invertible sheaf L on S

defines an isomorphism

MS(v)
∼
Ð→ MS(v ∪ ch(L))

[F ] ↦ [F ⊗L]
(3.4.4)

3.4.3. Fourier-Mukai transform. Let S be a projective symplectic surface and u an indivisible Mukai

vector for S with u2
= 0. Let H be a u-generic ample divisor on S. Mukai [36, 35] proved that MS(u)

is a K3 surface if S is, and an abelian surface if S is. We make the assumption that there exists a

tautological sheaf P on S ×MS(u).

Example 3.24. (1) S is a K3 and u = (1,0,0). Then MS(u) ≅ S and the tautological sheaf is I∆

where ∆ ⊂ S × S is the diagonal.

(2) S is an elliptic K3 with a section of the elliptic fibration. Let C an elliptic fiber and u =

(0, c1(OS(C)), s). The generic sheaf parametrized by MS(u) is isomorphic to jt,∗(L) where

jt∶Ct ↪ S is the inclusion of an elliptic fiber and L ∈ Pics(Ct). Notice that MS(u) ≅ S because

S has a section of the elliptic fibration.

(3) S is an abelian surface and u = (1,0,0). Then MS(u) ≅ S∨ = Pic0
(S) and the tautological

sheaf of choice is the normalized Poincaré line-bundle.

Given a projective scheme X we let Db
(X) be the category of boundede complexes of sheaves on

X. Let S, T ∶= MS(u) and P be as above. The Fourier-Mukai functor ΦP
S→T ∶D

b
(S) Ð→ Db

(T ) is

defined as

Db
(S)

ΦP
S→T
Ð→ Db

(T )

F ↦ πT,∗(P
L
⊗ π∗SF )

(3.4.5)

where πS , πT are the projections of S × T to S and T respectively.

Theorem 3.25 (Mukai [35], Bridgeland [7]). Keep hypotheses and notation as above. Then ΦP
S→T is

an equivalence of triangulated categories.

We will be interested in geometric versions of the Fourier-Mukai transform. Under suitable hypo-

theses the following will hold.

Assumption 3.26. Keep notation and assumptions as above. Let v be a Mukai vector of S and H

an ample divisor on S such that MS,H(v) = MS,H(v)
st. Let L be an ample divisor on T = MS(u). If

F is the generic sheaf parametrized by MS,H(v) then ΦP
S→T (F ) is represented by an L-stable sheaf G

with Mukai vector w ∈ H̃(T ) (i.e. by G[i] for some i independent of the generic sheaf F ).

5Gieseker-stability might not be preserved after tensorization with L.
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Suppose that Assumption 3.26 holds. Then we get a birational map

MS,H(v) ⇢ MT,H(w)

[F ] ↦ [G]

(3.4.6)

where G is as in Assumption 3.26.

Example 3.27. Let S and u = (1,0,0) be as in Item (1) of Example 3.24. Let v = (r, `, s) be a Mukai

vector of S and H an ample divisor on S such that the generic F parametrized by MS,H(v) is globally

generated (this implies that s > 0). Then Assumption 3.26 holds under suitable extra assumptions

on ` and H, for example Pic(S) = Z[H] and ` = c1(OS(H)) are sufficient (we let L = H). With these

hypotheses the rational map (3.4.6) is Mukai’s reflection wich associates to the generic F parametrized

by MS,H(v) (and hence globally generated) the sheaf E fitting into the exact sequence

0Ð→ E Ð→H0
(F ) ⊗OS Ð→ F Ð→ 0. (3.4.7)

Let w ∶= (s,−`, r): Mukai’s reflection is a birational map MS(v) ⇢MS(w).

3.4.4. Theorem 3.20: sketch of proof. Let v = (r, a`0, s) where `0 is indivisible and gcd(r, a, s) = 1.

We will sketch the proof that MS(v) is a HK variety which deforms to a HK variety birational to

K3[n], where 2n = (2 + v2
).

Step 1: By deforming (S,H) to a K3 with a suitable Picard group of rank 2 and tensorizing

sheaves by a line-bundle we may assume that a = gcd(r, a) and that Mukai’s reflection (see Ex-

ample 3.27) is a birational map MS(v) ⇢MS(s,−a`0, r).

Step 2: Since gcd(r, a, s) = 1 and a = gcd(r, a) we have gcd(a, s) = 1. Iterating the procedure of

Step 1 we may assume that a = 1, i.e. v = (r,−`0, s).

Step 3: Via another iteration of Step 1 we are reduced to proving the Theorem for S an elliptic

K3 surface with a section and v = (r, `, s) where ` is a numerical section i.e. deg(` ⋅ C) = 1

for C an elliptic fiber. Moreover we may assume that the ample divisor H is very close to C

(how close depends on v2) so that a sheaf with v(F ) = v is H-slope-semistable if and only if

its restriction to the generic elliptic fiber Ct is stable.

Step 4: There exists an integer k such that if v(F ) = v then χ(F ⊗OS(kC)) = 1. Replace v by

v ⋅ ch(OS(kC)). One proves that if [F ] ∈ MS(v) is generic then χ(F ) = 1. Let [F ] ∈ MS(v)

be generic: then we have an exact sequence

0Ð→ OS Ð→ F Ð→ E Ð→ 0 (3.4.8)

where E is an H-semistable sheaf. Let w ∶= v(E). The map

MS,H(v) ⇢ MS,H(w)

[F ] ↦ [E]

(3.4.9)

is birational. This can be interpreted as the birational map induced by the Fourier-Mukai

transform given in Item (2) of Example 3.24, see [30].

Step 5: The moduli space MS,H(w) is a moduli space of sheaves on the elliptic surface similar

to the one above, in particular

w = (r − 1, `′, s′), deg(`′ ⋅C) = 1.

Iterating the above procedure we get down to a moduli space MS,H(1, `, s) i.e. S[n] for a

suitable n.

4. O’Grady’s examples

4.1. Main results. Let S be a projective symplectic surface and v a Mukai vector for S which is

divisible. Thus

v =mv0, v0 ∈ H̃
1,1
Z (S) indivisible, m ∈ N, m ≥ 2. (4.1.1)

Let H be a v-generic ample divisor on S. Suppose that MS(v)
st and MS(v0)

st are non-empty.

Let F ∶= ⊕
m
i=1Ei where Ei is a stable sheaf such that v(Ei) = v0. Then F is a strictly semistable

sheaf parametrized by a point of MS(v). We expect that MS(v) is singular at these points. One

may ask the following question: does there exist a desingularization ̃MS(v) → MS(v) such that the

holomorphic symplectic form on MS(v)
st (viewed as a subset of ̃MS(v)) extends to a holomorphic

symplectic form on ̃MS(v)? Such a desingularization is a symplectic desingularization. The following

result, summarizing the work of many mathematicians, answers the above question.
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Theorem 4.1 (O’Grady, Kiem, Rapagnetta, Kaledin, Lehn, Sorger, Perego). Let S be a symplectic

projective surface. Let v be a divisible Mukai vector as in (4.1.1). Suppose that v2
0 ≥ 2 and that

(r, s) /= (0,0). Let H be a v-generic ample divisor on S. Then MS(v) is non-empty, irreducible of

dimension (2+v2
) and its smooth locus is equal to MS(v)

st. There exits a symplectic desingularization

π̃∶ ̃MS(v) →MS(v) if and only if m = 2 and v2
0 = 2. Now suppose that m = 2 = v2

0.

(1) If S is a K3 surface then ̃MS(2v0) is a 10-dimensional HK variety and b2( ̃MS(v0)) = 24.

(2) If S is an abelian surface let ̃MS(2v0)
0
∶= f−1

(MS(2v0)
0
). Then ̃MS(2v0)

0 is a 6-dimensional

HK variety and b2( ̃MS(2v0)
0
) = 8.

(3) Let S and S′ be K3 surfaces, v0 and v′0 Mukai vectors for S and S′ with 2 = v2
0 = (v′0)

2 and

H, H ′ ample divisors on S and S′ respectively which are 2v0 and 2v′0 generic respectively.

Then ̃MS(2v0) is deformation equivalent to ̃MS′(2v′0). A similar statement holds for abelian

surfaces.

Let ̃MS(2v0) and ̃MS(2v0)
0 be as in Items (1) and (2) of Theorem 4.1. Since ̃MS(2v0) has

second Betti number different from that of (K3)[n] and of a generalized Kummer it is not not a

deformation of the Beauville examples. A similar statement holds for ̃MS(2v0)
0. Thus we get two new

deformation classes of HK manifolds. A word about the contributions of the mathematicians quoted

in the statement of Theorem 4.1. Suppose that v0 = (1,0,−1): a sheaf F parametrized by MS(2v0)

has rank 2, c1 = 0 and c2 equal to 4 if S is a K3 and 2 if S is an abelian surface. O’Grady [41, 42]

proved that MS(2(1,0,−)) has a symplectic desingularization ̃MS(2(1,0,−1)) and that if S is a K3

then ̃MS(2(1,0,−1)) is a 10-dimensional HK variety with b2 ≥ 24 (and hence not a deformation of

Beauville’s examples), and that if S is an abelian surface then ̃MS(2(1,0,−1))0 is a 6-dimensional

HK variety with b2 = 8 (and hence not a deformation of Beauville’s examples). Kiem [25] proved

non-existence of a symplectic desingularization of MS(2v0) for some choices of v0. Rapagnetta [46]

proved that if S is a K3 surface then b2( ̃MS(2(1,0,−1))) = 24. Suppose that v2
0 = 2: Lehn and

Sorger [26] showed that the symplectic desingularization f ∶ ̃MS(2v0) →MS(2v0) can be obtained by

a single blow-up, namely the blow-up of the singular locus of MS(2v0). Kaledin, Lehn and Sorger [24]

proved non-existence of a symplectic desingularization for all v with m > 2 or v2
0 > 2. Perego and

Rapagnetta [44] proved Item (3) of Theorem 4.1.

Remark 4.2. We do not know all of the Betti numbers of the 6 and 10 dimensional HK varieties

appearing in Theorem 4.1 - that is in contrast with the case of Hilbert schemes of K3 surfaces (or

any surface) or of generalized Kummers. Rapagnetta [45] proved that the topological Euler characterstic

of the 6-dimensional variety is equal to 1920.

4.2. Singularities and desingularizations. Let S be a projective symplectic surface and v0 an

indivisible Mukai vector such that 2 ≤ v2
0. We will go through some results which suggest that there

should exist a symplectic desingularization of MS(2v0) when v2
0 = 2 and that there should not exist

such a desingularization if 2 < v2
0. (The polarization of S is (2v0)-generic.) Lastly we will mention the

main point of the proof by Kaledin - Lehn - Sorger [24] that MS(mv0) does not have a symplectic

desingularization if m ≥ 3 and 2 ≤ v2
0 or m = 2 and 2 < v2

0.

4.2.1. v = 2v0. In the present subsubsection we let v0 be an indivisible Mukai vector such that 2 ≤ v2
0

and we let v ∶= 2v0. We let H be a v-generic polarization of S. Since MS(v)
st is smooth we must

examine MS(v) in a neighborhood of a point x parametrizing a strictly semistable sheaf. The GIT

construction of the moduli space gives that one must examine the deformation space of the poly-stable

representative F of x i.e. such that grJH(F ) ≅ F .

Claim 4.3. Keep notation and assumptions as above. If F is a non-stable H-polystable sheaf with

v(F ) = v then one of the following holds:

(1) F ≅ G1 ⊕G2 where G1, G2 are H-stable non-isomorphic sheaves with v(G1) = v(G2) = v0.

(2) F ≅ G⊕G where G is an H-stable sheaf with v(G) = v0.

Proof. This follows at once from the hypothesis that the polarization is v-generic and v0 is indivisible.

�

Let Ω(v) ⊂ MS(v) be the subset of points represented by a polystable sheaf as in Item (2) of Claim

4.3: this a closed subset isomorphic to M (v0), and hence of dimension (2 + v2
0). Let Σ(v) ⊂ MS(v)

be the subset of points represented by a polystable sheaf as in Item (1) of Claim 4.3: this is a closed
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subset isomorphic to the symmetric square of M (v0), and hence of dimension 2(2 + v2
0). Notice that

Ω(v) is contained in Σ(v) and is equal to the singular locus of Σ(v). Suppose that v2
0 = 2: in [41] we

proved that

sing MS(v) = Σ(v) (4.2.1)

and we obtained a symplectic desingularization of MS(v) by going through the following steps:

Step 1.: Let M S(v) →MS(v) be the blow-up of Ω(v).

Step 2.: Let ̂MS(v) →M S(v) be the blow-up of the strict transform of Σ(v): the space ̂MS(v)

is Kirwan’s partial desingularization of MS(v). Let π̂∶ ̂MS(v) →MS(v) be the natural map.

Step 3.: The symplectic form on MS(v)
st (viewed as a subset of ̂MS(v), this makes sense

by (4.2.1)) extends to a symplectic form on ̂MS(v) which degeneretas on the (irreducible)

inverse image Ω̂(v) ∶= π̂−1
(Ω(v)). There exists a K-negative ray of ̂MS(v) whose associated

contraction θ∶ ̂MS(v) →
̃MS(v) contracts exactly Ω̂(v) and such that ̃MS(v) is smooth. It

follows that ̃MS(v) is a HK variety.

Step 4.: One shows that the natural (bi)rational map ̃MS(v) → MS(v) is regular: this is a

symplectic desingularization of MS(v).

Lehn and Sorger [26] have proved that one obtains the same desingularization by blowing up Σ(v). Let

us explain why this migth be true and what fails if 2 < v2
0. First we need to recall a few results from

deformation theory. Let F be a sheaf on S. Small deformations of F are governed by the Kuranishi

map

(Ext1
(F,F ),0)

Ψ
Ð→ (Ext2

(F,F )
0,0),

a regular map of analytic germs. In fact the deformation space Def(F ) is the analytic germ given by

Def(F ) = Ψ−1
(0). (4.2.2)

The linear term Ψ1 of Ψ vanishes (this is consistent with (3.1.14)) and the quadratic term Ψ2 is given

by

Ψ2(α) =
1

2
α ∪ α (4.2.3)

where ∪ is Yoneda product. The group Aut(F ) acts naturally on Ext1
(F,F ), Ext2

(F,F )
0 and Def(F ),

and the actions are compatible with (4.2.2). The subgroup of Aut(F ) given by homotheties acts trivially

and hence we have an induced action of

Aut0(F ) ∶= Aut(F )/C× (4.2.4)

on Ext1
(F,F ), Ext2

(F,F )
0 and Def(F ). Let us identify Ext1

(F,F ), Ext2
(F,F )

0, Ψ2 and Aut0(F )

for the non-stable polystable sheaves F parametrized by MS(v) where v = 2v0 with v0 indivisible and

2 ≤ v2
0.

F as in Item (1) of Claim 4.3: Then

Ext1
(F,F ) = ⊕

1≤i,j≤2

Ext1
(Gi,Gj) (4.2.5)

and

Ext2
(F,F )

0
= {(α,β) ∈ Ext2

(G1,G1) ⊕Ext2
(G2,G2) ∣ Tr(α) +Tr(β) = 0}.

The quadratic term Ψ2 is given by

Ψ2(γ11, . . . , γ22) =
1

2
(γ12 ∪ γ21, γ21 ∪ γ12)

where for γ ∈ Ext1
(F,F ) we let γij be its components according to Decomposition (4.2.5).

Moreover Aut0(F ) ≅ C×, its action on Ext2
(F,F )

0 is trivial, while on Ext1
(F,F ) it is given by

t(γ11, . . . , γ22) = (γ11, tγ12, t
−1γ21, γ22). (4.2.6)

F as in Item (2) of Claim 4.3: We write F as F = G⊗C C2 and hence

Ext1
(F,F ) = Ext1

(G,G) ⊗C gl2(C), Ext2
(F,F )

0
= Ext2

(G,G) ⊗C sl2(C) ≅ sl2(C). (4.2.7)

Moreover Aut0(F ) ≅ PGL2(C) and the action on Ext1
(F,F ), Ext2

(F,F )
0 is induced by the

natural action on gl2(C) and sl2(C). Now let us proceed to describe Ψ2. First the kernel of
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Ψ2 is the summand Ext1
(G,G) ⊗C C Id, hence Ψ2 may be identified with a quadratic form Ψ2

on Ext1
(G,G) ⊗C sl2(C). The Killing form gives identifications

Ext1
(G,G) ⊗C sl2(C) ≅ Hom(sl2(C),Ext1

(G,G)), sl2(C) ≅

2

⋀ sl2(C)
∨. (4.2.8)

The choice of a symplectic form on S determines Mukai’s symplectic form on Ext1
(G,G), call

it ω. Now let f ∈ Hom(sl2(C),Ext1
(G,G)): then (up to a non-zero multiplicative factor) we

have

Ψ2(f) = f
∗ω. (4.2.9)

Now let us make the following hypothesis.

Assumption 4.4. For the sheaves F above we may identify the Kuranishi map Ψ with its second-order

term Ψ2, compatibly with the action of Aut(F ), and hence the germ of MS(v) at [F ] is isomorphic

to Ψ−1
2 (0)//Aut0(F ).

We will analyze the germ of MS(v) at properly semistable points distinguishing between two cases,

according to Claim 4.3. Let

M S(v) Ð→MS(v) (4.2.10)

be the blow-up of Σ(v).

[F ] ∈ (Σ(v) ∖ Ω(v)): Thus F = G1 ⊕G2 where v(G1) = v(G2) = v0, G1, G2 are stable and G1 /≅ G2.

The description above together with Assumption 4.4 give easily that the normal cone to Σ(v) in

MS(v) is isomorphic (in the analytic topology) to the germ at 0 of the affine cone over the incidence

subset

I(v) ∶= {([x], [f]) ∈ P(Ext1
(G1,G2)) × P(Ext1

(G2,G1)) ∣ f(x) = 0}. (4.2.11)

Here Ext1
(G2,G1) = Ext1

(G1,G2)
∨ via Serre duality. Notice that dim Ext1

(G1,G2) = v2
0. It follows

that if v2
0 = 2 the normal cone to Σ(v) in MS(v) at [F ] is an ordinary 2-dimensional quadratic point

and hence the blow-up of Σ(v) will desingularize such a point, and since it is a crepant singularity

the symplectic form extends across the exceptional divisor to a symplectic form. Next suppose that

2 < v2
0. Then M S(v) is smooth over [F ] but is not crepant. Locally around [F ] (analytic topology)

the exceptional divisor of M S(v) → MS(v) has two P(v2
0−2)-fibrations and the normal bundle of

the exceptional divisor restricts to O(−1) on the fibers of these fibrations: one gets local crepant

desingularizations of MS(v) near [F ] by blowing down the exceptional divisor along either one of

these fibrations. Since the two fibrations get exchanged by monodromy there is no way of making

global sense of the above blow-down.

[F ] ∈ Ω(v): Identifying the PGL2(C)-module sl2(C) with so3(C) we get that the normal slice to Ω(v)

in MS(v) at [F ] is isomorphic to

NG ∶= {q ∈ S2 Ext1
(G,G) ∣ rk q ≤ 3, ker q contains an ω-lagrangian subspace}. (4.2.12)

Moreover abusing notation we have

Σ(v) ∩NG = WG ∶= {q ∈ S2 Ext1
(G,G) ∣ rk q ≤ 1}. (4.2.13)

Now notice the following difference between the case v2
0 = 2 and 2 < v2

0. In the former case the

rank of elements of VG is at most 2 because dim Ext1
(G,G) = 4: it follows that the blow-up of Σ(v)

desingularizes MS(v), and that the symplectic form extends to a symplectic form on the blow-up. In

the latter case the rank of a generic element of VG is 3: it follows that M S(v) is not smooth over

points [F ] ∈ Ω(v).

Remark 4.5. Assumption 4.4 actually holds. In fact a series of works by Kaledin [22], Kaledin

- Lehn [23], Lunts [28], Zhang [53], Manetti [29] prove formality of the DG Lie algebra controlling

deformations of F , and this proves that the Kuranishi map may be identified with its second-order

term. In addition to that Arbarello - Saccà [2] show that the identification can be assumed to be

compatible with the action of Aut0(F ).

4.2.2. v = mv0, m > 2 or m = 2 and 2 < v2
0. Kaledin, Lehn and Sorger [24] have proved that the

singularities of MS(v) are factorial. It follows that there is no symplectic desingularization of MS(v)

because a hypothetical symplectic desingularization ̃MS(v) →MS(v) would be semi-small by a result

of Kaledin [21] (Prop. 4.4 and Remk. 4.5) and Namikawa [38] (Prop. 1.4) and that is not compatible

with the fact (proved in [24]) that the singular locus of MS(v) has codimension at least 4.
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4.3. Topology of the symplectic desingularizations. Let S be a projective symplectic surface

and v0 an indivisible Mukai vector of S with v2
0 = 2. In order to prove that if S is a K3 the symplectic

desingularization ̃MS(2v0) is HK, and that if S is a an abelian surface then ̃MS(2v0)
0 is a HK one

must show that h2,0
(

̃MS(2v0)) = 1 and π1(
̃MS(2v0)) = 1 if S is a K3 and that h2,0

(
̃MS(2v0)

0
) = 1

and π1(
̃MS(2v0)

0
) = 1 if S is an abelian surface. Then we must compute the second Betti number of

̃MS(2v0) and ̃MS(2v0)
0 respectively. The details are too involved to be explained here, see [41, 42, 46].

What can be done fairly easily is show that b2( ̃MS(2v0)) ≥ 24 if S is a K3 and b2( ̃MS(2v0)
0
) ≥ 8

if S is an abelian surface. In fact one can define a linear map θv∶v
�
→ H2

(MS(2v0)) as in the case

of v primitive (see [44]). Composing with the pull-back H2
(MS(2v0)) → H2

(
̃MS(2v0)) (followed by

restriction to H2
(

̃MS(2v0)
0
) if S is an abelian surface) we get an injective map v� → H2

(
̃MS(2v0))

if S is a K3 and an injective map v� → H2
(

̃MS(2v0)
0
) if S is an abelian surface. Thus we get a

rank-23 subspace VS ⊂ H2
(

̃MS(2v0)) if S is a K3 and a rank-7 subspace VS ⊂ H2
(

̃MS(2v0)
0
) if S is

an abelian surface. The Poincarè dual of the exceptional divisor of the symplectic desingularization

gives an element of H2 which is not contained in VS and hence b2 ≥ (b2(S) + 2).

Remark 4.6. Little is known regarding the topology of ̃MS(2v0) for a S a K3 and ̃MS(2v0)
0 for S an

abelian surface beyond the rank of H2 (and the Beauville-Bogomolov quadratic form on H2, see [46]).

Let S be a K3 surface: Mozgovoy [34] has proved that the topological Euler characteristic of ̃MS(2v0)

is equal to 176904. Let S be an abelian surface: Rapaganetta [45] has proved that the topological Euler

characteristic of ̃MS(2v0)
0 is equal to 1920. The fact is that the cohomology of Beauville’s examples

is related to the cohomology of the symmetric product of a surface, and the latter is easily described,

while we do not have (yet) models of our 10-dimensional example or our 6-dimensional example which

are related to easily described varieties.
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13. L. Göttsche, W. Soergel Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic

surfaces, Math. Ann. 296 (1993), pp. 235-245.

14. D. Huybrechts, The Kähler cone of a compact hyperkähler manifold , Math. Ann. 326 (2003), pp. 499-513.

15. D. Huybrechts, Finiteness results for compact hyperkähler manifolds, J. Reine Angew. Math. 558 (2003),

pp. 15-22.

16. D. Huybrechts, A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky] , Séminaire
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