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Abstract. The following properties of the Holmes space H are established:
(i) H has the Metric Approximation Property (MAP).
(ii) The w∗-closure of the set of extreme points of the unit ball BH∗ of the dual
space H∗ is the whole ball BH∗ .

A family of compact subsets X ⊂ U of the Urysohn space is described such
that the Lipschitz-free space F(X) has a finite-dimensional decomposition and is
not complemented in H.

2000 Mathematics Subject Classification: Primary 46B20; Secondary 54E50.

Key words and phrases: Urysohn space, Holmes space, Metric Approximation
Property, Extreme Points, Non-complemented Subspaces.

Both authors were partially supported by the Foundation for Polish Science. First named author
was partially supported by the Israel Science Foundation, Grant 139/03. Second named author
was partially supported by the Center for Advanced Studies in Mathematics of the Ben-Gurion
University of the Negev.

1



1. Introduction

Let (X, d) be a metric space and m0 ∈ X. Lip0(X) will stand for the space of all
real-valued Lipschitz functions which vanish at m0 with the norm

(1.1) ||f ||Lip = sup

{
|f(u)− f(v)|

d(u, v)
: u, v ∈ X, u 6= v

}
.

The space of all Lipschitz functions on a metric space X will be denoted by Lip(X).
Clearly ‖.‖Lip is only a pseudonorm on this space. The Lipschitz-free space over X,
denoted by F(X), is the canonical predual of Lip0(X), i.e. the norm closed linear
subspace of Lip0(X)∗ spanned by the evaluation functionals δ(u) with u ∈ X. For
properties of Lipschits-free spaces see [W] and [GK]. The case X = U the Urysohn
metric space is of a special interest. Recall that the Urysohn space is a separable
complete metric space with the following extension property

(E) For any two finite metric spaces A ⊂ B and any isometry φ : A → U, there is
an isometric extension ψ : B → U.

Property (E) characterizes the space U (up to isometry) in the class of all separable
complete metric spaces (see [U]).

Fix a point m0 ∈ U and denote H = F(U). Holmes proved [H] the following
remarkable property of H. Assume that ψ : U → Y is an isometry of U into a
Banach space Y and E is the norm closure of the linear span of ψ(U) in Y. Then E
is isometric to H. In [H] Holmes asks whether the space H has a basis? In section
2 we prove a weaker property of H, namely that it has the metric approximation
property (MAP).

Recall that a separable Banach space Y has MAP if there is a sequence {Vn} of
finite-rank operators in Y with ||Vn|| = 1, n = 1, 2, ..., such that limn Vnx = x, for
any x ∈ Y.

Since the Urysohn space U contains an isometric copy of any separable metric
space, it follows from [GK] that the Holmes space H in universal in the class of all
separable Banach spaces, i.e. for any separable Banach space Y there is a subspace
Z ⊂ H that is linearly isometric to Y. We recall two examples of universal (in
the class of all separable Banach spaces) Banach spaces. They are C[0, 1] and the
Gurariy space G (see [G]). The Holmes space is isomorphic to neither C[0, 1] nor
G. Indeed, both spaces C[0, 1] and G are Lindenstrauss spaces, i.e. their duals are
L1(µ)-spaces (see [LL]); it is known (see e.g. [PW, III.C.14]) that any L1(µ)-space
is weakly sequentially complete and H∗ = Lip0(U) is not. However, the spaces H
and G have a common property, namely

(1.2) w∗-cl extBH∗ = BH∗ , w∗-cl extBG∗ = BG∗ .

For the space G it was observed by A. Pe lczyński, see [LL1]. For H we prove it in
section 3. Note that the property (1.2) uniquely defines G in the class of all separable
Lindenstrauss spaces (see [Lu1, Lu2]). In section 3 we show that for the space H
the property (1.2) is not characteristic in the class of all separable F(X)-spaces.

In section 4 we initiate the investigation of the following problem. Let X ⊂ U
be a compact subset of U. Under which conditions on X (or on F(X)) the space
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F(X) is complemented in H? We give a general method of construction of compact
metric spaces X such that the space F(X) has a finite-dimensional decomposition
and F(X) is not complemented in H.

We use a standard Geometry of Banach Spaces notation (see [JL]). For instance
BL stands for the unit ball of a normed space L. Let us note also that for a Lipschitz
map ψ from one metric space into another we will denote its smallest Lipschitz
constant by the ‖ψ‖Lip. This should not lead to any misunderstanding.

2. The metric approximation property

In this section we prove

Theorem 2.1. The space H has the metric approximation property (MAP).

We collect below the facts we will need for the proof of Theorem 2.1.

Fact 1.[BP, Proposition 1.1] Let M be a finite metric space and u0 ∈M. Then there
is an isometric embedding h : M → ln∞, n = |M | − 1, with h(u0) = 0.

Fact 2.[W] Let X be a metric space and A ⊂ X. Then F(A) ⊂ F(X).

Fact 3.[W] Let ψ : X → X be a Lipschitz map from a metric space X into X.
Assume that u0 ∈ X and ψ(u0) = u0. Then there is a linear operator T : F(X) →
F(X) with ||T || = ‖ψ‖Lip, and such that T |X = ψ.

Fact 4.[U] Let M be a separable metric space and L ⊂ M be a finite subset of
M. Assume that ξ : L → U is an isometry. Then there is an isometric extension
ξ̃ : M → U of ξ.
Fact 5.[BL, Proposition 2.4] The space l∞(Γ) is an absolute 1-Lipschitz retract.

Fact 6.[GK, Proposition 5.1] Let E be a finite-dimensional Banach space. Then for
any ε > 0 and R > 0 there is a Lipschitz map φ : E → F(E) with finite-dimensional
range and such that

φ(0) = 0, ||φ||Lip < 1 + ε, ||φ(x)− δ(x)|| < ε, x ∈ RBE.

Proof of Theorem 2.1. We construct a sequence of finite rank linear operators
Vn : H → H such that ||Vn|| = 1, n = 1, 2, ..., and limn Vnx = x, for any x ∈ H.

Let {ui}∞i=0 ⊂ U be a dense countable subset of U. Fix n ∈ N. By using Facts
1 and 4 we find a subset En ⊂ U isometric ln∞ such that {ui}ni=0 ⊂ En. By Fact 5
there is a 1-Lipschitz retraction rn : U → En. Next apply Fact 6 for ε = 1/n, R =
max{d(u0, ui) : i = 1, ..., n}, and find a Lipschitz map φn : En → F(En) with
finite-dimensional range and such that

φn(0) = 0, ||φn||Lip < 1 + 1/n, ||φn(ui)− δ(ui)|| < 1/n, i = 1, ..., n.

Put tn = φn ◦ rn. Then by Facts 3 and 2 there is a linear operator Tn : H →
H, ||Tn|| < 1 + 1/n, and such that T |U = φn. Clearly, Tn has a finite-dimensional
range and ||Tn(δ(ui)) − δ(ui)|| < 1/n, i = 1, ..., n. Therefore limn Tn(δ(ui)) =
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δ(ui), i = 0, 1, .... Since supn ||Tn|| < ∞ and span{ui}∞i=1 is dense in H, it fol-
lows that limn Tnx = x, for any x ∈ H. Put Vn = ||Tn||−1Tn, n = 1, 2, ..., and finish
the proof.

3. Extreme points of the dual ball BH∗.

The main result of this section is the following

Theorem 3.1. Let H be the Holmes space. Then

(3.3) w∗-cl extBH∗ = BH∗ .

A proof of Theorem 3.1 is a combination of the following auxiliary results and the
defining property of the Urysohn space U.

Lemma 3.2. Let M be a finite metric space, m0 ∈M, and L = Lip0(M). TFAE:
(1) f ∈ extBL.
(2) ‖f‖Lip = 1 and for any t0 ∈ M there is a chain {ti}ni=0 ⊂ M with tn = m0 and
such that

|f(ti+1)− f(ti)|
d(ti+1, ti)

= 1, i = 0, 1, ..., n− 1.

Proof. (1)⇒(2). Fix f ∈ extBL and t0 ∈M. For any t ∈M denote

A(t) = {s ∈M :
|f(t)− f(s)|

d(t, s)
= 1},

and consider the following tree

T = {t0} ∪ A(t0) ∪
⋃

s∈A(t0)

A(s) ∪
⋃

u∈∪s∈A(t0)A(s)

A(u) ∪ . . .

It is enough to prove that m0 ∈ T. Assume to the contrary that m0 6∈ T. Clearly,
for any t ∈ T and for any v ∈M \ T we have

|f(t)− f(v)|
d(t, v)

< 1,

and hence there is a δ > 0 such that

|f(t)± δ − f(v)|
d(t, v)

< 1, t ∈ T, v ∈M \ T,

(recall that M is finite).
Define a function h on M as follows

h(t) = δ, t ∈ T, h(t) = 0, t ∈M \ T.
By our assumption h(m0) = 0 , and hence h ∈ L. It is not difficult to see that
||f ± h||Lip = 1, contradicting f ∈ extBL. The proof of (1)⇒(2) is complete.
(2)⇒(1). Assume that for some h ∈ L we have ||f ± h|| = 1, and prove that h = 0.
Fix v ∈ M , v 6= m0, and by (2) find a chain {ti}ni=0 ⊂ M with t0 = m0 and tn = v
and such that

|f(ti+1)− f(ti)|
d(ti+1, ti)

= 1, i = 0, 1, ..., n− 1.
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Since f(t0) = h(t0) = 0, we easily get h(t1) = 0. Next we pass to the pair t1, t2, and
by using

|f(t2)− f(t1)|
d(t2, t1)

= 1,
|f(t2)± h(t2)− f(t1)|

d(t2, t1)
≤ 1,

we get h(t2) = 0, and so on. Finally we get h(tn) == h(v) = 0. Since v ∈ M is an
arbitrary point, it follows that h = 0, and the proof of the lemma is complete.

Lemma 3.3. Let M be a finite metric space, m0 ∈ M, and L = Lip0(M). Assume
that f ∈ BL. Then there is a metric space M1 containing M with M1\M a singleton,
and such that there is g ∈ extBLip0(M1) with g|M = f.

Proof. Let M = {mi}ni=0, dij = d(mi,mj), ai = f(mi), i, j = 0, ..., n. We define
the distances di = d(mi,mn+1), i = 0, ..., n, and a = g(mn+1), such that g will be an
extreme point of BLip0(M1), where M1 = {mi}n+1

i=0 . To this end it is enough to fulfill
the following conditions:
(i) dij ≤ di + dj, i, j = 0, ..., n.
(ii) |di − dj| ≤ dij, i, j = 0, ..., n.
(iii) |a− ai| = di, i = 0, 1, ..., n.
Note that (i)-(ii) guarantee that M1 is a metric space, while (iii) guarantees that
g ∈ extBLip0(M1), (see Lemma 3.2).
If a ≥ max{|ai| : i = 1, ..., n}, then from (iii) we get di = a − ai, i = 0, 1, ..., n.
Therefore (ii) is equivalent to |ai − aj| ≤ dij, i, j = 0, ..., n, which is satisfied since
||f ||Lip ≤ 1. If moreover we take

a ≥ max{dij : i, j = 0, ..., n}+ max{|ai| : i = 1, ..., n}

we fulfill (i). The proof is complete.

Lemma 3.4. Let A ⊂ B be two metric spaces and m0 ∈ A. Then for any f ∈
extBLip0(A) there is g ∈ extBLip0(B) with g|A = f.

Proof. It is known that F (A) ⊂ F (B) and F ∗(A) = Lip0(A), F ∗(B) = Lip0(B). By
the Krein-Milman theorem we have extBLip0(A) ⊂ extBLip0(B)|F (A) = extBLip0(B)|A
which finishes the proof.

Corollary 3.5. Let M be a finite metric space, m0 ∈M, and L = Lip0(M). Assume

that N ⊂ BL is a finite set. Then there is a finite metric space M̂ containing M
such that for any f ∈ N there is g ∈ extBLip0(M̂) with g|M = f.

Proof. Let N = {fj}sj=1. First we apply Lemma 3.3 to f1 to get metric space

M1 ⊃ M and f̂1 an extreme point in the ball of Lip0(M1) such that f̂1|M = f1.

Next using Theorem 1.5.6 from [W] we extend f2 to the function f̃2 on M1 with

preservation of the Lipschitz norm and apply to f̃2 Lemma 3.3 to get a metric space
M2 ⊃M1 and f̂2 an extreme point in the ball of Lip0(M2) such that f̂2|M1 = f̃1. We
continue in this manner to get an increasing sequence of metric spaces M ⊂ M1 ⊂
M2 ⊂ · · · ⊂ Ms = M̂ and functions f̂j which are extreme points of the unit ball of
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Lip0(Mj) and f̂j|M = fj. Lemma 3.4 applied to each pair Mj ⊂ M̂ and function f̂j
gives the claim.

Proof of Theorem 3.1. Let {mi}∞i=0 be a dense subset of U. By using Corollary 3.5
and the property (E) of U (see Introduction) we construct an increasing sequence
{Mn} of finite subsets of U and a sequence {Nn} of finite 1/n-nets in BLn (Ln =
Lip0(Mn)) with the following properties:
(i) For any n we have {mi}ni=0 ⊂Mn.
(ii) For any n and for any f ∈ Nn there is g ∈ extBLip0(Mn+1) with g|Mn = f.

Fix h ∈ Lip0(U), ||f || ≤ 1, and put hn = f |Mn , n = 1, 2, .... Clearly hn ∈ BLn

and hence there is fn ∈ Nn with ||hn − fn|| ≤ 1/n, n = 1, 2, ... By (ii) for any n
there is gn ∈ extBLip0(Mn+1) with gn|Mn = fn. By the Krein-Milman theorem there
is tn ∈ extBLip0(U) with tn|Mn+1 = gn, n = 1, 2, .... Recall that the w∗-convergence
in BH∗ = Lip0(U) is just the point-wise convergence on U. It easily follows that
w∗- lim tn = h. The proof is complete.
Remark. There is a countable discrete metric space D such that the space F(D)
has property (3.3), i.e. w∗-cl extBLip0(D) = BLip0(D). The proof runs along the lines
of the proof of Theorem 3.1. The difference (actually, a simplification) is that we use
only Corollary 3.5 for construction of a metric space D = ∪∞n=1Mn without using the
Urysohn space. Note that it follows from the proof of Lemma 3.3 that D is discrete.
On the other hand note also that if N is the set of integers and m0 = 0 then the
sequence (an)n∈N ∈ extBLip0(N) if and only if |an − an+1| = 1 for all n ∈ N. One
easily sees that this set is w∗–closed. For a separable Banach space X the property
w∗-cl extBX∗ = BX∗ shows that in some sense there are many extreme points in
BX∗ . It holds in particular if every point of the unit sphere is extreme. This however
cannot happen for Lip0(M) if M has more than two points.

4. Non-complemented subspaces of the Holmes space

We start with the proposition that shows that the complementability of F(K)
with K metric compact, does not depend on how a compact space K is embedded
into U.

Proposition 4.1. Let K1 and K2 be two isometric compact subsets of U. Then
F(K1) is complemented in H if and only if F(K2) is complemented in H.

Proof. Let φ : K1 → K2 be an isometry. By [Hu] there is an isometry ψ : U → U
of U onto U with ψ|K1 = φ. By [GK] there is a linear isometry Tψ : H → H of H
onto H with Tψ|U = ψ. If P : H → F(K1) is a linear bounded projection on F(K1)
then it is easy to check that Q = T−1

ψ PTψ is a linear bounded projection on F(K2).
The proof is complete.

In view of Proposition 4.1 the following problem seems to be interesting.
Problem. Characterize those compact metric spaces K for which F(K) is comple-
mented in H.

If K ⊂ U is a Lipschitz retract then it is easy to see that F(K) is complemented
in H. Clearly, this condition is not a necessary one (take K finite). In the rest of
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this section we give a general construction of compact metric spaces X for which
the space F(X) has a finite-dimensional decomposition and is not complemented in
H.

Therefore the main result of this section is the following

Theorem 4.2. There exists a compact metric space X such that F(X) has a finite
dimensional decomposition and for any isometric embedding of X into the Uryshon
space U , F(X) is not complemented in F(U).

To prove the theorem we need several auxiliary results.

Proposition 4.3. Given A > 0 there is a pair of finite-dimensional Banach spaces
X ⊂ Y such that for any linear extension E : Lip0(X) → Lip0(Y ), we have ||E|| ≥
A.

Proof. It is well-known that there is a pair of finite-dimensional Banach spaces
X ⊂ Y such that for any projection Q : Y → X we have ||Q|| ≥ A, see e.g. [PW,
III.B.16] We prove that this pair works. Assume that E : Lip0(X) → Lip0(Y ) is a
linear extension operator. Denote r1 : Lip0(Y ) → Lip0(X) the restriction operator.
Clearly, r1E = IdLip0(X). Also it is clear that X∗ ⊂ Lip0(X) and Y ∗ ⊂ Lip0(Y ). By
[BL], Proposition 7.5, there are projections P : Lip0(Y ) → Y ∗ and P0 : Lip0(X) →
X∗ with ||P || = ||P0|| = 1, and such that if r2 : Y ∗ → X∗ is the restriction map,
then r2P = P0r1. Put s = PE|X∗ . Then s is a linear extension of “linear functionals”
from X to Y. Hence r2 is a projection with norm A ≤ ||r2|| ≤ ||s|| ≤ ||E||. The proof
is complete.

Proposition 4.4. Let X ⊂ Y are two separable metric spaces with fixed point
x0 ∈ X. Assume that there is a constant A > 0 such that for any pair of finite sets
x0 ∈ M ⊂ N ⊂ Y such that N ∩ X = M there exists a linear extension operator
EMN : Lip0(M) → Lip0(N) with ‖EMN‖ ≤ A. Then there exists a linear extension
operator E : Lip0(X) → Lip0(Y ) with ‖E‖ ≤ A.

Proof: Let us fix a sequence of finite sets Mn ⊂ Nn as in the assumptions such that
Mn ⊂ Mn+1, Nn ⊂ Nn+1, M∞ =:

⋃∞
n=1Mn is dense in X and N∞ =:

⋃∞
n=1Nn is

dense in Y . Let us fix extensions given in the assumptions and denote En =: EMn,Nn .
Now let LIM be a fixed Banach limit on N. For f ∈ Lip0(X) and z ∈ N∞ we define

E(f)(z) =: LIM
n

En(f |Mn)(z).

Note that z ∈ Nn only for n greater then some Kz so En(f |Mn)(z) is formally
defined also only for n ≥ Kz. This however does not influence the value of the LIM
(we can formally put En(f |Mn)(z) = 0 for n < Kz). Clearly E is a linear map
from functions on X to the functions on N∞ and for x ∈ M∞ and any f we have
E(f)(x) = f(x). To estimate the norm of E note that for z1, z2 ∈ N∞ we have

|E(f)(z1)− E(f)(z2)| = |LIM
(
En(f |Mn)(z1)− En(f |Mn)(z2)

)
|

≤ LIM ‖En(f |Mn)‖Lip ≤ sup ‖En(f |Mn)‖ ≤ A‖f‖Lip.

which gives that the norm of E as an operator from Lip0(X) into Lip0(N∞) is at
most A. Since M∞ is dense in X, E is actually an extension operator. The proof is
complete.

7



Linear extensions are (as is well known) closely related to projections. We will
need the following obvious observation: Let X ⊂ Y be metric spaces and let F(X)
be naturally embeded into F(Y ). If P is a projection from F(Y ) onto F(X) then
P ∗ : Lip0(X) → Lip0(Y ) is a linear extension operator.

Now we discuss a general construction which may be considered as a ”direct
sum” of Lipschitz spaces. Let {Xn, ρn}∞n=1 be a sequence of metric spaces (which
we consider to be disjoint) each of finite diameter. Dilating if necessary we assume

that the diameter of Xn is at most 2−n. On X̂ =:
⋃∞
n=1Xn we define a metric by

the formula

(4.4) ρ(y1, y2) =

{
ρn(y1, y2) if ∃n : y1, y2 ∈ Xn∣∣ 1
n
− 1

m

∣∣ if y1 ∈ Xn, y2 ∈ Xm with n 6= m

We will assume that the distinguished point in X̂ is in X1. We fix (arbitrary) points

zn+1 ∈ Xn+1 and define a projection in Lip0(X̂) as

(4.5) Pn(f)(z) =

{
f(z) if z ∈ Xk with k ≤ n

f(zn+1) if z ∈ Xk with k > n

It is clear that Pn is a sequence of commuting, norm one projections. One can check
that kerPn ∩ Pn+1(Lip0(X̂)) is the set of all functions which are zero on

⋃n
k=1Xk,

are zero on zn+1 and are constant on
⋃∞
k=n+2Xk. Clearly this space is uniformly

in n isomorphic to Lip(Xn+1). The norm closure of
⋃∞
n=1 Pn(Lip0(X̂)) in Lip0(X̂)

equals {f ∈ Lip0(X̂) : limm→∞ ‖f |
⋃
n≥mXn‖ = 0}.

Lemma 4.5. There exists a sequence of commuting, norm one projections Qn on
F(X̂) such that Q∗n = Pn and Qn is pointwise in norm convergent to IdF(X̂).

Proof: We know that F(X̂) is naturally a subspace of Lip0(X̂)∗ spanned in norm

by functionals δ(z) of point evaluations with z ∈ X̂. Thus it suffices to check

that for z ∈ X̂ we have P ∗n(δ(z)) ∈ X̂ and that P ∗n(δ(z)) = z for n big enough.

All this follows from (4.5), the fact that for f ∈ Lip0(X̂) and y ∈ X̂ we have
P ∗n(δ(y))(f) = Pn(f)(y). The proof is complete.

Corollary 4.6. Assume that the metric spaces Xn are finite. Then the space F(X̂)
has a finite dimensional decomposition.

Proposition 4.7. There exist two compact metric spaces X ⊂ Y such that both
F(X) and F(Y ) have finite dimensional decompositions and F(X) is not comple-
mented in F(Y ).

Proof: From Propositions 4.3 and 4.4 we find a sequence of pairs of finite metric
spaces Xn ⊂ Yn such that every linear extension from Lip0(Xn) to Lip0(Yn) has
norm at least n. Clearly the same is true for extensions from Lip(Xn) to Lip(Yn).

Now we build spaces X̂ and Ŷ by the procedure described above. Clearly X̂ ⊂ Ŷ ,
so F(X̂) ⊂ F(Ŷ ) and by Corollary 4.6 both those spaces have finite dimensional

decomposition. If there would be a projection from F(Ŷ ) onto F(X̂) with norm
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≤ A, we would have a bounded linear extension from Lip0(X̂) to Lip0(Ŷ ). Now for

n > 1 we identify isometrically the space Lip(Xn) with the subspace of Lip0(X̂) as
a space of functions supported on Xn. Considering our linear extension only on this
this subspace and next restricting to Yn we get a a linear extension operator from
Lip(Xn) to Lip(Yn) with norm at most A. But this contradicts our choice. Our
metric spaces are not compact but their completions are compact. This proves the
Proposition.

Proof of Theorem 4.2. The desired X is the space X from Proposition 4.7. By the
properties of Uryshon space (see [H] Corollary in Part I) any isometric embedding
of X into U can be extended to an isometric embedding of Y into U , so we have
X ⊂ Y ⊂ U , so also F(X) ⊂ F(Y ) ⊂ F(U). This shows that complementation of
F(X) in F(U) implies complementation of F(X) in F(Y ) which is impossible by
Proposition 4.7. The proof is complete.
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