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Abstract. We study the convergence of certain greedy algorithms
in Banach spaces. We introduce the WN property for Banach
spaces and prove that the algorithms converge in the weak topol-
ogy for general dictionaries in uniformly smooth Banach spaces
with the WN property. We show that reflexive spaces with the
uniform Opial property have the WN property. We show that our
results do not extend to algorithms which employ a ‘dictionary
dual’ greedy step.

1. Introduction

We study convergence in the weak topology of different greedy algo-

rithms acting in a uniformly smooth Banach space. The first result on

convergence of a greedy algorithm is the result of Huber [H]. He proved

convergence of the Pure Greedy Algorithm in the weak topology of a

Hilbert space H and conjectured that the Pure Greedy Algorithm con-

verges in the strong sense (in the norm of H). L. Jones [J1] proved

this conjecture. The theory of greedy approximation in Hilbert spaces

is now well developed (see [T1]). Our interest in this paper is in con-

vergence results for greedy approximation in Banach spaces. There is

a number of open problems on convergence (in the strong sense) of
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different greedy algorithms in Banach spaces (see [T1]). For some al-

gorithms (the Weak Chebyshev Greedy Algorithm ([T2], [DKT]), the

Weak Greedy Algorithm with Free Relaxation ([T3])) it is known that

the uniform smoothness of a Banach space X guarantees strong conver-

gence of these algorithms for each element f ∈ X and any dictionary

D in X. For other algorithms (the Weak Dual Greedy Algorithm, the

X-Greedy Algorithm) it is not known if uniform smoothness (even uni-

form smoothness with a power type modulus of smoothness) guarantees

convergence in the strong sense for each f ∈ X and all D.

There is a result of M. Ganichev and N. Kalton [GK] that establishes

strong convergence of the Weak Dual Greedy Algorithm in a uniformly

smooth Banach space satisfying an extra condition Γ. In this paper we

impose the following extra condition (the WN property) on a uniformly

smooth Banach space and prove the weak convergence of some greedy

algorithms. This condition was used implicitly in [5].

For f ∈ X, f 6= 0, let Ff ∈ X∗ denote a norming functional of f , i.e,

‖Ff‖X∗ = 1 and Ff (f) = ‖f‖X.

Definition 1.1. X has the WN property if every sequence {xn} ⊂ X,

with ‖xn‖X = 1, is weakly null in X whenever the sequence {Fxn} is

weakly null in X∗.

We prove weak convergence of the X-Greedy Algorithm for a uni-

formly smooth Banach space satisfying the WN property. We note

that there are no results on strong convergence of the X-Greedy Algo-

rithm in nontrivial Banach spaces (infinitely-dimensional nonhilbertian

spaces). We give an example that demonstrates that the WN property

does not imply the Γ property.

The use of the norming functional Ffm of a residual fm of a greedy

algorithm after m iterations for a search of an element from the dic-

tionary to be added in approximation has proved to be very natural.

Norming functionals for residuals are used in dual type greedy algo-

rithms. At a greedy step of a dual type greedy algorithm we look for

an element ϕm ∈ D satisfying

(1) Ffm−1(ϕm) ≥ t sup
g∈D

Ffm−1(g), t ∈ (0, 1].
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In this paper we discuss the following modification of the greedy step

(1): we look for an element ϕm ∈ D satisfying

(2) Fϕm(fm−1) ≥ t sup
g∈D

Fg(fm−1).

It is known (see [22]) that the modification (2) is useful in the problem

of exact recovery of sparsely represented elements in the case of dictio-

naries with small coherence. We show here that the modification (2)

is not good for convergence of greedy approximations with regard to

general dictionaries.

Let us now describe the organization of the paper. Section 2 recalls

the relevant definitions from Banach space theory. In Section 3 we

recall the definitions of the greedy algorithms which are considered

here and we present our main results on the weak convergence of these

algorithms in uniformly smooth spaces with the WN property. We

also show how the algorithms can easily be modified to obtain strong

convergence. In Section 4 we show that many classes of Banach spaces

have the WN property, e.g. the class of reflexive spaces with the uniform

Opial property, and we exhibit examples of spaces which have the WN

property but not the property Γ introduced by Ganichev and Kalton

[7]. Finally, we show that our results for general dictionaries do not

apply to algorithms which use (2) as the greedy step. In fact, we show

that if X satisfies some mild regularity conditions and is not isometric

to a Hilbert space then there exists a dictionary in X for which such

algorithms break down quite badly.

2. Definitions and notation

We use standard Banach space notation and terminology as in [14].

In this section we record some terminology which may not be com-

pletely standard.

2.1. Bases of Banach spaces and related notions.

Definition 2.1. A (Schauder) basis {en} for a Banach space X is

uniformly reverse monotone (URM) if there exists a function θ :

R+ → R+ such that for all x < y, with ‖y‖ ≤ 1 and ‖x‖ ≥ ε, we have

‖y‖ ≤ ‖x + y‖ − θ(ε).
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In Definition 2.1, the function θ may and shall be taken to be non-

increasing.

Let Pm : X → Span{ei}m
i=1 denote the standard projection onto the

span of the first m basis elements and let Qm = I − Pm. Note that if

yn
w→ 0, then for fixed m ∈ N,

(3) lim
n→∞

‖Pm(yn)‖ = 0.

In much of what follows, we will consider 1-unconditional bases;

these bases are unconditional bases with unconditional basis constant

equal to 1, i.e. ‖
∑

aiei‖ = ‖
∑

±aiei‖ for all choices of scalars and

signs. We note that when {ei} is a 1-unconditional basis of a Banach

space X, then ‖
∑

i∈A aiei‖ ≤ ‖
∑

aiei‖ for all A ⊂ N and scalars (ai).

2.2. Smoothness properties of Banach spaces. Here we present

standard definitions and properties. Suppose X is a real Banach space.

Define for f, g ∈ X and for u ∈ R

ρf,g(u) =
‖f + ug‖ + ‖f − ug‖ − 2‖f‖

2

The point f ∈ X is a point of Gâteaux smoothness if

lim
u↓0

ρf,g(u)

u
= 0 for all g ∈ X.

We say that Ff ∈ X∗ is a norming functional for f when ‖Ff‖X∗ = 1

and Ff(f) = ‖f‖; by the Hahn-Banach theorem, each f ∈ X has at

least one norming functional. It is known that f is a point of Gâteaux

smoothness if and only if its associated norming functional Ff is unique.

We say that a Banach space X is smooth (or X has a Gâteaux

differentiable norm) when every nonzero point in X is a point of

Gâteaux smoothness. See [4] for more information on smoothness.

The assumption that every nonzero point of X is a point of Gâteaux

smoothness guarantees that for any nonzero f ∈ X and any dictionary

D,

inf
t∈R
g∈D

‖f − tg‖ < ‖f‖.

We will also consider uniformly smooth Banach spaces. For each

τ > 0, the modulus of smoothness of a Banach space X is

ρX(τ) = sup
{‖x + y‖ + ‖x − y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ.

}
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[15, p. 59]. We say that X is uniformly smooth if limτ→0
ρX(τ)

τ
= 0.

There are Gâteaux smooth Banach spaces which are not uniformly

smooth. It is known that a uniformly smooth Banach space is uni-

formly Fréchet differentiable, i.e.

(4) ‖x + y‖ = 1 + Fx(y) + ε(x, y)‖y‖

for all x, y ∈ X with ‖x‖ = 1, where ε(x, y) → 0 uniformly for (x, y) ∈
{x : ‖x‖ = 1} × X as ‖y‖ → 0.

2.3. Uniform Opial property. This is a property which relates weak

convergence with the geometry of the unit sphere {x ∈ X : ‖x‖ = 1}.
We say that a Banach space has the uniform Opial property if

there exists a function τ(ε) > 0 defined for all ε > 0 such that for all

sequences yn
w→ 0, with ‖yn‖ = 1, and for all x 6= 0 we have

(5) lim inf
n→∞

‖x + yn‖ ≥ 1 + τ(‖x‖).

Clearly we may and shall assume that the function τ is nondecreasing.

Also we can replace lim inf by lim and the condition ‖yn‖ = 1 by

the condition limn→∞ ‖yn‖ = 1 in the definition. This property was

introduced in [16] and turned out to be useful in geometric fixed point

theory (see e.g. [17]).

3. Weak convergence of greedy algorithms

3.1. The Weak Dual Greedy Algorithm (WDGA). We first re-

view the WDGA from [5, p. 491]. Let D be a dictionary for X, and let

0 < t ≤ 1. To define the WDGA, first define fD
0 := fD,t

0 := f . Then,

for each m ≥ 1, inductively define

(1) φD
m := φD,t

m ∈ D to be any element of D satisfying

FfD
m−1

(
φD

m

)
≥ t sup

g∈D
FfD

m−1
(g).

(2) Define am via
∥∥∥fD

m−1 − amφD
m

∥∥∥ = min
a∈R

∥∥∥fD
m−1 − aφD

m

∥∥∥.

(3) Denote

fD
m := fD,t

m := fD
m−1 − amφD

m.
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Using the same notation as in [5, p. 490], we define GD
n to be

GD
n = f − fD

n

and

f0 − GD
n = f − GD

n = fD
n .

The sequence {‖fD
m‖} is a decreasing sequence which is bounded below

by 0, since

min
a∈R

∥∥∥fD
m − aφD

m+1

∥∥∥ <
∥∥∥fD

m − 0φD
m+1

∥∥∥.

Therefore, {‖fm‖} converges to some α ∈ R. We say that the algorithm

converges strongly if α = 0. We note that the sequence {GD
n } resulting

from the WDGA will be bounded above in norm:

‖Gn‖ − ‖f‖ ≤ ‖Gn − f‖ = ‖fn‖ ≤ ‖f‖.

In [5], Dilworth, Kutzarova, and Temlyakov prove that the WDGA

converges strongly when applied to dictionaries {±φn}, where {φn} is a

strictly suppression 1-unconditional basis for a Banach space X which

has a Fréchet-differentiable norm. Also it follows from [5, Theorem

6] that if X is uniformly smooth and has the WN property then the

WDGA converges weakly for any dictionary D. The strong convergence

of the WDGA was proved under a different hypothesis in [7].

3.2. The X-Greedy Algorithm (XGA) and the Weak X-Greedy

Algorithm (WXGA). Let 0 < τ ≤ 1 be a weakness parameter. The

following algorithm is called the WXGA when 0 < τ < 1 and is called

the XGA when τ = 1. In the case of the XGA we have to add the

assumption that the infimum in the first step is attained.

Let D be a dictionary for X.

(1) Choose φm ∈ D and λm ∈ R such that

‖fm−1‖ − ‖fm−1 − λmφm‖ ≥ τ
(
‖fm−1‖ − inf

λ∈R
φ∈D

‖fm−1 − λφ‖
)
.

(2) Define fm = fm−1 − λmφm. We call fm the mth residual of f .

The sequence {‖fn‖} is decreasing.

(3) Set Gm := f − fm.

Theorem 3.1. Suppose that X is uniformly smooth and has the WN

property. When the XGA or the WXGA is applied to f ∈ X, then

fn
w→ 0.
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Proof. If ‖fn‖ ↓ 0 then fn converges strongly to zero and we are done.

So suppose that ‖fn‖ ↓ α, where α > 0. If {Ffn} is not weakly null,

then some subsequence {Ffnk
} converges weakly to F 6= 0 (since uni-

formly smooth spaces are reflexive). We shall now derive a contra-

diction by assuming that Ffnk

w→ F 6= 0. Choose g ∈ D such that

F (g) = β > 0; hence Ffnk
(g) > β/2 for all sufficiently large k. Now we

use the aforementioned fact (see (4)) that uniformly smooth spaces are

uniformly Fréchet differentiable. For s > 0, (4) yields

‖fnk
− sg‖ = ‖fnk

‖ − sFfnk
(g) + sε

(
fnk

‖fnk
‖ , s

g

‖fnk
‖

)

≤ ‖fnk
‖ − sβ

2
+ sε

(
fnk

‖fnk
‖ , s

g

‖fnk
‖

)

for large k. Since ‖fn‖ ≥ α > 0, it follows that there exists s0 > 0 such

that

‖fnk
− s0g‖ ≤ ‖fnk

‖ − s0β

4
for large k. As a result,

‖fnk
‖ − ‖fnk+1‖ ≥ τ

s0β

4

for all sufficiently large k, which contradicts the assumption that ‖fn‖ ↓
α. Thus {Ffn} is weakly null, and hence {fn} is weakly null by the

WN property. �

We now look at a convergence result which does not require uniform

smoothness.

Let (Xn, ‖ · ‖n) be a Banach space for each n ≥ 1. The direct sum(∑∞
n=1 ⊕Xn

)
`p

consists of all sequences {xn}n≥1 with xn ∈ Xn such

that

‖{xn}‖ =
( ∞∑

n=1

‖xn‖p
n

) 1
p

< ∞.

Theorem 3.2. Suppose that each Xn is Gâteaux smooth and finite-

dimensional. Then the WXGA converges weakly in
(∑∞

n=1 ⊕Xn

)
`p

,

1 < p < ∞.

Proof. Suppose that {fn} is not weakly null. There is a subsequence

{fnk
} such that fnk

w→ g 6= 0. Write fnk
= g + xk where xk

w→ 0. By

passing to a further subsequence, we may assume that ‖xk‖ → β ≥ 0.
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Using the fact that
(∑∞

n=1 ⊕Xn

)
`p

is Gâteaux smooth, choose φ0 ∈
D, s0 > 0, and ε0 > 0 such that

‖g‖p − ‖g − s0φ0‖p = εp
0.

Then

lim
k→∞

‖fnk
− s0φ0‖p = lim

k→∞
‖g − s0φ0 + xk‖p

= ‖g − s0φ0‖p + βp

≤ ‖g‖p − εp
0 + βp

= lim
k→∞

‖fnk
‖p − εp

0.

Therefore, we can choose a τ0 > 0 which depends on the weakness

parameter τ such that

‖fnk+1‖p ≤ ‖fnk
‖p − τ0ε

p
0

for all sufficiently large k. However, this contradicts the fact that ‖fn‖ ↓
α > 0. �

Let us remark that characterizations of Besov spaces on [0, 1] or T
using coefficients of wavelet or similar decompositions show that Theo-

rem 3.2 covers the case of Besov spaces equipped with the appropriate

norms.

3.3. Relaxed Greedy Algorithms. The following two greedy al-

gorithms have been introduced and studied in [21]. We begin with

the Greedy Algorithm with Weakness parameter t and Relaxation r

(GAWR(t, r)). In addition to the acronym GAWR(t, r) we will use the

abbreviated acronym GAWR for the name of this algorithm. We give

a general definition of the algorithm in the case of a weakness sequence

τ .

3.3.1. GAWR(τ, r). Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness se-

quence. We define f0 := f and G0 := 0. Then for each m ≥ 1 we

inductively define

1). ϕm ∈ D is any element of D satisfying

Ffm−1(ϕm) ≥ tm‖Ffm−1‖D.

2). Find λm ≥ 0 such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖
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and define

Gm := (1 − rm)Gm−1 + λmϕm.

3). Denote

fm := f − Gm.

In the case τ = {t}, t ∈ (0, 1], we write t instead of τ in the notation.

We note that in the case rk = 0, k = 1, . . . , when there is no relaxation,

the GAWR(τ, 0) coincides with the Weak Dual Greedy Algorithm [19,

p.66]. We will also consider here a relaxation of the X-Greedy Algo-

rithm (see [19, p.39]) that corresponds to r = 0 in the definition that

follows.

3.3.2. X-Greedy Algorithm with Relaxation r (XGAR(r)). We define

f0 := f and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D and λm ≥ 0 are such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0

‖f − ((1 − rm)Gm−1 + λg)‖

and

Gm := (1 − rm)Gm−1 + λmϕm.

2). Denote

fm := f − Gm.

We note that practically nothing is known about convergence and

rate of convergence of the X-Greedy Algorithm. The following conver-

gence result was proved in [21].

Theorem 3.3. Let a sequence r := {rk}∞k=1, rk ∈ [0, 1), satisfy the

conditions
∞∑

k=1

rk = ∞, rk → 0 as k → ∞.

Then the GAWR(t, r) and the XGAR(r) converge in any uniformly

smooth Banach space for each f ∈ X and for all dictionaries D.

In this paper we discuss convergence of the GAWR(t, r) and the

XGAR(r) under assumption
∑∞

k=1 rk < ∞ that is not covered by The-

orem 3.3.

Proposition 3.4. suppose X is uniformly smooth and has the WN

property. Let the relaxation r = {rk} be such that
∑∞

k=1 rk < ∞.

Then for the residual sequence {fm} of both the GAWR(t, r) and the

XGAR(r) we have fm
w→ 0.
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Proof. For both algorithms we have

Gm = (1 − rm)Gm−1 + λmϕm.

By the definition of λm one has

(6) ‖f − Gm‖ ≤ (1 − rm)‖fm−1‖ + rm‖f‖

and

‖f − Gm‖ ≥ (1 − rm)‖fm−1‖ − rm‖f‖.

The inequality (6) implies

(7) ‖fm‖ ≤ ‖f‖.

�

We now need the following simple lemma.

Lemma 3.5. Let a sequence {rk}, rk ∈ [0, 1], be such that
∑∞

k=1 rk <

∞. Consider a sequence {ak}, ak ∈ (0, A], that satisfies the inequalities

am ≥ (1 − rm)am−1 − Arm, m = 2, 3, . . . .

Then either am → 0 as m → ∞ or there exists an α > 0 such that

am ≥ α for all m.

Proof. Suppose the sequence {am} does not converge to 0. Then there

exists a subsequence {ank
} such that

lim
k→∞

ank
= γ > 0.

Therefore, ank
≥ γ/2 for k ≥ k0. For n > nk one has

(8) an+1 ≥ ank

n∏

j=nk+1

(1 − rj) − A
n∑

j=nk+1

rj.

It is clear that there exists k1 such that for n > nk1 (8) implies an+1 ≥
γ/4. This completes the proof. �

We return to the proof of Proposition 3.4. By Lemma 3.5 we obtain

from (6) and (7) that either ‖fm‖ → 0 or ‖fm‖ ≥ α > 0. It remains to

prove that the inequality ‖fm‖ ≥ α > 0 implies that {Ffm} is weakly

null and apply the WN property. The proof of this statement repeats

the argument from the proof of Theorem 3.1.
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3.4. Modified algorithms. First we recall the definition of the mod-

ulus of convexity δX(ε) := δ(ε) of a Banach space X (see [15, pp.

59-60]):

(9)

δ(ε) := inf
{

1 − ‖x + y‖
2

: x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε
}
,

for 0 ≤ ε ≤ 2. X is said to be uniformly convex if δ(ε) > 0 for all

ε > 0

Suppose that X is a Banach space which has a positive modulus

of convexity δ(s) for at least one s ∈ (0, 1). We consider any greedy

algorithm which satisfies the following two conditions:

• the algorithm converges weakly (for every f 6= 0 in X, the

residuals fn
w→ 0, or in other words, Gn

w→ f);

• the norms of the residuals form a decreasing sequence {‖fn‖}.
Now we shall modify a greedy algorithm which satisfies these two

conditions. The modified algorithm generates a sequence of residuals

{f̃n} and a corresponding sequence of approximations {G̃n} such that

‖f̃n‖ → 0—that is, the modified algorithm converges strongly.

We proceed to describe how to apply the modified algorithm to f =

f0 ∈ X. Set r0 := ‖f0‖ and f̃0 := f0. We write out the first two steps

in detail and then proceed to the inductive step.

Step 1: Apply the unmodified algorithm to f0 and generate the

sequence of residuals {(f0)n}. We know that (f0 − (f0)n)
w→ f0. The

norm of X is lower semi-continuous with respect to weak convergence,

so

r0 = ‖f0‖ ≤ lim inf
n→∞

‖f0 − (f0)n‖.

Since s ∈ (0, 1), we can choose n0 such that

(10) sr0 < ‖f0 − (f0)n0‖,

and we use n0 to define the first residual

(11) f̃1 :=
f0 + (f0)n0

2

The first approximation of f is G̃1 := f0 − f̃1. We will now find an

upper bound for ‖f̃1‖ by considering the modulus of convexity δ(s).

By definition, ‖f0

r0

‖ = 1, and since the sequence of norms of residuals
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is decreasing,

∥∥∥∥
(f0)n0

r0

∥∥∥∥ ≤ 1. By (10),
∥∥∥f0

r0
− fn0

r0

∥∥∥ > s. Therefore, by

(9),

δ(s) ≤ 1 −
∥∥∥ f0

2r0
+

fn0

2r0

∥∥∥,

which can be rewritten as

(12) r0(1 − δ(s)) ≥
∥∥∥f0 + fn0

2

∥∥∥.

Set r1 := ‖f̃1‖. We see that r1 < r0(1 − δ(s)), and 0 < 1 − δ(s) < 1 by

hypothesis.

Step 2: Apply the unmodified algorithm to f̃1, generating a se-

quence of residuals {(f̃1)n}. Because (f̃1 − (f̃1)n)
w→ f̃1, we can choose

n1 such that

(13) sr1 < ‖f̃1 − (f̃1)n1‖

Set

f̃2 :=
f̃1 + (f̃1)n1

2
and G̃2 = f0 − f̃2.

We note that G̃2 = (f0 − f̃1) + (f̃1 − f̃2).

As before, we bound ‖f̃2‖ using the modulus of convexity:

r1(1 − δ(s)) ≥ ‖f̃2‖.

Referring back to (12), we see that

r0(1 − δ(s))2 ≥ ‖f̃2‖.

Set r2 := ‖f̃2‖. Now we describe the inductive step.

Step k + 1: Assuming that we have found {f̃0, f̃1, . . . , f̃k} and

the accompanying norms {r0, r1, . . . , rk}, we apply the unmodified al-

gorithm to f̃k in order to generate the sequence of residuals {(f̃k)n}.
Choose nk such that

srk < ‖f̃k − (f̃k)nk
‖.

Set

• f̃k+1 :=
f̃k + (f̃k)nk

2
• G̃k+1 := f0 − f̃k+1

• rk+1 := ‖f̃k+1‖.
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Finally, arguing as before,

r0(1 − δ(s))k+1 ≥ ‖f̃k+1‖.

As a result, {‖f̃n‖} → 0, and the modified algorithm converges strongly.

Remark 3.6. Note that the “modification step” can and should be omit-

ted if

‖(f̃k)nk
‖ ≤ ‖ f̃k + (f̃k)nk

2
‖,

because in this case we would do better to set f̃k+1 := (f̃k)nk
instead,

and then continue with the unmodified algorithm until the next modi-

fication step. Thus, the modification step need only be applied when it

actually yields a better approximation than the unmodified algorithm.

Note also that to apply the modified algorithm it is only necessary

to store the value of of f̃k in step k + 1 (in addition to the updated

residuals).

Remark 3.7. In all the results of this section we have applied the WN

property directly, so in all results where this condition is assumed it can

be dropped and the conclusion “fn
w→ 0” replaced by “either ‖fn‖ → 0

or Ffn

w→ 0”.

4. Comments and remarks

4.1. Banach spaces with the WN property. In this section we

discuss which Banach spaces have the WN property. First we present

a simple example to show that Lp[0, 1] does not have the WN property

when p 6= 2.

Example 4.1. Fix 1 < p < ∞ with p 6= 2 and let q be the Hölder

conjugate index. Let {Xn} be a sequence of independent identically dis-

tributed random variables defined on some separable probability space

(Ω, Σ, P ) such that

P (Xn = a) = 2/3 and P (Xn = −2a) = 1/3,

where a = (3/(2+2q))1/q. Then ‖Xn‖q = 1 and (by Jensen’s inequality)

{Xn} is a monotone basic sequence in Lq(Ω). Since Lq(Ω) is a reflexive

Banach space, it follows that (Xn) is weakly null. Now Xn is the

norming functional for Yn ∈ Lp(Ω), where Yn = |Xn|p−1 sgn(Xn). But

E[Yn] = (2−2p−1)ap−1/3 6= 0, so {Yn} is not weakly null in Lp(ω). This

shows that Lp(Ω) does not have the WN property.
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Theorem 4.2. Suppose X is a reflexive Banach space with the uniform

Opial property. Then X has the WN property.

Proof. Assume it is not true that xn
w→ 0 — that is, suppose {xn} is

not weakly null, where {xn} is as in Definition 1.1. By passing to a

subsequence and relabelling, we may assume (by reflexivity of X) that

xn
w→ x, where x 6= 0. Now, write xn = x + yn, where yn

w→ 0. Once

more passing to a subsequence and relabelling we may assume that

‖yn‖ → c. If c > 0 then from the uniform Opial property we get

lim
n→∞

∥∥∥xn

c

∥∥∥ = lim
n→∞

∥∥∥x

c
+

yn

c

∥∥∥ ≥ 1 + τ(‖x‖/c),

which gives 1 ≥ c + cτ(‖x‖/c), so c < 1. (This is obviously also true if

c = 0.) However, since {Fxn} is weakly null, we have

1 = lim
n→∞

Fxn(xn)

= lim
n→∞

Fxn(x) + lim
n→∞

Fxn(yn)

= 0 + lim
n→∞

Fxn(yn)

≤ lim
n→∞

‖yn‖ ≤ c < 1,

which is a contradiction. Therefore, {xn} ⊂ S(X) is weakly null when-

ever {Fxn} is weakly null, as we wished to show. �

Our next result connects bases with the uniform Opial property.

Proposition 4.3. A Banach space with a URM basis has the uniform

Opial property.

Proof. Let us take yn
w→ 0 with ‖yn‖ = 1 for n = 1, 2, . . . and x 6= 0.

Let us fix a small δ > 0 and N such that ‖QN(x)‖ ≤ δ. We have

lim inf
n→∞

‖x + yn‖ = lim inf
n→∞

‖PN(x) + QN(yn) + QN(x) + PN(yn)‖

≥ lim inf
n→∞

(‖PN(x) + QN(yn)‖ − ‖PN(yn)‖ − ‖QN(x)‖)

≥ lim inf
n→∞

(‖QN (yn)‖ + θ(‖PN(x)‖))

− lim sup
n→∞

‖PN(yn)‖ − δ.

Since yn
w→ 0 we have limn→∞ ‖PN(yn)‖ = 0 and limn→∞ ‖QN (yn)‖ =

1. Because the basis is URM we also have ‖PN(x)‖ ≤ 2‖x‖. Putting

all this together we get

lim inf
n→∞

‖x + yn‖ ≥ 1 + θ(2‖x‖) − δ.
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Since δ was arbitrary we get uniform Opial condition with τ(ε) =

θ(2ε). �

Proposition 4.4. Suppose X is a uniformly convex Banach space with

a 1-unconditional basis {ei}. Then the basis is URM.

Proof. Fix 0 < ε ≤ 1. To verify the URM condition, suppose that

x < y, ‖x‖ ≥ ε, and ‖y‖ ≤ 1. If ‖x‖ > 2 then ‖x + y‖ > 2 by 1-

unconditionality, and hence ‖y‖ ≤ 1 ≤ ‖x+ y‖− 1. So we may assume

that ‖x‖ ≤ 2. By 1-unconditionality,

ε ≤ ‖x‖ ≤ ‖x + y‖ = ‖ − x + y‖,

and since y =
1

2
((x + y) + (−x + y)) it follows that

‖y‖ ≤ ‖x + y‖(1 − δ(
2‖x‖

‖x + y‖))

≤ ‖x + y‖ − εδ(
2ε

3
).

Hence θ(ε) ≥ εδ(2ε/3). �

There are several examples of Banach spaces which satisfy the hy-

potheses of Proposition 4.4. One obvious example is `p. Other exam-

ples are described in Section 4.1.1 below.

4.1.1. Examples of Banach spaces with the uniform Opial property and

URM bases. Some examples of spaces with the uniform Opial property

are presented in [13]. Now we will discuss the case of Orlicz sequence

spaces. We thank Anna Kamińska for describing to us how to con-

struct the Orlicz sequence spaces in Example 4.1.1. For the relevant

definitions and for more general theorems which imply the facts stated

below, see Chen [1] and Lindenstrauss and Tzafriri [14, Chapter 4].

Example 4.5. Orlicz sequence spaces.

Let M be an Orlicz function, M∗ its complement function, and lM
its associated Orlicz sequence space. We equip lM with the Luxemburg

norm.

If M satisfies the ∆2 condition at zero and M(1) = 1 then the unit

vector basis {ei} of lM is a normalized 1-unconditional Schauder basis

for lM . We now state some important facts which ensure that lM is

both uniformly smooth and uniformly convex [1, 12]:
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• lM is uniformly convex if and only if M and M∗ satisfy ∆2 and

the function M is uniformly convex.

• lM is uniformly smooth if and only if if M and M∗ satisfy ∆2

and the function M∗ is uniformly convex.

• If M and M∗ satisfy ∆2, then there exists M1 such that M1

and M∗
1 are uniformly convex, and M1 is equivalent to M [1,

Theorem 1.18, p. 12].

Putting these facts together, we can state the following. Suppose

M(1) = 1. The Orlicz sequence space lM is uniformly smooth and

uniformly convex if and only if M and M∗ satisfy ∆2 and are uniformly

convex. In addition, {ei} is a normalized 1-unconditional basis. Orlicz

sequence spaces with the uniform Opial property are described in [2]

and more general sequence spaces in [3].

Example 4.6. Lp[0, 1], 1 < p < ∞, equipped with the square-function

norm.

Let f =
∑∞

n=0 anhn be the expansion of f with respect to the Haar

basis. The norm defined by

|||f ||| =

[∫ 1

0

( ∞∑

n=0

a2
nhn(t)2

) p
2

dt

] 1
p

is equivalent to the usual Lp norm by classical square function inequali-

ties.. Clearly, (Lp[0, 1], ||| · |||) is isometric to a subspace of the Lebesgue-

Bochner space Lp([0, 1], `2), which in turn is isometric to a subspace

of Lp([0, 1], Lp[0, 1])) since `2 is isometric to a subspace of Lp[0, 1] (e.g.

as the span of a sequence of independent identically distributed mean

zero normal random variables). But Lp([0, 1], Lp[0, 1]) is naturally iso-

metrically isomorphic to Lp([0, 1]2) (by Fubini’s’s theorem), which in

turn is isometrically isomorphic to Lp[0, 1] because [0, 1] and [0, 1]2 have

isomorphic measure algebras. In conclusion, (Lp[0, 1], ||| · |||) is isometric

to a subspace of Lp[0, 1]. Moreover, (Lp[0, 1], ||| · |||) contains a subspace

isometric to `p spanned by disjointly supported Haar functions. Since

`p and Lp[0, 1] have identical moduli of convexity and smoothness, it

follows that Lp[0, 1] and (Lp[0, 1], |||·|||) also have identical moduli of con-

vexity and smoothness. In particular, (Lp[0, 1], |||·|||) is uniformly convex

and uniformly smooth. Finally, {hn}∞n=0 is obviously a 1-unconditional

basis for (Lp[0, 1], ||| · |||).
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4.2. Property Γ. Let us recall that this property was used by Ganichev

and Kalton [7] to prove the strong convergence of the WDGA. Our aim

in this section is to give an example of a Banach space with a URM ba-

sis (hence with the WN property by Theorem 4.2 and Proposition 4.3)

failing property Γ. On the other hand it is proven in [7] that Lp[0, 1]

has property Γ but (by Example 4.1) does not have the WN property.

Definition 4.7. A smooth Banach space X has property Γ if there is

a constant β > 0 such that for any x, y ∈ X such that Fx(y) = 0, we

have

(14) ‖x + y‖ ≥ ‖x‖ + βFx+y(y)

If we define ϕ(t) = ‖x + ty‖ − ‖x‖ then we know that

Fx+αy(y) = lim
h→0

‖x + (α + h)y‖ − ‖x + αy‖
h

= ϕ′(α),

so we can rewrite (14) as

(15) ϕ(α) ≥ βαϕ′(α).

The following lemma is proved here for the sake of completeness. The

proof follows from the work of Ganichev and Kalton [8] and is included

here with their permission.

Lemma 4.8. If X is smooth and has property Γ then it is strictly

convex.

Proof. Assume that X is not strictly convex. So there are points x0 6=
x1 such that ‖λx0 + (1 − λ)x1‖ = 1 whenever 0 ≤ λ ≤ 1. Clearly

Fx0 = Fx1 , so for y = x1 − x0 we have Fx1(y) = Fx0(y) = 0. We

consider the function ϕ(t) = ‖x0 + ty‖ − ‖x0‖ for t ≥ 0. Clearly ϕ is

increasing, differentiable, and satisfies ϕ(t) = 0 for 0 ≤ t ≤ 1. From

(15) we get

(16) ϕ(t) ≥ βtϕ′(t) ≥ βϕ′(t)

for all t ≥ 1. Suppose ϕ(t0) = 0 for some t0 ≥ 1. Integration of (16)

yields

β

2
ϕ(t0 + β/2) ≥ β

∫ t0+β/2

t0

ϕ′(t) dt = βϕ(t0 + β/2),
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and hence ϕ(t0 + β/2) = 0. By a repeated application of the latter,

starting with t0 = 1, we get ϕ(t) = 0 for all t, which is impossible since

ϕ(t) → ∞ as t → ∞. �

Now let is fix a concave C1 function H on [0, 1] which has the fol-

lowing properties:

H(t) =

{
1 if 0 ≤ t ≤ 0.1,√

1 − t2 if 1√
2
≤ t ≤ 1,

and

H(t) < 1 if t > 0.1.

We define a Banach space E as R2 equipped with the norm ‖.‖ such

that

‖(x, y)‖ ≤ 1 ⇐⇒ |y| ≤ H(|x|)
The Banach space E is uniformly smooth (because H is C1) and the

basis e1 = (1, 0), e2 = (0, 1) is a 1-unconditional URM basis. From

Lemma 4.8 we see that E does not have property Γ. If we want to have

an infinite-dimensional example it is enough to take Xp =
(∑∞

n=1 E
)

p

with 1 < p < ∞. One easily checks that the natural basis in Xp is a

1-unconditional URM basis. Clearly Xp does not have property Γ and

it is known that it is uniformly smooth (because E is, see [6]).

4.3. Dictionary dual greedy step. In this section we want to dis-

cuss the following greedy step (for an otherwise unspecified greedy

algorithm) which we call the dictionary dual step. For a dictionary

D ⊂ X, weakness parameter 0 < t ≤ 1, and for x ∈ X we choose

g0 ∈ D to satisfy

(17) Fg0(x) ≥ t sup
g∈D

Fg(x).

This greedy step was used in [22] for a special dictionary. One could

also consider the algorithm obtained by replacing (1) in the definition

of the WDGA (see section 3.1) by (17).

Since in the Hilbert space we have

Fg(x) = 〈g, x〉 = ‖x‖〈g,
x

‖x‖〉 = ‖x‖Fx(g),

we see that (when t = 1) the dictionary dual greedy step in a Hilbert

space coincides with the dual greedy step. So the dictionary dual greedy

step seems to be a good generalization of the pure greedy algorithm
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from the Hilbert space to the Banach space setting. Indeed, one could

argue that it is easier to have functionals Fg computed once and for all

for a given dictionary than to have to compute Fxn each time for vectors

xn which may be arbitrary (as we must do in dual greedy algorithms).

The point which we want to make in this section is that for general

dictionaries the dual greedy step (17) may create serious problems.

Definition 4.9. We call a dictionary D a double dictionary if {Fg :

g ∈ D} ⊂ X∗ is a dictionary (i.e. linearly dense) for X∗.

The Haar and Walsh systems are double dictionaries in Lp[0, 1] for

1 < p < ∞. Every dictionary in a Hilbert space is a double dictionary

since Hilbert spaces are self-dual.

Proposition 4.10. Let X be separable, reflexive, smooth, strictly con-

vex, and not isometric to a Hilbert space with dimX ≥ 3. Than X

contains a countable non-double dictionary.

Proof. First note that the assumptions on X also apply to X∗ by the

well-known duality between smoothness and strict convexity. Let us

take V ⊂ X a subspace of codimension 1 and let x∗
0 ∈ X∗ be a func-

tional of norm 1 with ker x∗
0 = V . If the set {Fv}v∈V is not linearly

dense in X∗ then there exists a subspace Z ⊂ X∗ of codimension 1

such that {Fv}v∈V ⊂ Z. This implies that Z norms V i.e. for v ∈ V

we have

(18) ‖v‖ = sup
z∈SZ

|z(v)|.

Let us consider a map q : X → Z∗ given by x 7→ x | Z. From (18) we

get that q | V is an isometry from V into Z∗. Actually it must be onto

Z∗ because q is onto and has one-dimensional kernel. This means that(
q | V

)−1 ◦ q is a well defined norm-one operator form X onto V which

is the identity on V , so it is a norm-one projection.

Now if X satisfies the assumptions of the theorem then by a theorem

of James [10] X contains a one-codimensional subspace V which is not

1-complemented in X. Thus we infer that the set {Fv}v∈V is linearly

dense. From this set we can choose a countable dictionary D which is

also linearly dense by separability of X. Since FFx = x (by smoothness

of X∗) we see that {Fg : g ∈ D} ⊂ V . This means that X∗ contains a

non-double dictionary. Thus, X also contains a non-double dictionary

by the self-duality of our assumptions. �
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Now suppose that we have a non-double dictionary D in a Banach

space X. We have just proved in Proposition 4.10 that such a situation

is quite common. Let us fix x0 ∈ X, x0 6= 0 such that Fg(x0) = 0 for

all g ∈ D. When we apply the dictionary dual greedy step we may

choose an arbitrary element g1 ∈ D. We do this and put x1 = x0 − λg1

with the coefficient λ computed accordingly to our particular algorithm.

Applying (17) to x1 we get

|Fg1(x1) = |λ| = sup
g∈D

|Fg(x1)|,

so g1 is again an allowed (actually the best) choice. This means that

using (17) we can not approximate x0. Note that this problem appears

already in nice finite-dimensional spaces, see Proposition 4.10.

To complements the previous result let us construct a two-dimensional

example. Let us considers `2
p, 1 < p < ∞, the space R2 with the norm

‖(x, y)‖p =
(
|x|p + |y|p

)1/p
.

Let us recall when we have equality in Hölder’s inequality. We have

x1x2 + y1y2 =
(
|x1|p + |y1|p

)1/p ·
(
|x2|p + |y2|p

)1/p

if and only if x2 = C(sgn x1)|x1|p−1 and y2 = C(sgn y1)|y1|p−1. This

means that if a = (x, y) then Fa = C(sgn x · |x|p−1, sgn y · |y|p−1).

Lemma 4.11. Let p 6= 2. For any vector a = (x, y) such that x · y 6= 0

and |x| 6= |y| there are vectors g1, g2 such that

Fg1(a) = 0(19)

Fa(g2) = 0(20)

Fg2(a) 6= 0(21)

Proof. Without loss of generality a = (1, y) with y > 0 and y 6= 1.

Writing equation (19) for g1 = (a1, b1) 6= 0 (and assuming a1 ≥ 0) we

get

ap−1
1 + y(sgn b1)|b1|p−1 = 0,

so a solution is given by g1 = (1,−y−1/(p−1)). Analogously we solve

equation (20) for g2 = (a2, b2) and we get a solution g2 = (1,−y1−p).

Using those values we write the left-hand side of (21) as

1 − y1−(p−1)2 .

Since y 6= 1 and the exponent 6= 0 (because p 6= 2) we get (21). �
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Now if we apply the dictionary greedy step (17) in `2
p to vector a and

dictionary D = {g1, g2} as given in Lemma 4.11 we must choose g2. But

from (20) we get ‖a + λg2‖ > ‖a‖ whenever λ 6= 0. So any algorithm

producing a decreasing sequence {fn} (as we assumed in section 3.4)

and using dictionary greedy step cannot converge.

Remark 4.12. We can make an infinite-dimensional example in `p by

taking a dictionary g1, g2, e3, e4, . . . . This is a basis and a double dic-

tionary. Clearly, the vector (x, y, 0, 0, . . . ) creates the same problem

that was described above.
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