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Abstract

In this paper we investigate the efficiency of the Orthogonal Match-
ing Pursuit (OMP) for random dictionaries. We concentrate on dictio-
naries satisfying the Restricted Isometry Property. We also introduce
a stronger Homogenous Restricted Isometry Property which we show
is satisfied with overwhelming probability for random dictionaries used
in compressed sensing. For these dictionaries we obtain upper esti-
mates for the error of approximation by OMP in terms of the error
of the best n-term approximation (Lebesgue-type inequalities). We
also present and discuss some open problems about OMP. This is a
development of recent results obtained by D.L. Donoho, M. Elad and
V.N. Temlyakov.
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1 Introduction

In this paper we investigate the efficiency of the Orthogonal Matching Pursuit
algorithm (OMP), also known in literature as Orthogonal Greedy Algorithm,

∗This research was partially supported by the Polish Ministry of Science and Higher
Education grant no. N N201 269335.
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for random dictionaries. OMP (cf. [8, 9]) is a well known greedy algorithm
widely used in approximation theory, statistical estimations and compressed
sensing (for a general review of greedy algorithms see [12]). One of its main
features is that it can be applied for arbitrary dictionary. However the effi-
ciency of the algorithm seems to depend very strongly on properties of the
dictionary.

In this paper we work in the context of a Hilbert space H (which may be
assumed to be finite dimensional) with the scalar product 〈 , 〉 and the norm
‖ ‖. The dictionary is a subset Φ = {φj : j ∈ J} ⊂ H such that span Φ = H.
We usually assume that ‖x‖ is close to 1 for x ∈ Φ. Usually in the literature
it is assumed that ‖x‖ = 1 for x ∈ Φ (see e.g. [12]). However for random
dictionaries it is very rarely satisfied. On the other hand for such dictionary
‖x‖ is close to 1 with great probability.

In the space H we consider the Orthogonal Matching Pursuit algorithm
with respect to the dictionary Φ. This algorithm obtains iteratively a se-
quence OMPn f ∈ H of approximants of a given element f ∈ H in the
following way:

• Define OMP0 f = 0.

• Given OMPn−1 f choose jn ∈ J such that

|〈f − OMPn−1 f, φjn〉| = sup {|〈f − OMPn−1 f, φj〉| : j ∈ J}

and define OMPn f as the orthogonal projection of f onto the subspace
span{φj1 , . . . , φjn}.

For a fixed f ∈ H we denote fn = f − OMPn f .
The standard measure of approximation power of a dictionary is the error

of the best m–term approximation. We define the set of m-sparse vectors
(with respect to the dictionary Φ) as

Σm(Φ) = Σm =

{
m∑

j=1

ajφj : {φj}m
j=1 ⊂ Φ

}
. (1.1)

For a given f ∈ H we define its best error of m–term approximation (cf. [12])
as

σm(f,Φ) = inf{‖f − z‖ : z ∈ Σm}. (1.2)

Clearly, we always have σm(f) ≤ ‖f − OMPm(f)‖ = ‖fm‖.
When our dictionary is an orthonormal basis then, obviously, σm(f) =

‖f − OMPm(f)‖ for each f ∈ H. Unfortunately, this is the only case when
it is so. The fundamental, and still largely unanswered question is how close
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OMPm(f) can get to this optimal rate of approximation given by σm(f). It is
to be expected that the answer to the above question must depend on some
extra properties of the dictionary. We will discuss it in more detail in the
last Section of the paper.

In this paper we concentrate on a random dictionary in Rn of the follow-
ing form: Φ = {φ1, . . . , φN}, with φj = 1√

n
(η1,j, . . . , ηn,j) where (ηi,j)

n
i=1

N
j=1

are independent, identically distributed, mean zero subgaussian random vari-
ables with Eη2

i,j = 1. It is a natural class of dictionaries which recently gained
prominence due to its importance in compressed sensing (see e.g. [2, 5, 4]).
In compressed sensing we think about such a dictionary as a matrix whose
columns are φj’s. Then any approximation scheme for such a dictionary
provides a decoder for a measurement matrix Φ. For such random dictio-
naries we prove that there exist positive constants c, c1, c2 such that for
K = cn/ log2N and 0 ≤ k < S ≤ K we have

‖fS‖2 ≤ c1
(
σS−k(fk) + c2

√
S/Kdlog2(2S − k)e‖fk‖

)
. (1.3)

As a main application we derive the estimate∥∥fdm(4 log2 m−1)e
∥∥ ≤ cσm(f) (1.4)

valid for m ≤ c
√
K. These results improve for random dictionaries the re-

sults from [6]. Technically speaking, the results in [6] are for dictionaries
having small coherence while we introduce a different assumption: homoge-
nous restricted isometry property.

2 Dictionaries

Despite the fact that we are mostly interested in random dictionaries, our
main results are formally deterministic. We isolate the properties of a dic-
tionary which a random dictionary has with overwhelming probability and
prove our results under the assumption that our dictionary has this property.
A widely used characteristic of a dictionary is its coherence.

Definition 1. The coherence of a dictionary Φ is defined as

η = η(Φ) = sup{|〈φ1, φ2〉| : φ1, φ2 ∈ Φ, φ1 6= φ2}.

Recently, especially in the context of compressed sensing, a restricted
isometry property (RIP for short) became very useful. Let us recall the
following well known definition (c.f. [2]) phrased in terms of dictionary not
a measurement matrix.
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Definition 2. The dictionary Φ satisfies the Restricted Isometry Property
RIP(K, ε), with 0 < ε < 1, if for any subset I ⊂ J with #I ≤ K and any
scalars aj, j ∈ I, the following inequality holds:

(1 − ε)

(∑
j∈I

|aj|2
)1/2

≤

∥∥∥∥∥∑
j∈I

ajφj

∥∥∥∥∥ ≤ (1 + ε)

(∑
j∈I

|aj|2
)1/2

. (2.1)

This definition in particular means that {φj}j∈I is a Riesz basis in its
linear span. From [3, Prop. 3.6.4] we get the following

Proposition 2.1. If the dictionary Φ satisfies RIP(K, ε) with I ⊂ J such
that #I ≤ K and f ∈ span{φi : i ∈ I}, then

(1 − ε) ‖f‖ ≤

(
n∑

i=1

|〈f, φi〉|2
)1/2

≤ (1 + ε) ‖f‖ .

The following is true:

Proposition 2.2. (i) If the dictionary Φ has coherence η then it satisfies
RIP(K, η(K − 1)) for K ≤ η−1 + 1.

(ii) If the dictionary Φ satisfies RIP(K, ε), then η(Φ) ≤ ε(2 + ε).

Proof. (i) is shown in [6, Lemma 2.1]. (ii) is obtained by straightforward
calculation.

In this paper we concentrate on a random dictionary in Rn of the follow-
ing form: Φ = {φ1, . . . , φN} where φj = 1√

n
(η1,j, . . . , ηn,j) where (ηi,j)

n
i=1

N
j=1

are independent, identically distributed, mean zero subgaussian random vari-
ables with Eη2

i,j = 1. In compressed sensing we think about such a dictionary
as a random matrix whose columns are φj’s.

Let us introduce the following

Definition 3. The dictionary Φ has homogenous restricted isometry prop-
erty HRIP(k, δ), 0 < δ < 1 if for any set T ⊂ {1, . . . , N} with #T = l ≤ k
and any sequence of numbers aj we have(

1 − δ
√

l
k

)(∑
j∈T

|aj|2
)1/2

≤

∥∥∥∥∥∑
j∈T

ajφj

∥∥∥∥∥ ≤
(

1 + δ
√

l
k

)(∑
j∈T

|aj|2
)1/2

.

(2.2)

The following theorem whose proof uses standard arguments justifies this
definition.
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Theorem 2.3. Suppose that integers n,N and numbers 0 < δ < 1 and
a > 0 are given and suppose that the dictionary Φ = {φ1, . . . , φN} ⊂ Rn

is as described above. Then there exist c > 0 which depend only on the
subgaussian distribution involved, δ and a such that dictionary Φ satisfies
HRIP(k, δ) for k = bcn/ logNc with probability ≥ 1 − 3N−a

Proof. It is known, see e.g. [11], that such matrices (dictionaries) satisfy the
concentration of measure property of the form: there is c0 > 0 such that for
each 1 ≥ ε > 0 for any x ∈ RN we have

P
(∣∣‖ N∑

j=1

xjφj‖2 − ‖x‖2
∣∣ > ε‖x‖2

)
≤ 2e−nc0ε2 . (2.3)

Then Lemma 5.1 from [1] says that for any fixed set T ⊂ {1, . . . , N} with
#T = l the inequality (2.1) fails with probability ≤ 2(12/δ)le−c0(δ/2)2n. Since

there are
(

N
l

)
<
(
en/l

)l
such subsets we see that (2.1) fails for all sets T with

#T = l with probability

≤ 2

(
eN

l

)l(
12

δ

)l

e−c0δ2n/4 (2.4)

so (2.2) fails for all sets T with #T = l with probability

≤ 2
(eN
l

)l(12
√
k

δ
√
l

)l
e−c0δ2ln/(4k)

= 2 exp
[(
l(ln eN + ln 12 + ln(1/δ) + 1

2
ln(k/l)

)
− l ln l − c0δ

2 ln
4k

]
≤ 2 exp

(
γl lnN − c0δ

2 ln
4k

)
where γ > 0 is a constant depending on δ. Now we set

k =
⌊

c0δ2

γµ
· n

lnN

⌋
(2.5)

where µ = 4(1 + a/γ). We continue our estimates to get

≤ 2 exp
(
γ(1 − µ

4
)l lnN

)
= 2 exp−al lnN = 2N−al. (2.6)

Summing over l = 1, 2, . . . we get that HRIP(k, δ) fails with probability at
most 2

∑∞
l=1N

−al ≤ 2
Na−1

which implies the Theorem.
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3 Main results

We prove the following theorem, which is a RIP analogue of Theorem 1.3
from [6]:

Theorem 3.1. Assume that the dictionary Φ satisfies RIP(2S, ε) and 0 ≤
k < S. Then

‖fS‖2 ≤ 2 ‖fk‖
(
σS−k(fk) + 4ε

(
2 + dlog2 Se

)
‖fk‖

)
. (3.1)

Note that in particular seting k = 0 we get

‖fS‖2 ≤ C‖f‖(σS(f) + Aε‖f‖). (3.2)

To prove this theorem we require the following proposition.

Proposition 3.2. Let 0 < ε < 1 and A = [ai,j] be an n× n upper triangular
matrix such that for any x ∈ Rn

(1 − ε) ‖x‖ ≤ ‖Ax‖ ≤ (1 + ε) ‖x‖ (3.3)

and |ai,i| ≥ 1 − ε for i = 1, . . . , n. Let i1, i2, . . . , in ∈ {0, 1, . . . , n} be such
that

ij+1 ≥ ij > j for j = 1, 2, . . . , n− 1 and in < n.

Let B = [bi,j] be another n× n matrix, with

bi,j =

{
ai,j if 1 ≤ i ≤ ij

0 otherwise.
.

Then ‖B‖ ≤ 4εdlog2 ne.

The idea of the proof is to cut matrix B into rectangular pieces. In this
we follow [10]. The heart of the proof of Proposition 3.2 is the following
Lemma

Lemma 3.3. Let A be an n×n matrix as in Proposition 3.2. Let 1 < r < n
and A1 and A2 be respectively r × r and (n − r) × (n − r) upper diagonal
matrices such that

A =

[
A1 C
0 A2

]
. (3.4)

Then A1 and A2 satisfy (3.3) and ‖C‖ ≤ 4ε.
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Proof. For y ∈ Rr and x =

[
y
0

]
∈ Rn we have ‖Ax‖ = ‖A1y‖. Hence, for

any y ∈ Rr the matrix A1 satisfies:

(1 − ε) ‖y‖ ≤ ‖A1y‖ ≤ (1 + ε) ‖y‖ . (3.5)

Because the inequality (3.3) is also satisfied if A is replaced by AH , analogous
argument gives that the same estimates hold for A2.

We now estimate ‖C‖. Clearly ‖C‖ ≤ ‖A‖ < 2 so we need to consider
only ε < 1

2
. Let x ∈ Rn−r be such that ‖Cx‖ = ‖C‖ and ‖x‖ = 1. From

(3.5) it follows that A1 is onto, so there exists y ∈ Rr such that ‖y‖ = 1 and
A1y = λCx for some λ > 0. Therefore ‖A1y + Cx‖ = ‖A1y‖ + ‖Cx‖. Let

z =

[
y
x

]
∈ Rn. Then ‖z‖2 = 2 and Az =

[
A1y + Cx
A2x

]
. Hence

2(1 + ε)2 ≥ ‖Az‖2 = ‖A1y + Cx‖2 + ‖A2x‖2

= (‖A1y‖ + ‖Cx‖)2 + ‖A2x‖2

≥ (1 − ε)2 + ((1 − ε) + ‖C‖)2

= 2(1 − ε)2 + 2(1 − ε) ‖C‖ + ‖C‖2 .

Solving this inequality for ‖C‖ we obtain ‖C‖ ≤ 4ε.

Proof of Proposition 3.2. We first prove the proposition for n = 2m. For
k = 1, 2, . . . , n − 1 we fix r = 0, 1, . . . ,m − 1 such that 2r ≤ k < 2r+1 and
define

jk = 2m−r−1(2(k − 2r) + 1) + 1.

Let Ck be the matrix obtained from A by setting to 0 all the coefficients
except those at the intersections of columns jk, jk + 1, . . . , jk + 2m−r−1 with
rows 1, 2, . . . , ijk

. We have ‖Ck‖ ≤ 4ε.
Now let D = [di,j] and E = [ei,j] be two matrices obtained from A by

setting some of the coefficients to 0. We define D \ E = [fi,j] as the matrix
obtained from A by setting to 0 all coefficients except those which are non-
zero in D and equal to zero in E, i.e.

fi,j =

{
ai,j if di,j 6= 0 and ei,j = 0

0 otherwise.

For r = 0, 1, . . . ,m− 1 we now define

Br =

(
2r+1−1∑

k=1

Ck

)
\

(
2r−1∑
k=1

Ck

)
.
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We show that ‖Br‖ ≤ 4ε. Let Dl = Cl \
(∑l−1

k=1Cl

)
. Because ‖Cl‖ ≤ 4ε and

Dl is obtained from Cl by setting some rows to 0, we have ‖Dl‖ ≤ 4ε. Observe

that Br =
∑2r+1−1

l=2r Bl and each of the matrices D2r , D2r+1, . . . , D2r+1−1 has
non-zero coefficients in different rows and columns. Hence

‖Br‖ ≤ max(‖D2r‖ , ‖D2r+1‖ , . . . , ‖D2r+1−1‖) ≤ 4ε.

Because B = B0 +B1 + · · · +Bm−1 we get ‖B‖ ≤ m · 4ε = 4ε · log2 n.
We deal with the situation when n 6= 2m in the following way: let m =

dlog2 ne. We extend the matrix A to a 2m × 2m matrix A′ = [ai,j]
2m

i,j=1 by
defining

ai,j =

{
1 for n+ 1 ≤ i = j ≤ 2m

0 for n+ 1 ≤ i ≤ 2m or n+ 1 ≤ j ≤ 2m.

For j = n+1, . . . , 2m we define ij = j−1. The matrix A′ satisfies the assump-
tions of the lemma and the matrix B′ obtained from A′ satisfies ‖B′‖ ≤ 4ε·m.
Because B is a sub-matrix of B′, we have ‖B‖ ≤ ‖B′‖ ≤ 4ε · dlog2 ne. The
proof of the lemma is complete.

Proof of Theorem 3.1. We assume that fk 6= 0. Otherwise fS = 0 as well
and the inequality (3.1) is trivially satisfied.

For a given closed subspace U ⊂ H let PU be the orthogonal projection
onto U . Let φ1, φ2, . . . , φS ∈ Φ be the distinct elements returned by the first
S iterations of the OMP when applied to f . For Uν = span(φ1, . . . , φν) and
k ≤ ν ≤ S we have

fν = f − PUνf = fk − PUνfk (3.6)

as well as 〈fk, φj〉 = 0 for j ∈ {1, . . . , k}.
For f ∈ H let

d(f) = sup
g∈Φ

|〈f, g〉|.

Let us fix ψ ∈ Uν with ‖ψ‖ = 1 and ψ ⊥ Uν−1. Then ‖fν−1‖2 = ‖fν‖2 +
〈fν−1, ψ〉2. Since d(fν−1) = |〈fν−1, φν〉|, ‖φν‖ ≤ 1 + ε and |〈fν−1, ψ〉| ≥
|〈fν−1, ‖φν‖−1φν〉| we get

‖fν‖2 ≤ ‖fν−1‖2 − (1 + ε)−2d(fν−1)
2.

Repeating this we obtain

‖fS‖2 ≤ ‖fk‖2 − (1 + ε)−2

S∑
ν=k+1

d(fν)2
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This implies

‖fS‖2 ≤ 2 ‖fk‖

‖fk‖ − (1 + ε)−1

(
S∑

ν=k+1

d(fν)2

)1/2
 . (3.7)

We will now provide a lower estimate for
(∑S

ν=k+1 d(fν)2
)1/2

.

Let g1, . . . , gS−k ∈ Φ be distinct elements which have the biggest scalar
products with fk, i.e.

|〈fk, g1〉| ≥ |〈fk, g2〉| ≥ · · · ≥ |〈fk, gS−k〉| ≥ sup{|〈fk, g〉| : φ ∈ Φ, φ 6= gi}.
and each gi, i ∈ {1, . . . , S − k}, is different from all φj, j ∈ {1, . . . , k}.
Because fk 6= 0, we have d(fk) = |〈fk, g1〉| > 0. Observe also that g1 = φk+1.
We will need also another enumeration of gi’s that will allow us to apply
roposition 3.2. To do this we show that there exists a bijective mapping
π : {k + 1, . . . , S} → {1, . . . , S − k} such that

if gπ(ν) = φj then j > ν for ν = k, k + 1, . . . , S − 1. (3.8)

Let A = {g1, . . . , gS−k} ∩ {φk+1, . . . , φS−1} = {φj1 , . . . , φjr}. We assume that

k + 1 = j1 < j2 < · · · < jr.

Define π(k + µ) = jµ+1 for µ = 0, . . . , r − 1. The set {g1, . . . , gS−k} \ A is
exhausted in an arbitrary way by gπ(k+r), . . . , gπ(S−1). Now the property (3.8)
follows from the fact that gπ(k) = φk+1 and the ordering of j1, . . . , jr.

By the definition of d(fν) we have d(fν) ≥ |〈fν , gπ(ν)〉| and by (3.6)
〈fν , gπ(ν)〉 = 〈fk, gπ(ν)〉 − 〈PUνfk, gπ(ν)〉.

Let us define

aν = 〈fk, gπ(ν)〉 ·

(
S∑

ν=k+1

|〈fk, gπ(ν)〉|2
)−1/2

. (3.9)

(Note that because d(fk) > 0, the sum
∑S

ν=k+1 |〈fk, gπ(ν)〉|2 is positive.) Then∑S
ν=k+1 |aν |2 = 1 and(

S−1∑
ν=k

d(fν)2

)1/2

≥

(
S∑

ν=k+1

|〈fν , gπ(ν)〉|2
)1/2

≥

∣∣∣∣∣
S∑

ν=k+1

aν〈fν , gπ(ν)〉

∣∣∣∣∣
≥

∣∣∣∣∣
S∑

ν=k+1

aν〈fk, gπ(ν)〉

∣∣∣∣∣−
∣∣∣∣∣

S∑
ν=k+1

aν〈PUνfk, gπ(ν)〉

∣∣∣∣∣
=

(
S−k∑
i=1

|〈fk, gi〉|2
)1/2

−

∣∣∣∣∣〈fk,

S∑
ν=k+1

aνPUνgπ(ν)〉

∣∣∣∣∣ . (3.10)
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We now estimate∣∣∣∣∣〈fk,
S∑

ν=k+1

aνPUνgπ(ν)〉

∣∣∣∣∣ ≤ ‖fk‖

∥∥∥∥∥
S∑

ν=k+1

aνPUνgπ(ν)

∥∥∥∥∥ .
Now let us consider the system{

φ1, . . . , φS, gπ(r+1), . . . , gπ(S−k)

}
(3.11)

in this particular order. Since this system consists of elements from Φ we
will denote it as {φj}R

j=1 with R = 2S − k − r < 2S. Let ρ(ν) be such that
gπ(ν) = φρ(ν) for ν = l + 1, . . . , S. Observe that the mapping ν 7→ ρ(ν) is
increasing and ρ(ν) > ν.

Let now ψ1, . . . , ψR be the Gram-Schmidt orthonormalization of the sys-
tem (3.11). Then

φj =

j∑
i=1

ti,jψi (3.12)

and the upper-triangular R×R matrix T = [ti,j] satisfies the assumptions of
Proposition 3.2, which follows from the RIP property of the dictionary Φ.

Note that we have

PUνgπ(ν) = PUνφρ(ν) =
ν∑

i=1

ti,ρ(ν)ψi.

For each column index j ∈ {1, 2, . . . , R} we define a row index ij so
that iρ(ν) = ν and for j /∈ {ρ(k + 1), . . . ρ(S)} we choose ij so that the

sequence (ij)
R
j=1 is non-decreasing and ij > i. Let the matrix B̃ = [bi,j] with

i, j = 1, . . . , R be defined as

bi,j =

{
ti,j if 1 ≤ i ≤ ij

0 otherwise.
.

By Proposition 3.2 ∥∥∥B̃∥∥∥ ≤ 4ε · dlog2Re.

Let Bj denote the i-th column of the matrix B̃. Let

B = [Bρ(k+1), . . . , Bρ(S)].

Observe that

‖B‖ ≤
∥∥∥B̃∥∥∥ ≤ 4ε · dlog2Re ≤ 4ε · d1 + log2 Se.

10



For the vector a = [ak+1, . . . , aS]T (defined in (3.9)) we have ‖a‖ = 1 and∥∥∥∥∥
S∑

ν=k+1

aνPUνgπ(ν)

∥∥∥∥∥ = ‖Ba‖ ≤ ‖B‖ ‖a‖ ≤ 4ε · dlog2(2S − k)e. (3.13)

Next we estimate the term
(∑S−k

i=1 |〈fk, gi〉|2
)1/2

. Let η1, . . . , ηS−k ∈ Φ

be distinct elements such that for V = span(η1, . . . , ηS−k) we have

σS−k(fk) = ‖fk − PV fk‖ .

Let the scalars b1, . . . , bS−k be such, that

PV fk =
S−k∑
j=1

bjηj.

Observe, that ‖PV fk‖ ≥ ‖fk‖−σS−k(fk), which combined with the RIP gives
us (

S−k∑
j=1

|bj|2
)1/2

≥ 1

1 + ε
(‖fk‖ − σS−k(fk)). (3.14)

Using Proposition 2.1 and RIP we next obtain(
S−k∑
j=1

〈fk, ηj〉

)1/2

=

(
S−k∑
j=1

〈PV fk, ηj〉

)1/2

≥ (1 − ε) ‖PV fk‖

≥ (1 − ε)2

(
S−k∑
j=1

|bj|2
)1/2

. (3.15)

From (3.14) and (3.15) we get(
S−k∑
i=1

|〈fk, gi〉|2
)1/2

≥

(
S−k∑
j=1

|〈fk, ηj〉|2
)1/2

≥ (1 − ε)2

1 + ε
(‖fk‖ − σS−k(fk)).

(3.16)
From (3.7), (3.10), (3.16), (3.12) and (3.13) we obtain

‖fS‖2 ≤ 2 ‖fk‖
((

1−ε
1+ε

)2
σS−k(fk) +

(
1 −

(
1−ε
1+ε

)2
+ 4εd1 + log2 Se

)
‖fk‖

)
≤ 2 ‖fk‖

(
σS−k(fk) + 4ε

(
2 + dlog2 Se

)
‖fk‖

)
.

The proof is complete.
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For dictionaries with coherence J. Tropp [13], slightly improving the es-
timate from [7], showed

Theorem 3.4. If the dictionary Φ has coherence η then

‖fm‖ ≤
√

1 + 6mσm(f) (3.17)

for m < (2η)−1.

Using the above theorem we obtain

Theorem 3.5. Assume that the dictionary Φ satisfies HRIP(k, δ). Then
there exists a constant Cδ such that for m ≤

√
k/(6δ) we have∥∥fmd4 log2 m−1e

∥∥ ≤ Cδσm(f). (3.18)

Proof. By HRIP and Proposition 2.2 the dictionary Φ has coherence

η ≤ 3δ√
k
.

We take

m ≤ 1

6
δ−1k1/2, (3.19)

so that (3.17) holds. We define ml := m(2l − 1) for l = 1, 2, . . . . Let us fix
S = akγ, where γ ∈ (1

2
, 3

4
) and a ∈ (0, 1) is chosen so that S is sufficiently

large and integer. By HRIP the dictionary Φ satisfies RIP(2S, ε) with

ε = a
1
2 δk−

1−γ
2 . (3.20)

Lemma 3.6. There exists a constant B = B(δ, a, γ) such that

B(δ, a, γ) ≤ 2
5
4
+ 3

8γ 3−
1
4a

1
2 e ·

(
2 +

8γ

(4γ − 3) ln 2

)
δ

3
4

and
4ε(2 + dlog2 Se) ≤ Bm−1/4. (3.21)

Proof. By (3.19) we have m−1/4 ≥ 61/4k−1/8δ1/4. Because S = akγ and ε is
given by (3.20), we need

B ≥ 2
7
4 3−

1
4a

1
2 δ3/4k1/8(2 + dlog2 Se).

A routine calculation shows that

2 + dlog2 Se ≤ 3 + γ log2 k.
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Hence, it suffices that B = 27/43−1/4δ3/4 · supk>0 h(k), with

h(k) = k−
3
8
+ γ

2 (3 + γ log2 k), k > 0.

The function h has the maximum value of

e · 2−
1
2
+ 3

8γ

(
2 +

8γ

(4γ − 3) ln 2

)
.

Using Theorem 3.1, inequality (3.21) and the fact that σn(fk) ≤ σn−k(f)
for k ≤ n we get

‖fml
‖2 ≤ 2

∥∥fml−1

∥∥ (σm(f) +Bm−1/4
∥∥fml−1

∥∥) (3.22)

as long as ml ≤ S.
If we know that

∥∥fml−1

∥∥ ≤ Dl−1m
γσm(f) for γ ≥ 1

4
, from (3.22) using

inequality
√

1 + z ≤ 2
√
z for z ≥ 1 we obtain

‖fml
‖ ≤ 2Dl−1B

1/2mγ− 1
8σm(f). (3.23)

Let D1 = 7, so that (1 + 6m)1/2 ≤ c1m
1/2. From (3.17) and (3.23) we obtain

(iteratively for l = 2, 3, 4)

‖fm4‖ ≤ 8D1B
3/2m1/8σm(f). (3.24)

Denote D4 = 8D1B
3/2.

If m1/8 < 4BD4, then

‖fm4‖ ≤ 4BD2
4σm(f), (3.25)

which ends the proof, yielding Cδ ≥ 4BD2
4.

From now on we assume that

4BD4m
−1/8 ≤ 1. (3.26)

Then the following is true:

Lemma 3.7. For l ≥ 4 we have

‖fml
‖ ≤ Dlm

2−l+1

σm(f), (3.27)

and Dl ≤ 4D4.

13



Proof. By (3.25) the lemma holds for l = 4. We now proceed by induction.
Assume that the lemma holds for some l ≥ 4. From (3.22) and (3.26) we
have ∥∥fml+1

∥∥2 ≤ 2Dlm
2−l+1

(
1 +BDlm

− 1
4
+2−l+1

)
σm(f)2

≤ 2Dlm
2−l+1

(
1 + 4BD4m

− 1
8

)
σm(f)2

≤ 4Dlm
2−l+1

σm(f)2.

Hence ‖fm+l+1‖ ≤ 2D
1/2
l m2−l

σm(f) = Dl+1m
2−l
σm(f) and Dl+1 ≤ 2D

1/2
l ≤

2(4D4)
1/2 ≤ 4D4.

We now take l = l∗ such that m2−l+1 ≤ 2. A routine calculation shows
that it suffices to take l∗ = dlog2 log2me + 1. We then have∥∥fmd4 log2 m−1e

∥∥ ≤ ‖fml∗‖ ≤ 8D4σm(f).

Hence, if (3.19) holds, we can take Cδ = 8D4 = 64 · 7 ·B(δ, a, γ)3/2.

Clearly, the constants we got in the above argument are far from being
optimal.

4 Comments and Remarks

Our results are a contribution to the general problem of comparing ‖fn‖ =
‖f−OMPn f‖ with σn(f). There are two main types of inequalities one may
seek. One is the inequality of the form

‖fm‖ ≤ Cmσm(f) (4.1)

where we want the constant Cm to be small–preferably independent of m.
Another one is the inequality of the form

‖fη(m)‖ ≤ Cσm(f) (4.2)

where η(m) is certain function of m – preferably not much bigger than m.
Clearly the combination of both types is possible. Important factor in such
inequalities is the range of m’s for which it is valid. Our Theorem 3.1 (and
Theorem 1.3 from [6]) provide a tool to pass from inequality (4.1) to inequal-
ity (4.2) with η(m) ∼ bm logmc.

The main drawback of Theorem 3.5 is the restriction m ≤ c/
√
k. The

inspection of the proof shows that it is caused by the analogous restriction
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in Theorem 3.4. It is rather unlikely that the range of applicability of this
theorem can be significantly improved as it uses only coherence of the dictio-
nary. On the other hand the value

√
1 + 6m which appears in Theorem 3.4 is

not very essential. Replacing it by m to any fixed power would be sufficient
for our argument to work. Thus it seems to be an interesting problem to
establish an analogon of Theorem 3.4 that for dictionaries with HRIP. So let
us state it as a conjecture:
Conjecture Assume that the dictionary satisfies HRIP(k, δ). There exist
constants C, c, α and β (possibly depending on δ) such that for every f and
for m logαm ≤ ck we have

‖fbm logα mc‖ ≤ Cmβσm(f).

Especially interesting would be to have α = 0. This however may require
some restrictions on m. We have the following Proposition to support this
claim

Proposition 4.1. For each 0 < ε < 1 and n = 1, 2, . . . there exists a
dictionary satisfying RIP(2n, ε), having coherence ≤ 1√

n
and a vector x such

that σn(x) = 0 but x− OMPk x 6= 0 for k < n+ ε2
√
n

Take x = ( 1√
n
, . . . , 1√

n
, 0, . . . , 0) ∈ R2n with n square roots, i.e. ‖x‖ = 1.

Let us consider the dictionary: e1, . . . , en plus ψj = ej + β√
n
x for j = n +

1, . . . , n + s plus orthonormal vectors which are orthonormal to all those to
make a basis in R2n. We assume β > 1.

The coherence is ≤ max(2,β2)
n

. We calculate scalar products of different

vectors. 〈ψj, ψl〉 = β2

n
while 〈ej, ψl〉 = 2

n
. All other scalar products are zero.

For l ≤ s let us calculate:

‖
n∑

j=1

ajej +
l∑

j=1

bjψn+j‖ = ‖
n∑

j=1

ajej +
l∑

j=1

bjen+j +
β√
n

(
l∑

j=1

bj) · x‖

≤
√∑

a2
j +

∑
b2j +

β√
n

l∑
j=1

|bj|

≤
√∑

a2
j +

∑
b2j +

√
l
β√
n

√√√√ l∑
j=1

|bj|2

≤
(

1 +
√
l
β√
n

)√∑
a2

j +
∑

b2j .
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To estimate from below we get

‖
n∑

j=1

ajej +
l∑

j=1

bjψn+j‖ = ‖
n∑

j=1

ajej +
l∑

j=1

bjen+j +
β√
n

(
l∑

j=1

bj) · x‖

≥
√∑

a2
j +

∑
b2j −

β√
n

s∑
j=1

|bj|

≥
√∑

a2
j +

∑
b2j −

√
l
β√
n

√√√√ s∑
j=1

|bj|2 +
∑

j

|aj|2

≥
(

1 −
√
l
β√
n

)√∑
a2

j +
∑

b2j .

This shows that for any µ ≤ 2n our dictionary has RIP(µ, β
√

min(s, µ)/n).
Now let us see how OMP acts for vector x. Clearly 〈x, ej〉 = 1√

n
and

〈x, ψj〉 = β√
n
. Note that ‖ψj‖ > 1 and other elements from the dictionary

have norm one. To avoid undue preference for ψj’s we may normalise them. If
we not do this we will be choosing ψj’s longer. This normalisation introduces

the factor
√

n
n+β2 into the second scalar product. But

β√
n

√
n

n+ β2
>

1√
n

for β >
√

n
n−1

so for such β we choose ψj1 first. After the first step of OMP
we get

x− 〈x, ψj1〉ψj1

1

‖ψj1‖2
= x− β√

n(1 + β2n−1)
(ej1 +

β√
n

)

= − β√
n(1 + β2n−1)

ej1 + (
n

n+ β2
)x

Note that if in the second step we get ψj2 in the corresponding sum vector x

will appear with multiple
(

n
n+β2

)2

etc. This means that

x− OMPl x =
l∑

µ=1

aµejµ + (
n

n+ β2
)lx. (4.3)

From this we infer that if we look at next scalar products ej’s will give
1√
n

while ψj’s after normalisation will give

n

n+ β2

√
n

n+ β2

β√
n
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So we will be getting ψj’s as long as(
n

n+ β2

)l√
n

n+ β2

β√
n
>

1√
n

(4.4)

Proof of Proposition 4.1. Let us fix β = 4
√
n. This gives coherence ≤ 1√

n
and

RIP(2n, ε) as long as s ≤ ε2
√
n. Substituting β into (4.4) we infer that we

will be getting ψj’s for first l steps of OMP as long as(
n

n+
√
n

)l+1/2

>
1
4
√
n
.

Inverting and taking ln we get

1

4
lnn > (l + 1/2) ln(1 +

1√
n

)

Since ln(1 + 1√
n
) ≤ 1√

n
we get l ≤ 1

4

√
n lnn. Since s ≤ ε2

√
n we infer that

first we choose all ψj’s, and only then we start picking ej’s.
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