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Abstract

In compressed sensing we seek to gain information about vector x ∈
RN from d << N nonadaptive linear measurements. Candes, Donoho,
Tao et. al. ( see e.g. [2, 4, 8]) proposed to seek good approximation to x
via `1 minimisation. In this paper we show that in the case of Gaussian
measurements it recovers the signal well from inacurate measurements,
thus improving result from [4]. We also show that with big probability it
gives information comparable with best k term approximation in euclidean
norm, k ∼ d/ ln N . This provides the first numerically friendly algorithm
to do so, see [7].

1 Introduction

Compressed sensing is a new scheme which shows that some signals can be re-
constructed from fewer measurements that previously were considered necessary.
The mathematical formulation is the following. Our signal is a vector x ∈ RN .
We have a N × d matrix Φ called measurement matrix and our measurements
are represented by y = Φ(x) ∈ Rd. We also need a decoder ∆ (which maybe
non-linear) which produces ∆(y) ∈ RN which should be an approximation to x.
The main point in compressed sensing as expressed in recent papers is that it is
actually possible to recover the essential information about x from relatively few
non-adaptive measurements d << N . Substantial progress have been made in
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recent years in understanding the performance of various measurement matrices
Φ and decoders ∆. Generally we have also an integer k ≤ d which measures
the amount of information we wish to recover. The standard initial requirement
is that for every k–sparse vector (i.e. x ∈ Σk) we have ∆(Φ(x)) = x. This
clearly forces Φ|Σk to be one to one. But foe ∆ to be numerically friendly we
must have the corresponding systems of equations well conditioned. This leads
to the restricted isometry property RIP (also called in the literature uniform
uncertainity property – UUP). This was introduced in [6, 5].

By Σµ we will mean the set of all vectors from Rs (where s should be clear
from the context) which have at most µ non-zero coefficients. We say that
matrix Φ satisfies RIP(k, δ) where 0 < δ < 1 and k ∈ N if

(1− δ)‖c‖2 ≤ ‖Φ(c)‖2 ≤ (1 + δ)‖c‖2 (1)

for all vectors c ∈ Σk. Results of [6, 8] (see also Theorem 2.2) imply in particular
that when Φ satisfies RIP(2k, 0.4) then every x ∈ Σk can be exactly recovered
with

∆1(x) = Argmin{‖z‖1 : Φ(x) = Φ(z)}. (2)

This is a numerically tractable decoder.
Current arguments for existence of RIP matrices with optimal bounds are

probabilistic. This is a line of arguments present in Banach space theory and in
approximation theory from the 70’s. For a streamlined presentation of the proof
and historical comments see [1]. More general results are in [12, 13]. If Φω is
either independent gaussian matrix or its columns are drawn independently from
the uniform distribution on the unit sphere in Rd then there exists constants
c1, c2 > 0 depending only on δ such that matrix Φω satisfies (1) for any k ≤
c1d/ ln(N/k) with probability ≥ 1 − exp−c2d. Let us note that even when we
have a concrete relatively big matrix it is practically impossible to check if it
satisfies RIP.

Clearly there are various ways to evaluate the efficiency of given measure-
ment–decoder pair (Φ,∆). In [7] A. Cohen, W. Dahmen and R. DeVore proposed
to look for instance optimality i.e. they wanted a constant C such that

‖x−∆(Φx)‖2 ≤ C0σ
2
k(x) (3)

for all x ∈ RN where

σ2
µ(x) = inf{‖x− v‖2 : v ∈ Σµ} (4)

Actually they proved that instance optimality with k = 1 forces d to be pro-
portional with N which is not what we look for, so they suggested to consider
instance optimality in probability. They consider a random matrix Φω and ask
for the following: for any x ∈ RN the inequality

‖x−∆(Φωx)‖2 ≤ C0σ
2
k(x) (5)

holds for this particular x with high probability. It is important that the set of
ω’s where (5) holds depend on x.
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One of the aims of this paper is to point out the first numerically feasible
measurement matrix and decoder for which instance optimality in probability
holds. To do this we introduce a new property LQ(α) of a measurement matrix.
We note (it is basically a know fact in Banach space theory) that LQ(µ/

√
k)

is satisfied with great probability by random gaussian matrices as explained in
section 4. So as a corollary we prove that if Φω is either independent gaussian
matrix or its columns are drawn independently from the uniform distribution on
the unit sphere in Rd then the decoder ∆1 (see (2)) gives instance optimality in
probability. For measurement matrices considered here it answers the question
formulated in [7]. We also discuss the case when our measuremant is corrupted
by noise i.e. we apply the decoder to vector Φω(x)+e. We prove that LQ(µ/

√
k)

gives very good stability result in this setting. An interesting feature of our
Theorem 3.3 is that it proves stability for the decoder ∆1. Similar results were
proved in [4] but there the decoder had to be modified according to our estimate
of the noise magnitude.

2 Preliminaries

In the space Rµ we will consider two norms: the usual euclidean norm ‖.‖2 and
`1 norm ‖.‖1. Unit balls in Rµ in those norms will be denoted by Bµ2 and Bµ1
respectively. By σ1

µ(x) we will denote the error of best µ–term approximation
in `1 norm defined as in (4) but with 2 replaced by 1.

Definition 2.1. We say that a matrix Φ : RN → Rd satisfies `1 quotient
property with constant α > 0 (LQ(α) for short) if Φ(BN1 ) ⊃ αBd2 .

A fundemental role in our considerations will be played by the following
Theorem of E.Candes, J.Romberg and T.Tao [4]:

Theorem 2.2. Suppose the matrix Φ satisfies RIP(2k, δ) with δ <
√

2 − 1.
Then there exists a constant C such that

‖x−∆1(Φx)‖2 ≤
Cσ1

k(x)√
k

(6)

for all x ∈ RN .

This Theorem was formulated without proof in [3]. It appeared for the first
time in [4] but with the assumption that Φ satisfies RIP(3k, δ1) and RIP(4k, δ2)
and δ1 + 3δ2 < 2.

Motivated by this Theorem and following [7] we will say that the pair (Φ,∆)
is (2, 1) instance optimal if there exists a constant K such that

‖x−∆(Φx)‖2 ≤
Kσ1

k(x)√
k

(7)

for all x ∈ RN .
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Our notation is rather standard. Note however that if we have a vector in
Rµ and a subset S of the index set which we assume to be {1, 2, . . . , µ} then
x|S denotes the vector which coincides with x on S and has zero coordinates
outside S.

3 Stability results

We begin this section with some general deterministic results for measurement
matrices which satisfie both RIP and LQ. Any decoder aims at recovering signal
x ∈ RN using only vector y = Φ(x) so our decoding does not distinguish vectors
x1, x2 ∈ RN such that Φ(x1) = Φ(x2). However in the proofs we may exploit
some apriori properties of x. Thus it is natural to try for the sake of the proof
to modify our unknown x so it will have some extra properties. In the following
Lemma we use LQ property to give such a modification.

Lemma 3.1. Suppose that matrix Φ satisfies RIP(k, δ) and LQ(µ/
√
k). For

every x ∈ RN there exists x̃ ∈ RN such that

Φ(x) = Φ(x̃) (8)

‖x̃‖1 ≤
√
k

µ
‖Φ(x)‖2 (9)

‖x̃‖2 ≤ C(δ, µ)‖Φ(x)‖2. (10)

Proof. Vector x̃ satisfying (8) and (9) we get directly from LQ condition. To es-
timate ‖x̃‖2 we split the set {1, 2, . . . , N} into disjoint k–element sets S0, S1, . . .
such that |x̃j | ≥ |x̃l| whenever j ∈ Sν and l ∈ Sν+1. Clearly we have

‖x̃|Sν+1‖2 ≤
1√
k
‖x̃|Sν‖1. (11)

From (9) and (11) we get

‖x̃|Sc0‖2 ≤
∑
ν=1

‖x̃|Sν‖2 ≤
1√
k
‖x̃‖1 ≤

‖Φ(x)‖2
µ

. (12)

Also using (12) and RIP condition we get

‖Φ(x̃|Sc0)‖2 ≤
∑
ν=1

‖Φ(x̃|Sν)‖2 ≤
1

1− δ
∑
ν=1

‖x̃|Sν‖2 ≤
‖Φ(x)‖2
(1− δ)µ

. (13)

Now we use RIP condition and (13) to get

‖x̃|S0‖2 ≤ 1
1− δ

‖Φ(x̃|S0)‖2 =
1

1− δ
‖Φ(x̃)− Φ(x̃|Sc0)‖2

≤ 1
1− δ

(‖Φ(x)‖2 + ‖Φ(x̃|Sc0)‖2)

≤ 1
1− δ

(
‖Φ(x)‖2 +

‖Φ(x)‖2
(1− δ)µ

)
.
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which together with (12) gives (10)

Remark 3.1 Spliting of the support of x̃ into k-elements blocks of decreasing
coefficients was used in [4] and also in [7]. The above argument shows that we can
take

C(δ, µ) =
1
µ

+
1 + µ(1− δ)
µ(1− δ)2

.

Now let us state the following abstract result

Theorem 3.2. Suppose that the matrix Φ satisfies RIP(k, δ) and LQ(µ/
√
k).

If the pair (Φ,∆) is (2, 1) instance optimal with constant K then

1. For any x ∈ RN and any r ∈ Rd

‖∆(Φ(x) + r)− x‖2 ≤ C
(
‖r‖2 +

σ1
k(x)√
k

)
. (14)

2. For any x ∈ RN

‖∆Φ(x)− x‖2 ≤ C
(
σ2
k(x) + ‖Φ(x|Sc)‖2

)
(15)

where S is a k–elements set such that ‖x|Sc‖2 = σ2
k(x).

3. For any x ∈ RN and any r ∈ Rd

‖∆(Φ(x) + r)− x‖2 ≤ C
(
‖r‖2 + σ2

k(x) + ‖Φ(x|Sc)‖2
)

(16)

where S is a k–elements set such that ‖x|Sc‖2 = σ2
k(x).

Proof. Let us start with the proof of (14). From LQ we infer that there exists
z ∈ RN such that Φ(z) = r. From Lemma 3.1 we infer that we can choose z
such that ‖z‖1 ≤

√
k
µ ‖r‖2 and ‖z‖2 ≤ C1‖r‖2. Since Φ(x+ z) = Φ(x) + r from

(2, 1)–instance optimality we get

‖∆(Φ(x) + r)− (x+ z)‖2 ≤ K
σ1
k(x+ z)√

k

so

‖∆(Φ(x) + r)− x‖2 ≤ ‖z‖2 +K
σ1
k(x+ z)√

k

≤ C1‖r‖2 +K
σ1
k(x) + ‖z‖1√

k

≤
(
C1 +

K

µ

)
‖r‖2 +K

σ1
k(x)√
k
.
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Now we prove (16) which for r = 0 becomes (15). Let us fix a k–element set S
such that σ2

k(x) = ‖x|Sc‖2. From Lemma 3.1 like above we get v, z ∈ RN such
that

Φ(v) = r ‖v‖1 ≤
√
k
µ ‖r‖2 ‖v‖2 ≤ C‖r‖2

Φ(z) = Φ(x|Sc) ‖z‖1 ≤
√
k
µ ‖Φ(x|Sc)‖2 ‖z‖2 ≤ C‖Φ(x|Sc)‖2

Clearly Φ(x|S + z + v) = Φ(x) + r so (2, 1) instance optimality gives

‖∆(Φ(x) + r)− (x|S + z + v)‖2 ≤ K
σ1
k(x|S + z + v)√

k

so we get

‖∆(Φ(x) + r)− x‖2 ≤ ‖x|Sc − z − v‖2 +K
σ1
k(x|S + z + v)√

k

≤ σ2
k(x) + ‖z‖2 + ‖v‖2 +K

‖z‖1 + ‖v‖1√
k

≤ σ2
k(x) + C ′‖r‖2 + C ′′‖Φ(x|Sc)‖2

Remark 3.2 Note that we may derive (15) directly applying (14) for x|S and
r = Φ(x|Sc) like we do to prove Corollary 3.5. This shows formally that if a pair
(Φ,∆) satisfies (14) it also satisfies (15).

Let us observe that assumptions in Lemma 3.1 and Theorem 3.2 are some-
what contradictory: if we have RIP(k, δ) then we have RIP(l, δ) for all l ≤ k
while if we have our assumption about LQ for k we have it also for all l ≥ k.
Thus at best we are dealing with k in certain range. Observe however that if
we have (14) for some k it also holds for k′ ≤ k.

For independent Gaussian or uniform on the sphere measurement ensemble
Corollary 4.3 shows that the assumptions of the above Theorem 3.2 are satisfied
with k ∼ d/ lnN . Thus we have

Theorem 3.3. Suppose that Φω is either independent Gaussian or uniform on
the sphere N × d measurement ensemble. There exists a k0 ∼ d/ lnN such that
for k ≤ k0 we have

a) There exists a set Ω1 with P(Ω1) ≥ 1−e−cd such that for any x ∈ RN and
any r ∈ Rd and k ≤ k0 we have

‖∆1(Φω(x) + r)− x‖2 ≤ C
(
‖r‖2 +

σ1
k(x)√
k

)
(17)

for ω ∈ Ω1.
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b) For any x ∈ RN there exists a set Ω1(x) with P(Ω1(x)) ≥ 1 − e−cd such
that for any r ∈ Rd and any k ≤ k0 we have

‖∆1(Φω(x) + r)− x‖2 ≤ C(‖r‖2 + σ2
k(x)) (18)

for ω ∈ Ω1(x).

Proof. For k0 statement a) follows directly from Theorems 2.2, Theorem 3.2
and Corollary 4.3. For k ≤ k0 it follows because σ1

k(x)√
k

is a decreasing sequence
in k. Analogously the second statement for k0 follows from Theorems 2.2 and
3.2, Corollary 4.3 and Lemma 4.1[1.] aplied for x|Sc where S is a k0 element
set such that σ2

k0
= ‖x|Sc‖2. For k ≤ k0 we use monotonicity of σ2

k(x).

As one of our aims is to provide examples of instance optimality in proba-
bility let us discuss this aspect of recent results of D. Needell and R. Vershynin
[14, 15]. They constructed a very interesting decoder which for consistency I
will denote as ∆ROMP based on a greedy type algorithm which they call ROMP.
About this decoder they proved the following (see [15, Corollary 1.3] and re-
marks after it)

Theorem 3.4. Suppose Φ satisfies RIP(8k, ε) with ε = 0.01/
√

log k. Then for
x ∈ RN and r ∈ Rd we have

‖x−∆ROMP (Φ(x) + r)‖2 ≤ 160
√

log 2k
(
‖r‖2 +

σ1
k(x)√
k

)
. (19)

Now suppose we have an arbitrary vector x ∈ RN and we fix a k-element
set such that ‖x|Sc‖2 = σ2

k(x). Applying Theorem 3.4 for x|S and treating
Φ(x|Sc) + r as a measurement error we get

‖x|S −∆ROMP (Φ(x) + r)‖2 ≤ 160
√

log 2k(‖r‖2 + ‖Φ(x|Sc)‖2)

which yields

‖x−∆ROMP (Φ(x) + r)‖2 ≤ 161
√

log 2k(‖r‖2 + ‖Φ(x|Sc)‖2 + σ2
k(x)).

Thus we get

Corollary 3.5. Suppose Φω is a random measurement ensemble, Φω : RN →
Rd. Assume also that

1. for each x ∈ RN with big probability we have ‖Φω(x)‖2 ≤ 2‖x‖2

2. k is such that with big probability Φω satisfies RIP(8k, ε) with ε = 0.01√
log k

Then for each x ∈ RN with big probability we have for any r ∈ Rd

‖x−∆ROMP (Φ(x) + r)‖2 ≤ 161
√

log 2k(‖r‖2 + 3σ2
k(x)). (20)
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This is almost instance optimality, the problem is the logarithmic factor in
the estimate (20). Another disadvantage is the fact that in random setting to
ensure RIP(8k, ε) we must choose d greater than ck

√
log k logN which is slightly

bigger then ck logN which is optimal for a fixed δ. The great advantage of this
fact and generally of the ∆ROMP decoder is that it applies to many random
ensembles (c.f. [1]).

4 `1 quotient property

In this section we want to discuss property LQ for random matrices considered
in compressed sensing literature. Let us start with the Gaussian ensemble. Let
g be the standard, normalised Gaussian variable. The following estimate is
elementary and classical(

1− 1
λ2

)√
2
π

1
λ

exp−λ
2

2
≤ P(|g| ≥ λ) ≤

√
2
π

1
λ

exp−λ
2

2
(21)

for each λ > 0.

By Φ(ω) we denote an N × d matrix whose entries are
(

1√
d
gi,j

)d
i=1

N

j=1

where gi,j are independent standard normalised gaussian variables. Columns
of this matrix denoted (Φj(ω))Nj=1 are independent Gaussian vectors in Rd.
Another case which we will consider is the matrix Φ̃ whose columns are nor-
malised vectors Φ̃j = ‖Φj(ω)‖−1Φj(ω). One easily sees that those columns
are independent norm one vectors drawn from the uniform distribution on the
unit sphere in Rd. By Φω we denote the operator from RN into Rd given by
Φω(x) =

∑N
j=1 xjΦj(ω). Analogously Φ̃(ω)(x) =

∑N
j=1 xj‖Φj(ω)‖−1Φj(ω).

For reference let me state the following well known facts

Lemma 4.1. For for both those measurement ensemblies we have:

1. There exists a constant c > 0 such that for each x ∈ RN there exists set
Ω2 with P(Ω2) ≥ 1 − e−cd and on this set we have ‖Φω(x)‖2 ≤ 1.5‖x‖2.
The same holds for Φ̃ω.

2. There exists constants c1, c2 > 0 depending only on δ such that matrix
Φω satisfies RIP(k, δ) for any k ≤ c1d/ ln(N/k) with probability ≥ 1 −
exp−c2d.

The following result is basically known as a folklore example in Banach space
theory cf. [9]. More general (but also requiring more sophisticated tools) proof
is given in [9]. An argument for N = d2 is given in [11]. In this situation for the
sake of the reader we decided to present the selfcontained standard argument,
c.f. [11].

Proposition 4.2. Let 0 < µ < 1√
2

and let eCd ≥ N ≥ C1d(ln d)ξ for some
ξ > (1 − 2µ2)−1 and some constants C,C1 > 0. There exists a constant c > 0
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such that the set Ωµ of those ω’s that Φω satisfies LQ( µ√
d

√
ln N

d ) i.e.

Φω(BN1 ) ⊃ µ√
d

√
ln
N

d
Bd2 . (22)

has the probability ≥ 1− exp−cd. The same is true for Φ̃ω.

Proof. Let us start from the Gaussian case. From RIP we know that there
exists a set Ω1 with P(Ω1) ≥ 1 − e−cd such that ‖Φj(ω)‖ ≤ 2 for ω ∈ Ω1 and

j = 1, 2, . . . , N . To simplyfy the notation we put α = µ√
d

√
ln N

d . Let Ω0 denotes

the set that (22) does not hold. If ω ∈ Ω0 then there exists a vector x ∈ Rd
with ‖x‖ = 1 such that

sup
j=1,...,N

|〈x,Φj(ω)〉| < α (23)

From properties of Gaussian variables we know that 〈x,Φj(ω)〉 has the same
distribution as g√

d
. Using independence and (21) we get

P( sup
j=1,...,N

|〈x,Φj(ω)〉| < α) =
[
P(
|g|√
d
< α)

]N
(24)

≤

[
1− (1− α−2d−1)

1
α
√
d

√
2
π

exp−dα
2

2

]N
.(25)

Now let N be an α
2 –net in the unit sphere of Rd. It is well known (see e.g. [10,

Ch. 15 Prop. 1.3] ) that we can find such a net with cardinality not bigger then(
6
α

)d. If x0 ∈ N is such that ‖x− x0‖ ≤ α
2 then for ω ∈ Ω1 we have

|〈x0,Φj(ω)〉| = |〈x,Φj(ω)〉 − 〈x− x0,Φj(ω)〉|
≤ |〈x,Φj(ω)〉|+ ‖x− x0‖‖Φj(ω)‖ ≤ 2α

so if there exists x as in (23) then there exists x0 ∈ N such that

sup
j=1,...,N

|〈x0,Φj(ω)〉| < 2α. (26)

This shows that

P(Ω0 ∩ Ω1) ≤ #N

[
1−

(
1− 1

4α2d

)
1

2α
√
d

√
2
π

exp−2dα2

]N
. (27)

Since (1 − 1
4α2d )

√
2
π ≥

1
2 if N ≥ Cµd where Cµ is a constant dependent on µ

we can replace this part of (27) by 1
2 . Using this and elementary inequality

1− ξ ≤ e−ξ we get

P(Ω0 ∩ Ω1) ≤ #N exp−N
(

1
4α
√
d

exp−2dα2

)
(28)
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Substituting the value for α and #N we see that we must estimate from above(
6
µ

√
d

ln(N/d)

)d
exp− N1−2µ2

d2µ2

4µ
√

ln(N/d)
(29)

Converting to exponentials we see that we must show that

d

(
ln

(
6
µ

√
d

ln(N/d)

)
−
(
N

d

)1−2µ2

1
4µ
√

ln(N/d)

)
≤ −cd (30)

so we need

ln

(
6
µ

√
d

ln(N/d)

)
+ c ≤

(
N

d

)1−2µ2

1
4µ
√

ln(N/d)
(31)

Now we see that when d and N grow the left hand side grows no faster that
a + 1

2 ln d while the right hand side grows no slower than (N/d)1−2µ2−ε ≥
(ln d)ξ(1−2µ2−ε) so we infer that there exists c > 0 such that

P(Ω0 ∩ Ω1) ≤ e−cd. (32)

This clearly finishes the Gaussian case. To see the uniform case it suffices to
make the trivial observation that for ω ∈ Ω1 we have Φω(BN1 ) ⊂ 2Φ̃ω(BN1 ).

Before we proceed let us comment how this Proposition relates to our prob-
lem. We know that to get RIP(k, δ) with big probability we must have d ≥
ck log(N/k). Since N and d are fixed by our measurement we choose k ∼
d/ log(N/k). In this case we have

µ√
d

√
ln
N

d
∼ µ′√

k
.

Also we assume (otherwise the results a non-interesting) that k is a natural
number. This implies that restrictions on dimensions in Proposition 4.2 are
satisfied and using Lemma 4.1 we get

Corollary 4.3. Let us consider either Gaussian or uniform random N × d
measurement matrix Φω. There exists positive constants δ, µ, α, c such that for
k = αd/ lnN with probability greater then 1− exp−cd matrices Φω satisfy both
RIP(k, δ) and LQ(µ/

√
k).

This means that we are in the situation covered by Theorem 3.2.
Other widely used random sets of measurement matrices Φω are Bernoulli

or Fourier (see e.g. [2, 7, 8]). All they have the property that each entry is
≤ C/

√
d. This implies that each vector in Φω(BN1 ) will have each coordinate

bounded by c/
√
d, so the best one can hope for is that such a matrix satisfies

LQ(c/
√
d).
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