
Complexity of Approximation of Functions of Few Variables in

High Dimensions

P. Wojtaszczyk ∗

Institut of Applied Mathematics
University of Warsaw

ul. Banacha 2, 02-097 Warszawa
Poland

e-mail: wojtaszczyk@mimuw.edu.pl

October 18, 2010

Abstract

In [7] we considered smooth functions on [0, 1]N which depends on a much smaller number of
variables ` or continuous functions which can be approximated by such functions. We were interested
in approximating those functions when we can calculate point values at points of our choice. The
number of points we needed for non-adaptive algorithm was higher then in the adaptive case. In this
paper we improve on [7] and show that in the non-adaptive case one can use the same number of
points (up to a multiplicative constant depending on `) that we need in the adaptive case.

1 Introduction

The numerical solution of many scientific problems can be reformulated as the approximation of a function
f , defined on a domain in IRN . When N is large this problem very often becomes untractable. This is
the so-called curse of dimensionality. On the other hand, the functions f that arise as solutions to real
world problems are thought to be much better behaved than a general N -variate function. Very often
it turns out that essentially they depend on only a few parameters. This has led to a concerted effort
to develop a theory and algorithms which approximate such functions well without suffering the effect
of the curse of dimensionality. There are many impressive approaches (see [2, 6, 17, 11, 12, 15, 18] as
representative) which are being developed in a variety of settings. There is also the active literature in
compressed sensing which is based on the model that real world functions are sparsely represented in a
suitable basis (see e.g. [3, 8, 4] and the references in these papers).

In [7] we considered a version of this problem, namely we considered a continuous function f defined
on [0, 1]N but depending only on ` variables xi1 , . . . , xi` where i1, . . . , i` are unknown to us (this is the
exact case). Under some smoothness assumptions we gave an approximation to such f from point values.
We also considered a situation when f is not a function of ` variables but can be approximated by such
a function to some tolerance ε (this is the approximate case). We considered both adaptive and non-
adaptive choices of points. Our benchmark was (L + 1)` points which is the number of points in the
uniform grid of [0, 1]` and we wanted the level of approximation which can be achived for functions on
[0, 1]` using those points under our smoothness assumption. The numbers of points we needed to prove
our results are sumarised in this table

Exact Approximate

Adaptive C(`)(L+ 1)` logN C(`)(L+ 1)` logN + C ′(`) log2N

Non-adaptive C(`)(L+ 1)`+1 log2N C(`)(L+ 1)`+1 log2N

∗This research was partially supported by Polish MNiSW grant N201 269335.

1

We see that we needed substantially more points in the non-adaptive setting. In this paper we show
(see Corollary 4.7 and Theorem 5.3) that up to a multiplicative constant C(`) in all cases we need the
same number of points i.e. C(`)(L + 1)` lnN . Our algorithms are theoretical; we are interested in a
real complexity of the problem so we aimed at minimising the number of point evaluations used. It is
known that for natural linear problem adaptivity does not help much (see [16, 17] for detailed discussion).
However our problem is non-linear so the question remains.

In information based complexity related problems are studied in the framework of weighted spaces.
In particular finite order weights deal with linear spaces of functions f of N variables which can be
represented (in a way unknown to us) as a finite sum f =

∑
j gj where each gj depends only on ` < N

variables (see [19, 17]). There are two differences between our approach and the existing theory of finite
order weights: we work in the sup norm while they work mostly in the Hilbert space setting and we deal
with one function of ` variables which makes our problem non-linear.

The paper is organized as follows. In the next Section 2 we give the necessary combinatorial back-
ground. In particular we introduce sets with Determining property which is used in Section 5. In
Section 3 we recall our approximation setup from [7]. In Section 4 we discuss the exact case and in Section
5 we discuss the approximate case. In the last Section we present some remarks and open problems.

1.1 Notation

Before we proceed let us explain some notation used throughout the paper. N and ` are integers ` < N ;
we think about N as large and about ` as rather small. We also use an integer L. We denote by L the
set

{0, 1
N ,

2
N , . . . ,

N−1
N , 1} ⊂ [0, 1]

and h = 1/L. For an integer R we will denote by [R] the set of integers {1, 2, . . . , R}. For any finite set
Γ the symbol #Γ denotes the cardinality of Γ. For a finite set A by LA ([0, 1]A resp.) we will denote
the set of all vectors indexed by A with values in L ([0, 1] resp.) Formally they are functions from A
into L ([0, 1] resp.). We will use this point of view by using a functional notation for points from [0, 1]N

(which formally is [0, 1][N]) and L` (which formally is L[`]). In particular for a point x ∈ [0, 1]N and a
set A ⊂ [N] the symbol χAx denotes an element from [0, 1]N which has coordinates outside A equal to
zero and coordinates from A equal to corresponding coordinates of x. We will also use x|A to denote an
element from [0, 1]A which has on A the same coordinates as x. As is customary the symbol C(X) will
denote the space of all continuous functions on the set X. We will use this symbol also when X is finite
when it means all functions on X.

2 Combinatorial background

Let A be a collection of partitions A of [N] such that each A consists of ` disjoint sets A1, A2, . . . , A`.
We say that the collection A is `-separating if for any distinct integers i1, . . . , i` ∈ [N] there exists a
partition A ∈ A such that each set in A contains precisely one of integers i1, . . . , i`. In [7] this property
was termed Partition Assumption. It appears in theoretical computer science as a perfect hashing (c.f.
[9, 13]). It is known [9, 13] and also explained in [7] that there exist `-separating families of partitions
with small cardinality. Random constructions give families A with

#A ≤ 2`e` lnN. (2.1)

The lower estimates for the cardinality of ` separating families are the main subject of [9, 13].
If we look at an `-separating family of partitionsA then in the notation of Friedman and Komlos [9] the

minimal cardinality of A is Y (l, l, N). An easy estimate (7) in [9] gives a lower estimate #A ≥ logN/ log l.
The main result (Theorem 2) of [9] (see also 1.1 in [13]) is

#A ≥ ll−1 logN

l! log 2
.

From Stirling formula we obtain

#A ≥ el−θ/12l√
2πl3/2

logN (2.2)

2

so the random result (2.1) is very precise.
A set A ⊂ LN is called an `-projection set if for every set A ⊂ [N] of cardinality ` and every vector

w ∈ LA there exists v ∈ A such that v|A = w.
Here we provide a simple random estimate of the cardinality of an `-projection set.

Proposition 2.1. A random subset of LN of cardinality 2`[ln(L+ 1) + lnN](L+ 1)` with overwhelming
probability is an `-projection set.

Proof. First we describe our randomness. Let (γj)
∞
j=1 be a sequence of independent, identically dis-

tributed, random variables each taking values in L, each value with the same probability (L+ 1)−1. We
define random vectors xj(ω) ∈ LN as xj(ω) = (γ(j−1)N+1, γ(j−1)N+2, . . . , γjN) for j = 1, 2, We define
the set

A = Ar(ω) = {x1(ω), . . . , xr(ω)}.

Obviously A is not an `-projection set if there exists A ⊂ [N] with #A = ` and w ∈ LA such that
xj |A 6= w for j = 1, 2, . . . , r. So

∆ := P(A is not `-projection set)

≤ (L+ 1)`
(
N

`

)
P(xj |A 6= w for j = 1, 2, . . . , r)

since xj ’s are independent

= (L+ 1)`
(
N

`

)
[P(x1|A 6= w)]

r

= (L+ 1)`
(
N

`

)[
1− (L+ 1)−`

]r
.

Since
[
1− (L+ 1)−`

]r ≤ exp− r
(L+1)`

we get

∆ ≤ exp

(
` ln(L+ 1) + ` lnN − r

(L+ 1)`

)
so for r ≥ 2`[ln(L+ 1) + lnN](L+ 1)` we get

∆ ≤ exp−`[ln(L+ 1) + lnN] = [N(L+ 1)]−`.

The question what is the smallest cardinality of projection sets for various combinations of parameters
seems to be unsolved. Some results are given in [14, 10]. We will need a somewhat stronger property

Determining Property:The set B ⊂ LN is said to have this property if it satisfies `-projection
property and for each A,B of cardinality ≤ ` and any pair a, b ∈ LA there exist P, P ′ ∈ B such that
P |A = a and P ′|A = b and P |(B \A) = P ′|(B \A).

There are at least two ways to build sets with Determining Property of rather small cardinality:

(i) Each 2`-projection set in LN has Determining Property; this is clear. Proposition 2.1 gives such
sets of cardinality ≤ 4`(lnL+ lnN)(L+ 1)2`.

(ii) Let us fix a 2`-separating family B of partitions of [N] and let us define

B =
⋃

V⊂[2`]

⋃
B∈B

{∑
j∈V

αjhχBj
: αj = 0, 1, . . . , N

}
. (2.3)

where B = (B1, . . . , B2`) ∈ B and V ⊂ [2`] is a set with #V = `. It is easy to check that this
set satisfies Determining Property. Using (2.1) we see that there are such sets with cardinality
≤ 2
(
2`
`

)
`e` lnN(L+ 1)`.

3

3 Approximation background

For any function φ defined on a set D (it may be defined on a bigger set E ⊃ D) we put

‖φ‖D = sup{|φ(P)| : P ∈ D} (3.1)

L is the lattice of equally spaced points (spacing h) on [0, 1] and L` is the lattice of equally spaced
points (spacing h) in [0, 1]`.

We assume that we have a sequence of linear operators Ah : C(L`) → C([0, 1]`) (defined for L =
1, 2, . . .) such that

(i) There is an absolute constant C0 such that ‖Ah(g)‖[0,1]` ≤ C0‖g‖L` for all h.

(ii) If g depends only on the variables from the set A ⊂ [`] with #A ≤ ` then Ah(g) also depends only
on those variables.

(iii) Ah(g) ≡ g if g is a constant.

(iv) If π is any permutation of the variables x = (x1, . . . , x`) (which can respectively be thought of as a
permutation of the indices {1, . . . , `}), then Ah(g(π(·))(π−1(x)) = Ah(g)(x), x ∈ [0, 1]`.

We define the following approximation class:

As := As((Ah)) = {g ∈ C([0, 1]`) : ‖g −Ah(g|L`)‖[0,1]` ≤ Chs, h = 1/L, L = 1, 2, . . .}, (3.2)

with semi-norm
|g|As := sup

h

{
h−s‖g −Ah(g|L`)‖[0,1]`

}
. (3.3)

Let us note that this class depends on the whole sequence of operators (Ah) not on just one operator.
We obtain the norm on As by adding ‖·‖[0,1]` to the semi-norm. As was discussed in [7], there is typically
a range 0 < s ≤ S, where the approximation classes can be characterized as smoothness spaces.

We need the following simple fact from [7] about As functions.

Lemma 3.1. Suppose g ∈ As and ‖g(x)‖L[`] ≤ ε. Then,

‖g‖[0,1]` ≤ C0ε+ |g|Ashs, (3.4)

where C0 is the constant in (i).

Proof. This follows directly from the triangle inequality

‖g‖[0,1]` ≤ ‖g −Ah(g|LN)‖[0,1]` + ‖Ah(g|LN)‖[0,1]` ≤ |g|Ashs + C0ε.

With slight abuse of the notation, for g ∈ C([0, 1]`) we will denote by Ah(g) the operator Ah(g|L`).
We say that a function f ∈ C([0, 1]N) depends on variable j ∈ [N] if there are two points P, P ′ ∈ [0, 1]N

which differ only at coordinate j such that f(P) 6= f(P ′). We call such a variable a change variable.
Those are variables on which our function depends. For a given sequence J = (j1, . . . , j`) of distinct
integers from [N] and a function g defined on [0, 1]` we define an embedding operator

IJ (g)(x1, . . . , xN) = g(xj1 , . . . , xj`).

Clearly every function on [0, 1]N which depends on ` variables is of such form for some J and g defined
on [0, 1]`. We will consider two cases:

Exact case: We assume that the function f on C([0, 1]N) equals IJ (g) for some sequence J of ` distinct
integers from [N] and some g ∈ As for some s > 0. We do not know neither g nor J .

Approximate case: We assume that f ∈ C([0, 1]N) and there exists a function g ∈ As for some s > 0
and ε ≥ 0 and a sequence J of ` distinct integers from [N] such that

‖f − IJ (g)‖[0,1]N ≤ ε.

We do not know J , g nor ε ≥ 0.

4

4 Exact case

In this section we consider the case when the function f ∈ C([0, 1]N) depends on at most ` variables. We
decided to present this case separately (despite the fact that it formally follows from the more general
approximate case) because we can present a different, simpler and more efficient algorithm which uses
fewer points (but only by a multiplicative constant). Also this section can serve as an introduction to
Section 5.

We fix an (` + 1)-separating family A of partitions of the set [N]. For any A = (A1, . . . , A`+1) ∈ A
and any s = 1, . . . , `+ 1 we define a family of points

P(A, s) =
{∑
j 6=s

αjhχAj
: αj = 0, 1, . . . , L

}
⊂ LN . (4.1)

We denote AA =
⋃`+1
s=1 P(A, s) and define the set A of base points as

A =
⋃

A∈A

AA =
⋃

A∈A

`+1⋃
s=1

P(A, s) ⊂ LN (4.2)

We see that #A ≤ (` + 1)(L + 1)`#A. Now we evaluate f at points from A. We say that the set
Aj ∈ A ∈ A is a change set if there exist two points P and P ′ in AA which differ only on Aj such that
f(P) 6= f(P ′). Clearly each change set contains at least one change variable of f . We look at A’s with
maximal number of change sets; there may be many of them — call them maximal. Since the function
f depends on at most ` variables each partition A ∈ A contains a nonchange set. Actually there may be
change variables that are not reflected by values of f on LN . Let us call a variable j ∈ [N] visible at the
scale h if there exist P, P ′ ∈ LN which differ only at coordinate j such that f(P) 6= f(P ′).

Lemma 4.1. (i) Each change set contains at least one change variable visible at scale h.

(ii) In each maximal partition each change set contains exactly one change variable visible at scale h.

(iii) For every maximal partition, each change variable visible at scale h belongs to some change set.

Proof. The first statement is clear as the change set is defined via points from LN . Let µ ≤ ` be the
number of variables visible at scale h. Thus the number of change sets in any partition is ≤ µ. Let
A = (A1, . . . , A`+1) ∈ A be a partition such that #J ∩ Aj ≤ 1 for j = 1, 2, . . . , ` + 1. Such an A
exists because A is (` + 1)-separating family. Let j be visible at scale h and let P, P ′ ∈ LN differ only
at coordinate j and f(P) 6= f(P ′). One easily see that there exist points P̃ and P̃ ′ in AA such that
P̃ |J = P |J and P̃ ′|J = P ′|J . Thus we get f(P̃) = f(P) 6= f(P ′) = f(P̃ ′). This means that the set As
such that j ∈ As is a change set. Repeating this argument for other variables visible at scale h we see
that the number of change sets in partition A equals µ. Thus A is maximal and each maximal partition
has µ change sets. From this the remaining statements follow.

For a maximal A let UA be the union of non-change sets in A. Consider the set

W =: [N] \
⋃

A maximal

UA.

Clearly every variable visible at scale h is in W . Suppose that j ∈ [N] is not visible at scale h. There
exists a partition A = (A1, . . . , A`+1) ∈ A such that each set As contains at most one variable visible at
scale h and there exists a set As0 which contains j but no variable visible at scale h. From Lemma 4.1
we infer that A is a maximal partition and that As0 is not a change set, so j ∈ UA. Thus W is the set
of change variables visible at scale h.

Once the set of change variables visible at the scale h have been identified we can (and for the sake
of completeness of exposition we will) repeat arguments from [7].

Our function f = IJ (g). Clearly W ⊂ J but we may be missing some variables, so first we add(if
needed) arbitrary coordinaes to W to get a sequence J ′ = (j′1, . . . , j

′
`) with 1 ≤ j′1 < j′2 < . . . , < j′` ≤ N .

5

We fix a partition A ∈ A such that each Aj ∈ A contains at most one coordinate from J ′. We will
assume (by property (iv) of operators (Ah) in our underlying approximation scheme this will not change

the function f̂ we are going to define) that j′i ∈ Ai for i = 1, . . . , `, so s = `+1. The function f |P(A, `+1)
we naturally identify with a function on L` and we define

ĝ = Ah(f |P(A, `+ 1)) ∈ C([0, 1]`).

Now we define f̂ ∈ C([0, 1]N) as

f̂(x1, . . . , xN) = IJ ′(ĝ)(x1, . . . , xN) = ĝ(xj′1 , . . . , xj′`). (4.3)

Now we are ready to state the main result of this section

Theorem 4.2. If f = IJ (g) with g ∈ As, then the function f̂ defined in (4.3) satisfies

‖f − f̂‖[0,1]N ≤ |g|Ashs. (4.4)

To define f̂ we use ≤ (`+ 1)(L+ 1)`#A points chosen non-adaptively.

Proof. The number of points was already calculated. To prove tha bound (4.4) we define S = Ah(g) and
write

f − f̂ = (IJ (g)− IJ (S)) + (IJ (S)− IJ ′(ĝ)) . (4.5)

The first term on the right side satisfies

‖IJ (g)− IJ (S)‖[0,1]N = ‖g −Ah(g)‖[0,1]` ≤ |g|Ashs. (4.6)

From properties of operators (Ah) and the fact that both J and J ′ contain the set W of all coordinates
visible at scale h we see that IJ (S) = IJ ′(ĝ), so the second term on the right side of (4.5) is identically
zero.

If we use separating sets of partitions given in (2.1) we get

Corollary 4.3. If f = IJ (g) with g ∈ As, then the function f̂ defined in (4.3) satisfies

‖f − f̂‖[0,1]N ≤ |g|Ashs. (4.7)

To define f̂ we use ≤ 2(`+ 1)2e`(L+ 1)` lnN point values chosen non-adaptively.

5 Approximate case

In this section we assume that we are given a function f ∈ C([0, 1]N) such that

‖f − IJ (g)‖[0,1]N ≤ ε

for certain sequence J , function g ∈ As and ε ≥ 0. We do not know any of those. As in the previous
section the argument splits into two part. First combinatorically we identify a good set of coordinates
(which may be different from J) and then prove the approximation estimate.

We switch notation somewhat and assume that f ∈ C([0, 1]N) is a function of the form f = IJ (g)+η.
To simplify the notation we put IJ (g) =: g̃ so g̃ depends only on variables from a set B ⊂ [N] with
#B = ` and ‖η‖LN ≤ ‖η‖[0,1]N ≤ ε.

We define the set B of base points as any subset of LN with the Determining property.
For a set A ⊂ [N], #A = ` and x ∈ LN and φ a function on LN (or on [0, 1]N) we define

α(φ,A, x) = max{φ(P) : P ∈ B and P |A = x|A}
β(φ,A, x) = min{φ(P) : P ∈ B and P |A = x|A}.

6

We define

hA(x) =
α(f,A, x) + β(f,A, x)

2
. (5.1)

Clearly each hA is a function on LN which depends only on variables from A.
We define set A0 as argminA ‖f − hA‖B. From the very definition ‖f − hA0‖B ≤ ‖f − hB‖B.
Note that

α(f,A, x) = max{g̃(P) + η(P) : P ∈ B and P |A = x|A}
≤ ε+ max{g̃(P) : P ∈ B and P |A = x|A}
= ε+ α(g̃, A, x)

Analogously we have

α(f,A, x) ≥ α(g̃, A, x)− ε
β(f,A, x) ≤ β(g̃, A, x) + ε

β(f,A, x) ≥ β(g̃, A, x)− ε

For simplicity of notation we put h := hA0 . Now we see that

‖f − h‖B ≤ ‖f − hB‖B ≤
1

2
(‖f − α(f,B, ·)‖B + ‖f − β(f,B, ·)‖B)

≤ ε+
1

2
(‖g̃ − α(f,B, ·)‖B + ‖g̃ − β(f,B, ·)‖B)

≤ 2ε+
1

2
(‖g̃ − α(g̃, B, ·)‖B + ‖g̃ − β(g̃, B, ·)‖B) .

But for P̃ ∈ B we have

α(g̃, B, P̃) = max{g̃(P) : P ∈ B and P̃ |B = P |B} = g̃(P̃)

and
β(g̃, B, P̃) = min{g̃(P) : P ∈ B and P̃ |B = P |B} = g̃(P̃)

so we get ‖f − h‖B ≤ 2ε which gives ‖g̃ − h‖B ≤ 3ε.
For a set V ⊂ [N] we define

osc(V) = max{|g̃(P)− g̃(P ′)| : P, P ′ ∈ LN and P |([N] \ V) = P ′|([N] \ V)}.

Proposition 5.1. We have osc(B \A0) ≤ 6ε.

Proof: If osc(B \ A0) > 6ε we can fix P, P ′ ∈ LN such that P and P ′ differ only on B \ A0 and
6ε < |g̃(P) − g̃(P ′)|. Since #B,#A0 ≤ ` we fix Q,Q′ ∈ B such that Q|B = P |B and Q′|B = P ′|B and
Q|A0 \B = Q′|A0 \B. Note that Q|A0 = Q′|A0. Now we have

6ε < |g̃(P)− g̃(P ′)| = |g̃(Q)− g̃(Q′)|
≤ |h(Q)− h(Q′)|+ 6ε = 6ε

This contradiction completes the proof.

Remark 5.2. The algorithm to identify A0 described above is not very efficient. It requires to search
through all ` element subsets of [N] which is very time consuming.

7

Now that we have A0 we follow ideas from [7]. We fix a subset V ⊂ B such that for each x ∈ LA0

there exists unique vx ∈ V such that vx|A0 = x. There may be many such V’s but our arguments works
for any of them. For a function φ ∈ C([0, 1]N) we define an operator R by the formula R(φ)(x) = φ(vx)
for x ∈ LA0 . We fix a sequence J ′ = (j′1, . . . , j

′
`) such that {j′1, . . . , j′`} = A0 i.e. this sequence identifies

A0 with [`]. Using this identification we treat R as a linear operator from C([0, 1]N) into C(L[`]) and
define

f̂ = IJ ′AhR(f). (5.2)

Now we are ready to formulate the main result of this note.

Theorem 5.3. Let f̂ be defined in (5.2). We have

‖f − f̂‖[0,1]N ≤ (13C0 + 1)ε+ |g|As (5.3)

If we use the set B defined in (2.3) then the definition of f̂ uses ≤ 2
(
2`
`

)
`e`(L + 1)` lnN point values

chosen non-adaptively.

Proof. Clearly f̂ = IJ ′AhR(g̃) + IJ ′AhR(η) and each of those functions depends on variables from A0.
We obtain

‖f − f̂‖[0,1]N = ‖g̃ + η − IJ ′AhR(g̃)− IJ ′AhR(η)‖[0,1]N
≤ ‖g̃ − IJ ′AhR(g̃)‖[0,1]N + ‖η‖[0,1]N + ‖IJ ′AhR(η)‖[0,1]N
≤ ‖g̃ − IJ ′AhR(g̃)‖[0,1]N + (C0 + 1)ε

Now let us recall that we also have a sequence J which identifies [`] with B. From property (iv)
of our approximation scheme we may assume that for ν = #A0 ∩ B we have js = j′s for s ≤ ν and
A0 ∩ B = {j1, . . . , jµ}. Note that Rg̃ is a function on L` and Rg̃ = g|L`. Now we define g1(x) =
g(x1, . . . , xν , 0, . . . , 0) for x ∈ L`. From Proposition 5.1 we infer that ‖g − g1‖L` ≤ 6ε. Now we define
Φ = IJAhg1. Since g1 depends on coordinates 1, . . . , ν we see that

Φ = IJAhg1 = IJ ′Ahg1 (5.4)

and depends only on coordinates from B ∩A0. If we put ζ = g − g1 we get

‖g̃ − Φ‖[0,1]N = ‖IJ g − IJAhg1‖[0,1]N = ‖IJ g − IJAhg + IJAhζ‖[0,1]N (5.5)

≤ ‖g −Ahg‖[0,1]` + ‖Ahζ‖[0,1]` ≤ |g|Ashs + C0‖ζ‖L` (5.6)

≤ |g|Ashs + 6C0ε (5.7)

Using (5.4) we obtain

‖Φ− IJ ′AhR(g̃)‖[0,1]N = ‖Ah(ζ)‖[0,1]` ≤ 6C0ε (5.8)

So

‖g̃ − IJ ′AhR(g̃)‖[0,1]N ≤ ‖g̃ − Φ‖[0,1]N + ‖Φ− IJ ′AhR(g̃)‖[0,1]N (5.9)

≤ |g|Ashs + 12C0ε (5.10)

which proves the theorem.

6 Notes and remarks

In [7] and in this note we assume that our function f depends on some of the variables xj . However in
practical application we may not know the correct variables. In a recent preprint [5] authors study the
case of ridge functions. Those are functions f(x1, . . . , xN) = g(〈b,x〉) for some function of one variable
g. Thus f is essentially a function of one variable but this variable is not one of the coordinate variables.

8

The basic problem left open in our study is the construction of numerically feasible algorithm which
uses CL` lnN point values and produces the approximation error ≤ C(ε+ |g|As).

Another problem is the lower estimate of the number of points needed in various situations. Let us
concentrate on the exact case and let us assume that we consider Lipschitz functions and our operators
are interpolation operators. If we want an estimate like (4.7) then we easily see that even for fixed
coordinates we need ∼ (L + 1)` point values. The factor C(`) lnN is the price we pay to find the right
coordinates. However we do not know if it is the right factor. Comparing (2.1) and (2.2) we see that we
use the best possible set of separating partitions. However it is possible that there is a better construction
of base points. Since it is plausible that we always need something like `-projection set, this raises the
question of a lower estimate for the cardinality of an `-projection set in LN . We also do not know lower
estimates for the cardinality of sets with Determining property. Let me also point out that we do not
know if the optimal number of point values in the adaptive and non-adaptive situation is the same.

References

[1] Ashok K. Chandra, Lawrence T. Kou, George Markovsky, Shmuel Zaks On sets of Boolean n-vectors
with all k-projections surjective, Acta Informatica 20 (1983) 103-111

[2] M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representa-
tion. Neural Computation , 15(2003),1373–1396.

[3] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measure-
ments, Comm. Pure and Appl. Math., 59(2006), 1207–1223.

[4] A. Cohen, W. Dahmen and R. DeVore, Compressed sensing and best k-term approximation, J.Amer.
Math. Soc. 22(1), 211-231 (2009),

[5] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard, Capturing Ridge Functions
in High Dimensions from Point Queries, preprint.

[6] Coifman, R.R., M. Maggioni, Diffusion wavelets, Appl. Comp. Harm. Anal., 21(1), (2006), 53-94.

[7] Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk Approximation of Functions of Few
Variables in High Dimensions, Constructive Approximation, to appear

[8] D. Donoho, Compressed Sensing, IEEE Trans. Information Theory, 52(2006), 1289–1306.

[9] M.Fredman and J.Komlos On the size of separating systems and families of perfect hash functions
SIAM J. Alg. Disc. Meth. 5 (1984), 61–68

[10] L. Gargano, J. Körner, U. Vaccaro, Sperner capacities Graphs Combin. 9 (1993), no. 1, 31–46.

[11] Eitan Greenshtein, Best subset selection, persistence in high-dimensional statistical learning and
optimization under `1 constraint, Ann. Stat., 34 (2006), 2367–2386.

[12] M. Kolountzakis, E. Markakis and A. Mehta, Learning Symmetric k-juntas in time no(k), Proceedings
of ”Interface between Harmonic Analysis and Number Theory” (2005)

[13] J. Körner and K.Marton New bounds for Perfect Hashing via Information Theory, Europ. J. Com-
binatorics 9 (1988), 523–530

[14] Daniel J. Kleitman, Joel Spencer, Families of k-independent sets. Discrete Math. 6 (1973), 255–262.

[15] E. Mossel, R. O’Donnell and R. Servedio Learning Juntas, Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC) San-Diego (2003), 206–212

[16] E. Novak, On the power of adaption, J. Complexity, 12 (1996), 199237

[17] E. Novak and H. Woźniakowski, Tractability of Multivariate Problems vol. I: Linear Infor-
mation, European Math. Soc. 2008

9

[18] Todor, R. A., C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems
with stochastic coefficients, ETH Report, 2007.

[19] G. W. Wasilkowski, H. Woźniakowski, Finite-order weights imply tractability of linear multivariate
problems, J. Approximation, 130, (2004) 57-77

10

