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Abstract '
Let X be a Banach space with a basis. We prove that X is reflexive if and only
if every power-bounded linear operator 1" satisfies Browder’s equality

{a:eX: s%pHiT’fo < oo} —(I-T)X

We then obtain that X (with a basis) is reflexive if and only if every strongly
continuous bounded semi-group {7; : ¢t > 0} with generator A satisfies

S
AX ={re X: supH/ TtxdtH < o0}
s>0 0
The range (I —T)X (respectively, AX for continuous time) is the space of x € X
for which Poisson’s equation (I — T)y = = (Ay = z in continuous time) has a
solution y € X; the above equalities for the ranges express sufficent (and obviously
necessary) conditions for solvability of Poisson’s equation.

1. INTRODUCTION

Let X be a (real or complex) Banach space. Poisson’s equation (which was
originally for the Laplacian in certain function spaces) has been abstracted to solving
the equation Ay = z for a given x € X, where A is the infinitesimal generator
of a strongly continuous one-parameter bounded semi-group of linear operators
{T; : t >0} (see [9]).

In "discrete time”, Poisson’s equation for a power-bounded linear operator T is
the solution of (I — T)y = x for a given x € X. In ergodic theory, elements of
(I —T)X are called coboundaries, and it is of interest to find conditions for = to be
a coboundary, i.e. for the solvability of Poisson’s equation.

Obviously, since |[£ 7" T*z|| — 0 if and only if z € (I —T)X (e.g. [8]), for
any power-bounded 7" on X we have

(1-1)x < {re X | Y1 < oo} cT-TIX
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It was proved by F. Browder [2] (and rediscovered in [3]) that if X is reflexive, then
for every T power-bounded on X we have

(1) (I—T)X:{xeX: sup

)iT’“xH < oo}

Browder’s equality (1) means that a solution y to Poisson’s equation (I — T)y = x
exists if (and only if) sup, || >p_, T*z|| < occ.

In this paper we prove that if X is a Banach space with a basis such that (1)
holds for every power-bounded T" on X, then X is reflexive. The continuous time
analogue of this result is then deduced in §4.

A bounded linear operator 7" on a (real or complex) Banach space X is called
mean ergodic if

1 n
E(T)z = lim — Y T* ists Vo e X.
(T)z nl_)rgon; xr exists Vz
The general mean ergodic theorem, proved (independently) by Lorch, by Kakutani
and by Yosida, says that if X is a reflexive Banach space, then every power-bounded
linear operator 7' is mean ergodic (see [8]). In [5] we proved that if X is a Banach

space with a basis, then mean ergodicity of all power-bounded operators implies
reflexivity of X.

For T power-bounded, mean ergodicity is equivalent to the ergodic decomposition
X =F(T)® (I —T)X, where F(T) is the space of fixed points of T'. In [11] it was
shown that if (I — T)X is closed (without assuming mean ergodicity), then T is

mean ergodic, and H% Soho TF— E(T)H — 0 (i.e. T is uniformly ergodic).

In the sequel we denote S(T') := {x € X : sup, H > orey T’%H < oo}. It was

shown in [4] that S(T') is closed if and only if (I —7") X is closed, which is equivalent
to uniform ergodicity of T. If X is infinite-dimensional and has a basis, then by [5,
Corollary 3] it has a power-bounded 7" which is not uniformly ergodic, so in general
S(T) is not closed.

Browder’s equality (1) was proved in [12] for every contraction of Li(p) (and
in [1] for certain power-bounded operators of L;), so this equality in general does
not imply mean ergodicity. This result of [12] also shows that having (1) for every
contraction is not sufficient to obtain reflexivity; see [6] for an example of a non-
reflexive X with a basis and separable dual, such that all contractions of X and all
contractions of X* are mean ergodic and satisfy (1).

2. PRELIMINARY RESULTS

Although our first result follows from our main theorem, it follows also from [5],
and its proof leads to some conditions for mean ergodicity.



Theorem 2.1. The following are equivalent for a Banach space X :
(i) X is reflexive.
(i) every power-bounded operator T' defined on a closed subspace Y C X satisfies

(2) ([—T)Y:{er:s%szn:TkyH<oo}
k=1

(#ii) every mean ergodic power-bounded operator T defined on a closed subspace
Y C X satisfies (2).

Proof. Assume first that X is reflexive. Then any closed subspace Y is reflexive,
and for T power-bounded on a reflexive Banach space Y the equality (2) follows
from [2].

Clearly (ii) implies (iii).

Assume now that X is not reflexive. By the ergodic characterization of [5],

there exists a closed subspace Z and a power-bounded operator S on Z which
is not mean ergodic. Take z € Z such that %2221 Sk~ does not converge, and

put yo := (I —S)z. Define Y = (I — 5)Z; then Y is S-invariant, and we put
T := Syy. Clearly sup, || > T*yo|| < oo, which yields ||+ >}, T*yo|| — 0. By
the definitions ||+ >/ T*y|| = 0 forany y € Y, s0 (I = T)Y =Y.

If T (defined on Y') satisfies (2), then there exists y; € Y with yo = (I — T)y;
We then have (I — S)(z —y1) = (I — S)z — (I —T)y, = 0, which yields

z—1y = ZS Z—11) ZSkz——ZTkyl

Since ||+ 370 T y|| — 0, the above yields = > S*z — z —y;, contradicting the
choice of z. Hence the mean ergodic operator 7" on Y does not satisfy (2). 0

For any power-bounded T on a Banach space X we have
3 (U-TT-TXc(-T)XcC {xGX: supHZTka <oo}
" k=1

Equality in the second inclusion does not imply mean ergodicity — equality holds for
every contraction 7" on Ly, even not mean ergodic [12]. The operator T' constructed
in the proof of Theorem 2.1 is mean ergodic, but there is no equality in the second
inclusion above.

Proposition 2.2. A power-bounded operator T on a Banach space X is mean
ergodic if (and only if) (I —T)I —-T)X =(I —T)X.

Proof. It T is mean ergodic, then X = F(T)® (I —T)X, and the condition follows.



Assume that T is not mean ergodic. We apply the proof of Theorem 2.1 with
Z = X, in which case Y = (I — T') X, and obtain yo whichisin (/-T)X C {y € Y :
sup,, | Yor_, T*y|| < oo} but is notin (I — T)Y, hence (I —T)Y # (I —T)X. O

Theorem 2.3. Let X be a Banach space with a basis. X 1is reflexive if and only if
every power-bounded operator T on X satisfies

(4) {x € X : sup ’iT%H < oo} —(I-TYT-T)X

Proof. If X is reflexive, then every power-bounded 7' is mean ergodic, so we have
(I-T)I—-T)X =(I —T)X, and (4) holds by applying (1) to 7.

Assume now that a power-bounded T on X satisfies (4). Then by (3) we have
(I -T)I-T)X = (I —T)X, and thus T is mean ergodic by Proposition 2.2. If
every power-bounded T satisifes (4), then X is reflexive by the characterization in
[5] for Banach spaces with a basis. O

Theorem 2.4. Let T be power-bounded on a Banach space X. If (I —T)X is
reflexive, then T is mean ergodic, and Browder’s equality (1) holds.

Proof. Since Y := (I —T)X is reflexive and T-invariant, by [2] we have {y €
Y @ sup, | Yr_ T*y|| < oo} = (I — T)Y. If T is not mean ergodic, the proof of
Theorem 2.1 with Z = X yields (I —T)Y # {y € Y :sup, || >1_, T*y| < oo}, a
contradiction. The mean ergodicity of T" yields that X = F(T) @ Y, and thus

2] <oc}
k=1

Since sup,, || >_p_; T*z|| < oo implies z € Y, (1) holds and the theorem is proved.
0J

(I—T)X:(I—T)Y:{er: sup

Remark. Reflexivity of (I — T) X is far from being necessary for mean ergodicity
of T.

3. THE MAIN RESULT

In view of (3), equality (4) implies (1), and our main result below improves
Theorem 2.3. It provides an improvement of Theorem 2.1 when X has a basis.

Theorem 3.1. The following are equivalent for a (separable) Banach space X with
a basis:

(i) X is reflexive.

(i) every power-bounded T on X satisfies Browder’s equality (1).

(iii) every mean ergodic power-bounded T on X satisfies (1).
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When X is reflexive, all power-bounded operators 7" satisfy (1) by [2], so we have
to show only (iii) implies (i).

It was proved in [4, Theorem 2.3 that a power-bounded operator 7" in a Banach
space X satisfies (1) if and only if (I —7)X is an F,-set in X. To prove the theorem,
we follow the strategy of [5]. If X is non-reflexive and has a basis, then by [13] it
has a non-shrinking basis. Therefore Theorem 3.1 is a consequence of the following.

Theorem 3.2. Let X be a Banach space having a non-shrinking finite-dimensional
Schauder decomposition. Then there exists a power-bounded mean ergodic linear
operator T such that (I —T)X is not an F,-set.

The first step is the following lemma of [5].

Lemma 3.3. Let X be a Banach space with a non-shrinking Schauder decompo-
sition. Then X has a Schauder decomposition X = Y, X with the following
property: there exist a functional h € X* and a sequence {ey} such that for every
k> 1 we have e € Xi, |lex]| <1 and h(ey) = 1.

Furthermore, if the components of the original non-shrinking decomposition are
finite-dimensional, so are all the Xj.

The last part of the lemma follows from the construction in [5] — each X} is a
finite sum of components of the original decomposition.

As noted at the beginning of the proof of [5, Theorem 1], we can change the
norm to an equivalent one so that in the decomposition obtained in the above
lemma the coordinate projections @ : X — X} and the partial sums projections
P X — Zle X (defined respectively by Qx(>°72, 7;) = xp and P, = > 27| Q)

=1
have norm 1.

Lemma 3.4. Let X =), X be the Schauder decomposition, with coordinate pro-
jections Qy, obtained in lemma 3.3, let eg = 0, and put u,, = e, —e,_1 forn > 1.
For k > 1 define Ey, = span{u} and Eo,_y = X (\kerh. Then X =" E,, is a
Schauder decomposition of X, with coordinate projections Q,, given by
Qar1 = RiQp, where Ry, : Xy, — By, is defined by Rpxy = 1 — h(wg)ex.
Qaorr = (h — Zf;é Q;h)(w)u, where Qo = 0.

Proof. For x € X we have © — h(x)e, € FEor_1, and Zle u; = e,. Hence
S By =Yy X, and span{U,, E,,} is dense in X.

We first show that each (), as defined is a projection onto FE,, which vanishes on
E) for [ #m.

It is easily checked that Ry is a projection of X onto FEs_1, for any & > 1, so
RiQuRyQr = RipRiQr = RpQp, and thus Qq;_1 is a projection onto Ey,_q. Since
Qka = {O} for j 7é k‘, we have QQk_lEQj_l = {O} for j 7é k.

Since u; € X;_1 @ X, we have QyFy = {0} when k <l —1ork >1. Forl=F
we have Qru; = e and RyQru; = Rier = 0 since h(eg) = 1. For [ = k + 1 we have
Qkul = —€L and Rkaul = 0. Thus Q2k;—1Em = {0} for m 7£ 2k — 1.



We now look at Qo1,. By (ieﬁnition it takes X into Ey, so to show it is a projection
it is enough to check that Qopur = ug. We compute

QZkuk = (h(uk) - Z h(quk))uk =

(h(@k) — h(ek,l) — h(Qk,luk))uk = (h(@k) - h(@kfl) + h(ek,l))uk = h(ek)uk = Uk.
For x € Ey_1 we have h(z) =0, and Q;z =0 for j # [, h(Q,x) = h(x) = 0. Hence
QarEar—1 = {0} - -
For k = 1 we have Qex = h(z)u; = h(x)e; so for [ > 1 we obtain Qu; =
h(u;)u; = 0. For k > 1 and [ # k we have
k—1 -1
Qarw = (h(w) — Z Q) ue = (h(e)) — hei—1) — Y [h(Qjer) — h(Qje1—1])up.

j=1 j=1

e

<
I

This is 0 for [ > k since in the sum all terms are 0. For [ < k — 1 we have in the
sum only h(e;) — h(e;—1) =0, so Qapuy = 0 for | # k.

We thus have that each @Q,, is a projection onto E,, with Q,,,E; = {0} for j # m.
This yields also that E,, N E; = {0} for j # m.

Claim: Put P, = 377 | Q;. Then sup, || P, < co.
We denote P, = Z?Zl Q;. Since {X,,} is a Schauder decomposition of X, we have
sup,, || P.|| < oo.
Fix n and let m > n. Using Q;z = R;Q;x + h(Q;x)e;, for x € Y 1" X, we
obtain
k-1

Py = ZQJW =Y RQur+ ) (ha) = ) h(Qx))(ex — ex1) =

= 1=

n—1

Z RiQrx + i: h(Qjz)e; + (h(x) — h(ij))en =
k=1 =0 -

<
o

Z Qrr+ (h(x)—z h(Q;z))e, = an—i—(h—z Qih)(x))en = Poa4(h—Pih)(z)e,.
k=1 §=0 J=0

Since [|e, || = 1, we obtain || Poyx|| < [|Py|- (||| + ([ = Pi|l-[[2[]-]|[l, s0 sup,, || Pan|l <
sup, | Pl + 14111+ sup, [| 24 ])-
We now have Py, 1 = P, + (2,11, so the above yields

p2n+1 = P+ (h— Pyh)(2)en + Ryp1Qniaw

But || Ry 1@zl < [|Quiaz|| + [|Al - |Qns1z]l, and sup, [[Qn]] < 00, so we obtain
sup,, || Pans1|| < oo, and the claim is proved.

Since lim P,z = = on a dense subset, the claim yields that P,z — z on all of X
and >~ | E,, is a Schauder decomposition. U
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Proposition 3.5. Let X = >, X be a Schauder decomposition of X with coor-
dinate projections Q. For a sequence a := {aj}]‘?‘;l with a; > 0 for j > 1 and
Z] (a; =1 put Ay = 2521 aj. Then for every x € X the series > -, ApQrx
converges in norm, and the operator T,x := > ;- | AQrx is power-bounded on X .

Proof. The proposition follows from the computations on pages 150-151 of [5] (with
h = 0). In these computations it is assumed that the coordinate projections Q)
and the partial sums P, = Z?Zl (), all have norm 1 (and then sup, ||77| < 2); the
assumption is achieved by a change to an equivalent norm. 0

Proof of Theorem 3.2: Let X = Y .2 Ej be the Schauder decomposition of
X obtained in Lemma 3.4 from the non-shrinking Schauder decomposition X =
>, X with finite-dimensional components. By the definition, all the £}, are finite-
dimensional, and let Qj, be the coordinate projection on Ej,.

Choose a = {a;}32, with a; > 0 and Z;‘;l a; = 1, such that the tails by, =
Z] ® 1 @5 satisfy D00 by < oo (e.g. a; = -), and put Tz = T,x = > 10 | ApQp.
By the proposition above, T' is power- bounded. By the definitions (I — T)z =
> b Qmz, so I — T is a compact operator since E,, are finite-dimensional.

We assert that (I —T)X is not an F,-set. We prove this by contradiction — we
assume that (I —7)X is an F,-set.

By the construction in Lemma 3.4, the sequence {3} ", w;},>1 is bounded, so
compactness of I — 7" implies that there is a subsequence {n,} with (I —T)e,, =
(I —=T)> 7, u;) — 2. Since (I —T)X is an F,, by [4, Theorem 2.3] the unit ball
U of X satisfies (I —T)U C (I —T)X, s0 z € (I —T)X. Let 2o € X satisfy
(I —T)xg= 2.

Claim: xo =Y 0| o,

The claim means that Qq;_12¢ = 0 for every k > 1. Fix k and denote m = 2k — 1.
If Qxo # 0, then there exists f € X* with

Qrf (0) = f(Qmao) = |Qmao|| > 0.
Since (I =T)*Q;,f = Z]Oil bj@;@:;lf = b,,Q%, f, we obtain Q*, f = i([_T)*Qsz’

SO

|Quroll = @ F () = (1~ T @ f(w0) = @i (I = T)o) = Qi) =

(@uh)(Jim (T =T) Y w) = 5= lim (7 =)' @)Y ) =

contradicting the assumption Qo129 # 0. This proves the claim.



The sequence {u,} is obviously a basic sequence (basis for >, Ea; ), and by the
computation of Qo in Lemma 3.4, its biorthogonal sequence is u} = h— Z;:Ol Qih.
For z € Ey,—1 = Xj, Nker h we have h(z) = 0 and Q;z = 0 for j # k, so u)(z) =
h(z) — Z;:Ol h(Q;x) = 0 since the sum is 0 for n < k and h(Qxz) = h(x) = 0 for
n > k. By the definition of 7" we have

(I = T)ul(w) = (T~ T)a meme

b2nU2(Q2n$) + Z b2k—1“;(©2k—1x) = b2nU;(Q2n$)'

k=1
We now use the claim and the biorthogonality to obtain
_ 1 1
ui(w0) = up(Qaro) = 7— (I — T) up(w0) = -—up((I = T)zo) =
bgk b2k
Lu;;(z) ! lim up((I=1T) Y u;) = lim up( N u;) =1
bak bog p—o0 pco

i=1 i=1
using the T-invariance of the E,,. But this is a contradiction, since uj(xg) =
h(xo — Z;:é Q;xo) — 0. Hence (I —T)X is not an F,-set.

Finally, since each component FE,, is T-invariant and finite-dimensional, 7" is mean
ergodic on each component, and therefore, since T is power-bounded on X, it is
mean ergodic. This proves Theorem 3.2.

4. ON POISSON’S EQUATION FOR ONE-PARAMETER SEMI-GROUPS

Originally, Poisson’s equation was for the Laplacian. This has been abstracted
to solving the equation Ay = x for a given x € X, where A is the infinitesimal
generator of a strongly continuous one-parameter bounded semi-group of linear
operators {7} : t > 0} (see [9]). We use Theorem 3.1 to obtain a characterization of
reflexivity by a condition for solvability of Poisson’s equation, for all infinitesimal
generators of bounded strongly continuous semi-groups.

Theorem 4.1. The following are equivalent for a Banach space X with a basis:
(i) X is reflexive.
(ii) Every strongly continuous bounded semi-group {T; : t > 0} with generator A
satisfies

(5) AX ={x e X : sup

s>0

/OS Tta:dtH < oo}

(#ii) Every uniformly continuous bounded semi-group {T; : t > 0} with generator
A satisfies (5).
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Proof. (i) implies (ii) by Theorem 2.6 of [9] (since the dual semi-group is also
strongly continuous, by reflexivity and [7, Theorem 10.6.5]).

Obviously (ii) implies (iii). We show that (iii) implies (i).

Assume that X (with a basis) is not reflexive. By Theorem 3.1 there exists a
power-bounded operator T such that (1) fails, which means that for some x ¢
(I = T)X we have sup,, || >_,_, T"z|| < co. We may assume, by changing the norm
to an equivalent one, that ||7]| = 1. For ¢t > 0 put S, = ™1, Then {S,} is
a uniformly continuous semigroup, with infinitesimal generator A = T — I. The
power series expansion yields

ISell = e[l < e~felT = 1.

Since sup,, || >r_; T*z|| < oo, Theorem 5 of [12] yields the existence of some y** €
X** such that (I — T*)y*™ = z; hence x € A™X™* (we have identified X with its
canonical image in X**). The uniform continuity of {S;} implies that of {S;*}, with
generator A** =T"* — I, and for s > 0 we obtain

| [ Satl) = [ srraat] = 1= si7y + v < 2070

Since x ¢ (I — T)X = AX, the contraction semi-group {S;} does not satisfy (5).
Hence X is reflexive when (iii) holds. O

Remark. The idea of using the semi-group e =? is due to Rainer Nagel, in the

context of characterizing reflexivity by mean ergodicity of all bounded semi-groups
[10].
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