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Abstract 1

Let X be a Banach space with a basis. We prove that X is reflexive if and only
if every power-bounded linear operator T satisfies Browder’s equality

{

x ∈ X : sup
n

∥

∥

∥

n
∑

k=1

T kx
∥

∥

∥
< ∞

}

= (I − T )X

We then obtain that X (with a basis) is reflexive if and only if every strongly
continuous bounded semi-group {Tt : t ≥ 0} with generator A satisfies

AX = {x ∈ X : sup
s>0

∥

∥

∥

∫ s

0

Ttx dt
∥

∥

∥
< ∞}

The range (I −T )X (respectively, AX for continuous time) is the space of x ∈ X
for which Poisson’s equation (I − T )y = x (Ay = x in continuous time) has a
solution y ∈ X; the above equalities for the ranges express sufficent (and obviously
necessary) conditions for solvability of Poisson’s equation.

1. Introduction

Let X be a (real or complex) Banach space. Poisson’s equation (which was
originally for the Laplacian in certain function spaces) has been abstracted to solving
the equation Ay = x for a given x ∈ X, where A is the infinitesimal generator
of a strongly continuous one-parameter bounded semi-group of linear operators
{Tt : t ≥ 0} (see [9]).

In ”discrete time”, Poisson’s equation for a power-bounded linear operator T is
the solution of (I − T )y = x for a given x ∈ X. In ergodic theory, elements of
(I − T )X are called coboundaries, and it is of interest to find conditions for x to be
a coboundary, i.e. for the solvability of Poisson’s equation.

Obviously, since ‖ 1
n

∑n

k=1 T kx‖ → 0 if and only if x ∈ (I − T )X (e.g. [8]), for
any power-bounded T on X we have

(I − T )X ⊂
{

x ∈ X : sup
n

∥

∥

∥

n
∑

k=1

T kx
∥

∥

∥
< ∞

}

⊂ (I − T )X
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It was proved by F. Browder [2] (and rediscovered in [3]) that if X is reflexive, then
for every T power-bounded on X we have

(1) (I − T )X =
{

x ∈ X : sup
n

∥

∥

∥

n
∑

k=1

T kx
∥

∥

∥
< ∞

}

Browder’s equality (1) means that a solution y to Poisson’s equation (I − T )y = x
exists if (and only if) supn

∥

∥

∑n

k=1 T kx
∥

∥ < ∞.

In this paper we prove that if X is a Banach space with a basis such that (1)
holds for every power-bounded T on X, then X is reflexive. The continuous time
analogue of this result is then deduced in §4.

A bounded linear operator T on a (real or complex) Banach space X is called
mean ergodic if

E(T )x := lim
n→∞

1

n

n
∑

k=1

T kx exists ∀x ∈ X.

The general mean ergodic theorem, proved (independently) by Lorch, by Kakutani
and by Yosida, says that if X is a reflexive Banach space, then every power-bounded
linear operator T is mean ergodic (see [8]). In [5] we proved that if X is a Banach
space with a basis, then mean ergodicity of all power-bounded operators implies
reflexivity of X.

For T power-bounded, mean ergodicity is equivalent to the ergodic decomposition
X = F (T )⊕ (I − T )X, where F (T ) is the space of fixed points of T . In [11] it was
shown that if (I − T )X is closed (without assuming mean ergodicity), then T is

mean ergodic, and
∥

∥

∥

1
n

∑n

k=1 T k − E(T )
∥

∥

∥
→ 0 (i.e. T is uniformly ergodic).

In the sequel we denote S(T ) :=
{

x ∈ X : supn

∥

∥

∥

∑n

k=1 T kx
∥

∥

∥
< ∞

}

. It was

shown in [4] that S(T ) is closed if and only if (I−T )X is closed, which is equivalent
to uniform ergodicity of T . If X is infinite-dimensional and has a basis, then by [5,
Corollary 3] it has a power-bounded T which is not uniformly ergodic, so in general
S(T ) is not closed.

Browder’s equality (1) was proved in [12] for every contraction of L1(µ) (and
in [1] for certain power-bounded operators of L1), so this equality in general does
not imply mean ergodicity. This result of [12] also shows that having (1) for every
contraction is not sufficient to obtain reflexivity; see [6] for an example of a non-
reflexive X with a basis and separable dual, such that all contractions of X and all
contractions of X∗ are mean ergodic and satisfy (1).

2. Preliminary results

Although our first result follows from our main theorem, it follows also from [5],
and its proof leads to some conditions for mean ergodicity.
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Theorem 2.1. The following are equivalent for a Banach space X:
(i) X is reflexive.
(ii) every power-bounded operator T defined on a closed subspace Y ⊂ X satisfies

(2) (I − T )Y =
{

y ∈ Y : sup
n

∥

∥

∥

n
∑

k=1

T ky
∥

∥

∥
< ∞

}

(iii) every mean ergodic power-bounded operator T defined on a closed subspace
Y ⊂ X satisfies (2).

Proof. Assume first that X is reflexive. Then any closed subspace Y is reflexive,
and for T power-bounded on a reflexive Banach space Y the equality (2) follows
from [2].

Clearly (ii) implies (iii).
Assume now that X is not reflexive. By the ergodic characterization of [5],

there exists a closed subspace Z and a power-bounded operator S on Z which
is not mean ergodic. Take z ∈ Z such that 1

n

∑n

k=1 Skz does not converge, and

put y0 := (I − S)z. Define Y = (I − S)Z; then Y is S-invariant, and we put
T := S|Y . Clearly supn ‖

∑n

k=1 T ky0‖ < ∞, which yields ‖ 1
n

∑n

k=1 T ky0‖ → 0. By

the definitions ‖ 1
n

∑n

k=1 T ky‖ → 0 for any y ∈ Y , so (I − T )Y = Y .

If T (defined on Y ) satisfies (2), then there exists y1 ∈ Y with y0 = (I − T )y1.
We then have (I − S)(z − y1) = (I − S)z − (I − T )y1 = 0, which yields

z − y1 =
1

n

n
∑

k=1

Sk(z − y1) =
1

n

n
∑

k=1

Skz −
1

n

n
∑

k=1

T ky1 .

Since ‖ 1
n

∑n

k=1 T ky1‖ → 0, the above yields 1
n

∑n

k=1 Skz → z−y1, contradicting the
choice of z. Hence the mean ergodic operator T on Y does not satisfy (2). �

For any power-bounded T on a Banach space X we have

(3) (I − T )(I − T )X ⊂ (I − T )X ⊂
{

x ∈ X : sup
n

∥

∥

∥

n
∑

k=1

T kx
∥

∥

∥
< ∞

}

Equality in the second inclusion does not imply mean ergodicity – equality holds for
every contraction T on L1, even not mean ergodic [12]. The operator T constructed
in the proof of Theorem 2.1 is mean ergodic, but there is no equality in the second
inclusion above.

Proposition 2.2. A power-bounded operator T on a Banach space X is mean
ergodic if (and only if) (I − T )(I − T )X = (I − T )X.

Proof. If T is mean ergodic, then X = F (T )⊕ (I − T )X, and the condition follows.
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Assume that T is not mean ergodic. We apply the proof of Theorem 2.1 with
Z = X, in which case Y = (I − T )X, and obtain y0 which is in (I−T )X ⊂ {y ∈ Y :
supn ‖

∑n

k=1 T ky‖ < ∞} but is not in (I − T )Y , hence (I − T )Y 6= (I − T )X. �

Theorem 2.3. Let X be a Banach space with a basis. X is reflexive if and only if
every power-bounded operator T on X satisfies

(4)
{

x ∈ X : sup
n

∥

∥

∥

n
∑

k=1

T kx
∥

∥

∥
< ∞

}

= (I − T )(I − T )X

Proof. If X is reflexive, then every power-bounded T is mean ergodic, so we have
(I − T )(I − T )X = (I − T )X, and (4) holds by applying (1) to T .

Assume now that a power-bounded T on X satisfies (4). Then by (3) we have

(I − T )(I − T )X = (I − T )X, and thus T is mean ergodic by Proposition 2.2. If
every power-bounded T satisifes (4), then X is reflexive by the characterization in
[5] for Banach spaces with a basis. �

Theorem 2.4. Let T be power-bounded on a Banach space X. If (I − T )X is
reflexive, then T is mean ergodic, and Browder’s equality (1) holds.

Proof. Since Y := (I − T )X is reflexive and T -invariant, by [2] we have {y ∈
Y : supn ‖

∑n

k=1 T ky‖ < ∞} = (I − T )Y. If T is not mean ergodic, the proof of
Theorem 2.1 with Z = X yields (I − T )Y 6= {y ∈ Y : supn ‖

∑n

k=1 T ky‖ < ∞}, a
contradiction. The mean ergodicity of T yields that X = F (T ) ⊕ Y , and thus

(I − T )X = (I − T )Y =
{

y ∈ Y : sup
n

∥

∥

∥

n
∑

k=1

T ky
∥

∥

∥
< ∞

}

Since supn ‖
∑n

k=1 T kx‖ < ∞ implies x ∈ Y , (1) holds and the theorem is proved.
�

Remark. Reflexivity of (I − T )X is far from being necessary for mean ergodicity
of T .

3. The main result

In view of (3), equality (4) implies (1), and our main result below improves
Theorem 2.3. It provides an improvement of Theorem 2.1 when X has a basis.

Theorem 3.1. The following are equivalent for a (separable) Banach space X with
a basis:

(i) X is reflexive.
(ii) every power-bounded T on X satisfies Browder’s equality (1).
(iii) every mean ergodic power-bounded T on X satisfies (1).
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When X is reflexive, all power-bounded operators T satisfy (1) by [2], so we have
to show only (iii) implies (i).

It was proved in [4, Theorem 2.3] that a power-bounded operator T in a Banach
space X satisfies (1) if and only if (I−T )X is an Fσ-set in X. To prove the theorem,
we follow the strategy of [5]. If X is non-reflexive and has a basis, then by [13] it
has a non-shrinking basis. Therefore Theorem 3.1 is a consequence of the following.

Theorem 3.2. Let X be a Banach space having a non-shrinking finite-dimensional
Schauder decomposition. Then there exists a power-bounded mean ergodic linear
operator T such that (I − T )X is not an Fσ-set.

The first step is the following lemma of [5].

Lemma 3.3. Let X be a Banach space with a non-shrinking Schauder decompo-
sition. Then X has a Schauder decomposition X =

∑

k
Xk with the following

property: there exist a functional h ∈ X∗ and a sequence {ek} such that for every
k ≥ 1 we have ek ∈ Xk, ‖ek‖ ≤ 1 and h(ek) = 1.

Furthermore, if the components of the original non-shrinking decomposition are
finite-dimensional, so are all the Xk.

The last part of the lemma follows from the construction in [5] – each Xk is a
finite sum of components of the original decomposition.

As noted at the beginning of the proof of [5, Theorem 1], we can change the
norm to an equivalent one so that in the decomposition obtained in the above
lemma the coordinate projections Qk : X −→ Xk and the partial sums projections
Pk : X −→

∑k

j=1 Xj (defined respectively by Qk(
∑∞

j=1 xj) = xk and Pk =
∑j

j=1 Qk)
have norm 1.

Lemma 3.4. Let X =
∑

k Xk be the Schauder decomposition, with coordinate pro-
jections Qk, obtained in lemma 3.3, let e0 = 0, and put un = en − en−1 for n ≥ 1.
For k ≥ 1 define E2k = span{uk} and E2k−1 = Xk

⋂

ker h. Then X =
∑

m Em is a
Schauder decomposition of X, with coordinate projections Q̄m given by

Q̄2k−1 = RkQk, where Rk : Xk −→ E2k−1 is defined by Rkxk = xk − h(xk)ek.

Q̄2kx = (h −
∑k−1

j=0 Q∗
jh)(x)uk, where Q0 = 0.

Proof. For x ∈ Xk we have x − h(x)ek ∈ E2k−1, and
∑k

j=1 uj = ek. Hence
∑2n

m=1 Em =
∑

k=1 Xk, and span{∪mEm} is dense in X.
We first show that each Q̄m as defined is a projection onto Em which vanishes on

El for l 6= m.

It is easily checked that Rk is a projection of Xk onto E2k−1, for any k ≥ 1, so
RkQkRkQk = RkRkQk = RkQk, and thus Q̄2k−1 is a projection onto E2k−1. Since
QkXj = {0} for j 6= k, we have Q̄2k−1E2j−1 = {0} for j 6= k.

Since ul ∈ Xl−1 ⊕ Xl, we have QkE2l = {0} when k < l − 1 or k > l. For l = k
we have Qkul = ek and RkQkul = Rkek = 0 since h(ek) = 1. For l = k + 1 we have
Qkul = −ek and RkQkul = 0. Thus Q̄2k−1Em = {0} for m 6= 2k − 1.
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We now look at Q̄2k. By definition it takes X into E2k, so to show it is a projection
it is enough to check that Q̄2kuk = uk. We compute

Q̄2kuk =
(

h(uk) −

k−1
∑

j=0

h(Qjuk)
)

uk =

(

h(ek) − h(ek−1) − h(Qk−1uk)
)

uk =
(

h(ek) − h(ek−1) + h(ek−1)
)

uk = h(ek)uk = uk.

For x ∈ E2l−1 we have h(x) = 0, and Qjx = 0 for j 6= l, h(Qlx) = h(x) = 0. Hence
Q̄2kE2l−1 = {0}.

For k = 1 we have Q̄2x = h(x)u1 = h(x)e1 so for l > 1 we obtain Q̄2ul =
h(ul)u1 = 0. For k > 1 and l 6= k we have

Q̄2kul =
(

h(ul) −

k−1
∑

j=1

h(Qjul)
)

uk =
(

h(el) − h(el−1) −

k−1
∑

j=1

[h(Qjel) − h(Qjel−1]
)

uk.

This is 0 for l > k since in the sum all terms are 0. For l ≤ k − 1 we have in the
sum only h(el) − h(el−1) = 0, so Q̄2kul = 0 for l 6= k.

We thus have that each Q̄m is a projection onto Em with Q̄mEj = {0} for j 6= m.
This yields also that Em ∩ Ej = {0} for j 6= m.

Claim: Put P̄n =
∑n

j=1 Q̄j . Then supn ‖P̄n‖ < ∞.

We denote Pn =
∑n

j=1 Qj . Since {Xn} is a Schauder decomposition of X, we have

supn ‖Pn‖ < ∞.
Fix n and let m > n. Using Qjx = RjQjx + h(Qjx)ej , for x ∈

∑m

k=1 Xk we
obtain

P̄2nx =
2n
∑

j=1

Q̄jx =
n

∑

k=1

RkQkx +
n

∑

k=1

(

h(x) −
k−1
∑

j=0

h(Qjx)
)

(ek − ek−1) =

n
∑

k=1

RkQkx +

n−1
∑

j=0

h(Qjx)ej +
(

h(x) −

n−1
∑

j=0

h(Qjx)
)

en =

n
∑

k=1

Qkx+
(

h(x)−
n

∑

j=0

h(Qjx)
)

en = Pnx+
(

h−
n

∑

j=0

Q∗
jh

)

(x)
)

en = Pnx+(h−P ∗
nh)(x)en.

Since ‖en‖ = 1, we obtain ‖P̄2nx‖ ≤ ‖Pn‖·‖x‖+‖I−P ∗
n‖·‖h‖·‖x‖, so supn ‖P̄2n‖ ≤

supn ‖Pn‖ + ‖h‖(1 + supn ‖Pn‖).

We now have P̄2n+1 = P̄2n + Q̄2n+1, so the above yields

P̄2n+1 = Pnx + (h − P ∗
nh)(x)en + Rn+1Qn+1x

But ‖Rn+1Qn+1x‖ ≤ ‖Qn+1x‖+ ‖h‖ · ‖Qn+1x‖, and supn ‖Qn‖ < ∞, so we obtain
supn ‖P̄2n+1‖ < ∞, and the claim is proved.

Since lim P̄mx = x on a dense subset, the claim yields that P̄mx → x on all of X
and

∑∞
m=1 Em is a Schauder decomposition. �
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Proposition 3.5. Let X =
∑

k Xk be a Schauder decomposition of X with coor-
dinate projections Qk. For a sequence a := {aj}

∞
j=1 with aj > 0 for j ≥ 1 and

∑∞
j=1 aj = 1 put Ak =

∑k

j=1 aj. Then for every x ∈ X the series
∑∞

k=1 AkQkx

converges in norm, and the operator Tax :=
∑∞

k=1 AkQkx is power-bounded on X.

Proof. The proposition follows from the computations on pages 150-151 of [5] (with
h = 0). In these computations it is assumed that the coordinate projections Qk

and the partial sums Pk =
∑k

j=1 Qj all have norm 1 (and then supn ‖T
n
a ‖ ≤ 2); the

assumption is achieved by a change to an equivalent norm. �

Proof of Theorem 3.2: Let X =
∑∞

k=1 Ek be the Schauder decomposition of
X obtained in Lemma 3.4 from the non-shrinking Schauder decomposition X =
∑

k Xk with finite-dimensional components. By the definition, all the Ek are finite-
dimensional, and let Q̄k be the coordinate projection on Ek.

Choose a = {aj}
∞
j=1 with aj > 0 and

∑∞
j=1 aj = 1, such that the tails bk =

∑∞
j=k+1 aj satisfy

∑∞
k=1 bk < ∞ (e.g. aj = 1

2j ), and put Tx = Tax =
∑∞

k=1 AkQ̄kx.

By the proposition above, T is power-bounded. By the definitions (I − T )x =
∑∞

m=1 bmQ̄mx, so I − T is a compact operator since Em are finite-dimensional.
We assert that (I − T )X is not an Fσ-set. We prove this by contradiction – we

assume that (I − T )X is an Fσ-set.
By the construction in Lemma 3.4, the sequence {

∑n

i=1 ui}n≥1 is bounded, so
compactness of I − T implies that there is a subsequence {np} with (I − T )enp

=
(I − T )(

∑np

i=1 ui) → z. Since (I − T )X is an Fσ, by [4, Theorem 2.3] the unit ball

U of X satisfies (I − T )U ⊂ (I − T )X, so z ∈ (I − T )X. Let x0 ∈ X satisfy
(I − T )x0 = z.

Claim: x0 =
∑∞

i=1 αiui

The claim means that Q̄2k−1x0 = 0 for every k ≥ 1. Fix k and denote m = 2k − 1.
If Q̄mx0 6= 0, then there exists f ∈ X∗ with

Q̄∗
mf(x0) = f(Q̄mx0) = ‖Q̄mx0‖ > 0.

Since (I −T )∗Q̄∗
mf =

∑∞
j=1 bjQ̄

∗
jQ̄

∗
mf = bmQ̄∗

mf , we obtain Q̄∗
mf = 1

bm
(I −T )∗Q̄∗

mf ,
so

‖Q̄mx0‖ = Q̄∗
mf(x0) =

1

bm

(I − T )∗Q̄∗
mf(x0) =

1

bm

Q̄∗
mf

(

(I − T )x0

)

=
1

bm

Q̄∗
mf(z) =

1

bm

(Q̄∗
mf)

(

lim
p→∞

(I − T )

np
∑

i=1

ui

)

=
1

bm

lim
p→∞

((I − T )∗Q̄∗
mf)(

np
∑

i=1

ui) =

lim
p→∞

Q̄∗
mf(

np
∑

i=1

ui) = lim
p→∞

f(Q2k−1

np
∑

i=1

ui) = 0

contradicting the assumption Q̄2k−1x0 6= 0. This proves the claim.
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The sequence {un} is obviously a basic sequence (basis for
∑

k≥1 E2k ), and by the

computation of Q̄2k in Lemma 3.4, its biorthogonal sequence is u∗
n = h−

∑n−1
j=0 Q∗

jh.

For x ∈ E2k−1 = Xk ∩ ker h we have h(x) = 0 and Qjx = 0 for j 6= k, so u∗
n(x) =

h(x) −
∑n−1

j=0 h(Qjx) = 0 since the sum is 0 for n ≤ k and h(Qkx) = h(x) = 0 for
n > k. By the definition of T we have

(I − T )∗u∗
n(x) = u∗

n

(

(I − T )x
)

= u∗
n(

∞
∑

m=1

bmQ̄mx) =

b2nu∗
n(Q̄2nx) +

∞
∑

k=1

b2k−1u
∗
n(Q̄2k−1x) = b2nu

∗
n(Q̄2nx).

We now use the claim and the biorthogonality to obtain

u∗
k(x0) = u∗

k(Q̄2kx0) =
1

b2k

(I − T )∗u∗
k(x0) =

1

b2k

u∗
k

(

(I − T )x0

)

=

1

b2k

u∗
k(z) =

1

b2k

lim
p→∞

u∗
k

(

(I − T )

np
∑

i=1

ui

)

= lim
p→∞

u∗
k

(

np
∑

i=1

ui

)

= 1

using the T -invariance of the Em. But this is a contradiction, since u∗
k(x0) =

h(x0 −
∑k−1

j=0 Qjx0) → 0. Hence (I − T )X is not an Fσ-set.
Finally, since each component Em is T -invariant and finite-dimensional, T is mean

ergodic on each component, and therefore, since T is power-bounded on X, it is
mean ergodic. This proves Theorem 3.2.

4. On Poisson’s equation for one-parameter semi-groups

Originally, Poisson’s equation was for the Laplacian. This has been abstracted
to solving the equation Ay = x for a given x ∈ X, where A is the infinitesimal
generator of a strongly continuous one-parameter bounded semi-group of linear
operators {Tt : t ≥ 0} (see [9]). We use Theorem 3.1 to obtain a characterization of
reflexivity by a condition for solvability of Poisson’s equation, for all infinitesimal
generators of bounded strongly continuous semi-groups.

Theorem 4.1. The following are equivalent for a Banach space X with a basis:
(i) X is reflexive.
(ii) Every strongly continuous bounded semi-group {Tt : t ≥ 0} with generator A

satisfies

(5) AX = {x ∈ X : sup
s>0

∥

∥

∥

∫ s

0

Ttx dt
∥

∥

∥
< ∞}

(iii) Every uniformly continuous bounded semi-group {Tt : t ≥ 0} with generator
A satisfies (5).
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Proof. (i) implies (ii) by Theorem 2.6 of [9] (since the dual semi-group is also
strongly continuous, by reflexivity and [7, Theorem 10.6.5]).

Obviously (ii) implies (iii). We show that (iii) implies (i).
Assume that X (with a basis) is not reflexive. By Theorem 3.1 there exists a

power-bounded operator T such that (1) fails, which means that for some x /∈
(I − T )X we have supn ‖

∑n

k=1 T kx‖ < ∞. We may assume, by changing the norm
to an equivalent one, that ‖T‖ = 1. For t ≥ 0 put St = et(T−I). Then {St} is
a uniformly continuous semigroup, with infinitesimal generator A = T − I. The
power series expansion yields

‖St‖ = e−t‖etT‖ ≤ e−tet‖T‖ = 1.

Since supn ‖
∑n

k=1 T kx‖ < ∞, Theorem 5 of [12] yields the existence of some y∗∗ ∈
X∗∗ such that (I − T ∗∗)y∗∗ = x; hence x ∈ A∗∗X∗∗ (we have identified X with its
canonical image in X∗∗). The uniform continuity of {St} implies that of {S∗∗

t }, with
generator A∗∗ = T ∗∗ − I, and for s > 0 we obtain

∥

∥

∫ s

0

Stx dt
∥

∥ =
∥

∥

∫ s

0

S∗∗
t x dt

∥

∥ = ‖ − S∗∗
s y∗∗ + y∗∗‖ ≤ 2‖y∗∗‖.

Since x /∈ (I − T )X = AX, the contraction semi-group {St} does not satisfy (5).
Hence X is reflexive when (iii) holds. �

Remark. The idea of using the semi-group et(T−I) is due to Rainer Nagel, in the
context of characterizing reflexivity by mean ergodicity of all bounded semi-groups
[10].
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