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Abstract

We construct on any quasi-reflexive of order 1 separable real Banach
space an equivalent norm, such that all contractions on the space and all
contractions on its dual are mean ergodic, thus answering negatively a
question of Louis Sucheston.

1 Introduction

A linear operator T on a (real or complex) Banach space X is called mean
ergodic if the limit

E(T )x := lim
n→∞

1
n

n∑
k=1

T kx exists ∀x ∈ X.

Mean ergodicity was shown by Von-Neumann (1931) for unitary operators on
Hilbert spaces, by Riesz (1937) for contractions on Hilbert spaces, and (indepen-
dently) by Lorch (1939), Kakutani (1938) and Yosida (1938) for power-bounded
operators on reflexive spaces. We refer the reader to [9] for proofs, discussion
and references. A natural question is whether reflexivity is necessary. In [6] the
authors proved that if every power-bounded operator on a Banach space with
a basis is mean ergodic, then the space must be reflexive; it is still not known
if the same holds without the existence of a basis. For additional references
related to this question see [6].

Sucheston [18] posed the following question: If every contraction in a Banach
space is mean ergodic, must the space be reflexive? In this paper we construct
an example which gives a negative answer to Sucheston’s question.
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2 Operators on quasi-reflexive spaces of order 1

Definition A Banach space X is quasi-reflexive of order 1 if dim X∗∗/X = 1,
where we always consider X ⊂ X∗∗ via the canonical isometric embedding. The
first example of such a space (over R, separable with a basis), and one of the
important ones, is the James space [7] (for more of its properties see [4]).

Throughout this note we consider Banach spaces over R.
For the sake of completeness we include the following result of [13, §2.2].

Proposition 1. Let X be quasi-reflexive of order 1. Then there exists a linear,
multiplicative functional q : L(X) → R of norm 1 such that ker q is exactly the
space of weakly compact operators from X into X.

Proof. For T : X → X let us consider T ∗∗ : X∗∗ → X∗∗. Since T ∗∗(X) ⊂ X

we see that it induces an operator T̃ ∗∗ : X∗∗/X → X∗∗/X. It is easy to
check that ‖T̃ ∗∗‖ ≤ ‖T ∗∗‖ = ‖T‖. Since X∗∗/X is one-dimensional, T̃ ∗∗ is a
multiplication by a number which we denote by q(T ). It is clear that the map
q is the desired norm 1 linear multiplicative functional. The kernel of q consists
of those operators T : X → X such that T ∗∗(X∗∗) ⊂ X, but this is exactly the
set of all weakly compact operators.

Now for T : X → X we write T = q(T )I+(T−q(T )I). Since q (T − q(T )I) =
0, by the proposition W := T − q(T )I is weakly compact.

If T : X → X is power-bounded we get

c ≥ ‖Tn‖ ≥ |q(Tn)| = |q(T )|n

for n = 1, 2, . . . so |q(T )| ≤ 1. Let us summarize this discussion with

Corollary 1. Every linear operator T on X quasi-reflexive of order 1 has a
unique decomposition as T = λI + W where λ ∈ R and W is weakly compact.
If T is power-bounded, then |λ| ≤ 1.

Proposition 2. Let X be quasi-reflexive of order 1. Suppose T = λI + W :
X → X is power-bounded, with λ 6= 1. Then both T and T ∗ are mean-ergodic.

Proof. For the space of fixed points of T , denoted by Fix (T ), we have that

Fix (T ) = {x ∈ X : λx + W (x) = x} = {x ∈ X : W (x) = (1− λ)x}

is an eigenspace corresponding to a non-zero eigenvalue of a weakly compact
operator, so it is a reflexive space.

Analogous arguments show that

Fix (T ∗∗) = {x∗∗ ∈ X∗∗ : W ∗∗(x∗∗) = (1− λ)x∗∗} .

Since W is weakly compact, we have W ∗∗(X∗∗) ⊂ X, which implies Fix (T ∗∗) =
Fix (T ). It is known that Fix (T ∗) always separates Fix (T ) (e.g. use [9, Theo-
rem 2.1.3, p. 73]), so in our case we get that Fix (T ∗) separates Fix (T ∗∗). By
Sine’s criterion [17], [9, p. 74], we obtain that T ∗ is mean-ergodic. But anal-
ogously Fix (T ∗∗) always separates Fix (T ∗), so in our case Fix (T ) separates
Fix (T ∗), and by Sine’s criterion T is mean-ergodic.
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Remark. It was shown in [6, Theorem 5] that for T power-bounded on a
quasi-reflexive space of order 1 we always have T or T ∗ mean ergodic, and if the
space has a basis there exists T power-bounded which is not mean ergodic; by
the previous proposition this T is of the form I + W with W weakly compact.

3 Renorming spaces with separable second dual

In this section X is a Banach space over R. We use the standard notations

SX = S(X,‖·‖) = {x ∈ X : ‖x‖ = 1‖} and BX = B(X,‖·‖) = {x ∈ X : ‖x‖ ≤ 1}

for the unit sphere and the closed unit ball of X, respectively.

Proposition 3. Let X be a non-reflexive Banach space with X∗∗ separable.
Then there exist an equivalent norm ‖|·‖| on X, a functional f0 ∈ S(X∗∗,‖|·‖|)\X,
and a functional F0 ∈ S(X∗∗∗,‖|·‖|) ∩X⊥ such that

(i) F0(f0) = 1 and F0(g) < 1 for any g ∈ B(X∗∗,‖|·‖|), g 6= f0.
(ii) If H ∈ S(X∗∗∗,‖|·‖|) and H(f0) = 1,
then H ∈ X⊥. Moreover, if there exists a Banach space Y such that X = Y ∗

(isometrically), then the norm ‖| · ‖| can be taken as a dual norm.

Proof. We prove first the case that X = Y ∗; we will then indicate how to modify
the proof for the non-dual case.

As usual we assume that Y ⊂ Y ∗∗ = X∗ and X = Y ∗ ⊂ Y ∗∗∗ = X∗∗, under
the canonical isometric embeddings.

Claim 1. For any y⊥ ∈ SY ⊥ ⊂ Y ∗∗∗, we have d(y⊥, Y ∗) ≥ 1/2. Proof of
Claim. For y∗ ∈ Y ∗ we have ‖y⊥−y∗‖ ≥ sup‖y‖≤1 |(y⊥−y∗)(y)| = ‖y∗‖. Hence
‖y⊥ − y∗‖ ≥ max{‖y⊥‖ − ‖y∗‖, ‖y∗‖} ≥ 1

2‖y
⊥‖ = 1

2 , which proves the claim.

We construct a new norm ‖| · ‖| in 2 steps. Pick a functional f ∈ SY ⊥ .
Clearly, f ∈ SX∗∗ \ X, and by Claim 1 d(f,X) ≥ 1/2. By the Hahn-Banach
theorem there is F ∈ SX∗∗∗ ∩X⊥ such that F (f) = d(f,X) ≥ 1/2. Next take
a sequence {xn} ⊂ SX such that w∗ − lim xn = f (in the w∗-topology of X∗∗).
Put

W = cl co{BX ∪ {±3xn}∞n=1}, W ∗∗ = w∗ − clW.

Since f ∈ Y ⊥ it follows that w∗− lim xn = 0 in w∗-topology defined on X by its
predual Y . Since BX is w∗-compact (in the w∗-topology defined on X by the
predual Y ), it easily follows that W is w∗-compact (indeed, since w∗−lim xn = 0,
it follows that A = cl co{±3xn} is w∗-closed, and hence W = co{A ∪ BX} is
w∗-compact, by [3, Lemma V.2.5]). By Milman’s theorem [12] (see [16, Prop.
1.5]),

extW ∗∗ ⊂ extBX∗∗ ∪ {±3xn}∞n=1 ∪ {±3f}. (1)

Since X∗∗ is separable, W ∗∗ is a weak-* compact convex set with extW ∗∗ sepa-
rable, so by [8],[5] (see also [16, p. 26]), we have that W ∗∗ = cl co{extW ∗∗} – the
norm closed convex hull (this can be deduced also from the Bessaga-Pe lczyński
theorem [2]). It follows that

supF (W ∗∗) = supF (extW ∗∗).
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Since ‖F‖ = 1 and F ∈ X⊥, by (1) we have supF (W ∗∗) = F (3f) > 1, and,
moreover, F (g) < F (3f) for any g ∈ W ∗∗, g 6= 3f.

Let {ui}∞i=1 ⊂ BX be a sequence dense in BX . Put

f0 = 3f, tn = 3xn, F0 =
1

F (3f)
F, K = cl co{±2−iui}∞i=1,

Tn = {λtn + x : x ∈ K, λ2 + ||x||2 ≤ 1}, n = 1, 2, ...,

T0 = {λf0 + x : x ∈ K, λ2 + ||x||2 ≤ 1},

Since K is symmetric, each Tn is symmetric, and we define

V = cl co{W ∪ ∪∞n=1Tn}, V ∗∗ = w∗ − clV.

Claim 2. V is w∗-closed in the w∗-topology on X defined by the predual Y.
Proof of Claim. Put A = w∗ − cl co ∪∞n=1 Tn. An easy consideration shows
that w∗ − cl ∪∞n=1 Tn = ∪∞n=1Tn ∪ K (recall that w∗ − lim tn = 0). Since A
is a weak-* compact convex set (in X = Y ∗), by Milman’s theorem extA ⊂
w∗ − cl ∪∞n=1 Tn = ∪∞n=1Tn ∪ K, so by [8],[5] A = cl co{∪∞n=1Tn ∪ K}. Since
K ⊂ BX ⊂ W , it follows that A ⊂ V . Finally, since also W is w∗-compact and
convex, we obtain (using [3, Lemma V.2.5])

V ⊂ w∗ − cl co{W ∪A} = co{W ∪A} ⊂ V,

hence V = w∗− cl co{W ∪A} is w∗-closed, which finishes the proof of Claim 2.

Since V is a bounded closed convex symmetric subset of X containing BX ,
it is easy to show that ‖|x‖| := inf{t > 0 : 1

t x ∈ V } defines an equivalent norm
on X with B(X,‖|·‖|) = V. From Claim 2 we get that ‖| · ‖| is a dual norm (see,
e.g., [19]). Next, by Milman’s theorem (in the weak-* topology of X∗∗)

extV ∗∗ ⊂ W ∗∗ ∪ ∪∞n=0Tn,

and since V ∗∗ is weak-* compact convex, it is the norm-closed convex hull of
extV ∗∗ ([8],[5]), and by the choice of F0 (in particular, F0 ∈ X⊥), we have

supF0(V ∗∗) = sup F0(extV ∗∗) = sup F0(W ∗∗) = F0(f0) = 1.

Moreover, f0 is the only point in W ∗∗ ∪ ∪∞n=0Tn where F0 attains the value 1.
Indeed, for W ∗∗ it was already mentioned above, while for the set ∪∞n=0Tn it
easily follows from F0 ∈ X⊥. Finally assume that H ∈ X∗∗∗ satisfies H(f0) =

1 = max H(V ∗∗); we prove that H ∈ X⊥. Fix y ∈ K and put

D = {af0 + by : a2 + b2 ≤ 1}.

We show that D ⊂ T0 : For af0 + by ∈ D we have a2 + b2 ≤ 1. Since K ⊂ BX

is absolutely convex, y ∈ K and |b| ≤ 1 imply that x = by ∈ K, and ‖y‖ ≤ 1
yields a2 + ||x||2 ≤ a2 + b2 ≤ 1. Therefore af0 + by ∈ T0 ⊂ V ∗∗. Thus we have

1 = H(f0) = max H(D).
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Let H(y) = γ. We then have (
√

1 + γ2)−1(f0 + γy) ∈ D and

H
( 1√

1 + γ2
f0 +

γ√
1 + γ2

y
)

=
1√

1 + γ2
+

γ2√
1 + γ2

=
√

1 + γ2 ≤ 1

so we must have H(y) = 0. Since y ∈ K is arbitrary and cl spanK = X, it
follows that H ∈ X⊥.

When X is not a dual space, we skip Claim 1 and start directly by taking
f ∈ SX∗∗ \ X with d(f,X) > 1/3, and then procced with the same proof,
ignoring (the now unnecessary) Claim 2.

Remark. Clearly, the condition X∗∗ is separable may be weakened. For
instance, the same proof works, using deeper results, if X∗ is separable and
does not contain `1 (use the remark at the end of [15], instead of [8],[5] or [2],
for expressing W ∗∗ and V ∗∗ as the norm-closed convex hull of their respective
extreme points).

Corollary 2. Let X be a separable quasi-reflexive of order 1 Banach space.
Then there exist an equivalent norm ‖|·‖| on X, a functional f0 ∈ S(X∗∗,‖|·‖|)\X,
and a functional F0 ∈ S(X∗∗∗,‖|·‖|) ∩X⊥, such that

(i) F0(f0) = 1 and F0(g) < 1 for any g ∈ B(X∗∗,‖|·‖|), g 6= f0.
(ii) F0 is the only functional in S(X∗∗∗,‖|·‖|) with F0(f0) = 1. Moreover, if

there exists a Banach space Y such that X = Y ∗ (isometrically), then the norm
‖| · ‖| can be taken as a dual norm.

Proof. For part (ii), note that X∗∗ = X⊕ [f0] by quasi-reflexivity of order 1.

4 Mean ergodicity of contractions

In this section we construct non-reflexive separable Banach spaces such that
every contraction is mean ergodic (abbreviated ME in the sequel).

We start with a general lemma on mean ergodicity.

Lemma 1. Let R be a mean ergodic power-bounded operator on a Banach space
Y , with ergodic projection Ey = lim 1

n

∑n
k=1 Rky. Then E∗(Y ∗) = Fix (R∗).

Proof. Since RE = ER = E = E2, we have R∗E∗ = E∗, which yields E∗(Y ∗) ⊂
Fix (R∗). For the converse, let y∗ ∈ Fix (R∗). Then for y ∈ Y we have

E∗y∗(y) = y∗(Ey) = y∗(lim
n

1
n

n∑
k=1

Rky) = y∗(y).

Throughout this section, we assume that X is a separable Banach space
quasi-reflexive of order 1, endowed with the norm given by Corollary 2, and we
use the notations of Corollary 2. We will show that every contraction on X is
mean ergodic.
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Lemma 2. Let Q be a norm 1 projection from (X∗∗, ‖| · ‖|) onto the one-
dimensional subspace spanned by f0. Then Qx∗∗ = F0(x∗∗)f0.

Proof. Clearly Qx∗∗ = α(x∗∗)f0, with α linear (by linearity of Q), and ‖|α‖| = 1
since |α(x∗∗)| = ‖|Qx∗∗‖| ≤ ‖x∗∗‖| with equality on Q(X∗∗) 6= {0}. Now

α(f0)f0 = Qf0 = Q2f0 = α2(f0)f0

so α(f0) = 1 since Q 6= 0. By Corollary 2(ii), α = F0.

Lemma 3. Let T = I+W be a contraction in (X, ‖|·‖|) with W weakly compact.
Then f0 ∈ Fix (T ∗∗).

Proof. Since W is weakly compact, it follows that W ∗∗f0 ∈ X, and hence
F0(W ∗∗f0) = 0. Hence

1 ≥ ‖|T ∗∗f0‖| = ‖|f0 + W ∗∗f0‖| ≥ F0(f0) + F0(W ∗∗f0) = 1 + F0(W ∗∗f0) = 1.

Therefore ‖|f0 + W ∗∗f0‖| = 1, and we conclude that F0 attains its norm on
f0 + W ∗∗f0. Corollary 2(i) yields that W ∗∗f0 = 0, i.e. f0 ∈ Fix (T ∗∗).

Theorem 1. Every separable Banach space which is quasi-reflexive of order 1
has an equivalent norm in which any contraction is mean ergodic.

Proof. Endow X with the norm ‖| · ‖| obtained in Corollary 2. Let T : X → X
be a contraction. By Proposition 2 we have to prove only the case T = I + W
where W is weakly compact (to which Lemma 3 is applicable). By [6], T or T ∗

(or both) is ME, so without loss of generality we may assume that T ∗ is ME.
Besides, we can assume that Fix (T ∗) 6= {0} (otherwise X = (I − T )X so T is
ME and we are done).

Define

Px∗ = lim
1
n

n∑
i=1

T ∗kx∗, x∗ ∈ X∗.

Clearly, P is a projection onto Fix (T ∗), and since Fix (T ∗) 6= {0} and ‖|T‖| ≤ 1,
it follows that ‖|P‖| = 1 (i.e. P is not 0). Since T ∗ is ME we have the following
ergodic decomposition

X∗ = P (X∗)⊕ (I − T ∗)X∗ = F (T ∗)⊕W ∗X∗.

By Lemma 3 f0 ∈ Fix (T ∗∗), so Fix (T ∗∗) = Fix (T )⊕ [f0]. Define

Qx∗∗ = F0(P ∗x∗∗)f0.

Then Qf0 = f0 and ‖|Q‖| = 1, Q2 = Q. Lemma 2 yields that Qx∗∗ =
F0(x∗∗)f0. Hence KerQ = KerF0 = X (we use here that X is quasi-reflexive of
order 1). Therefore KerP ∗ ⊂ X. By Lemma 1 Fix (T ∗∗) = P ∗(X∗∗), and

X∗∗ = P ∗X∗∗ ⊕KerP ∗ = Fix (T ∗∗)⊕KerP ∗ = [f0]⊕ Fix (T )⊕ kerP ∗,

and hence
X = Fix (T )⊕KerP ∗ (2)

6



Mean ergodicity of T ∗ implies

P ∗x∗∗ = w∗ − lim
1
n

n∑
k=1

T ∗∗kx∗∗.

If P ∗x∗∗ = 0 then x∗∗ = x ∈ X, and we have 1
n

∑n
k=1 T kx → 0 weakly, hence

in norm (e.g. [9, p. 72]). The decomposition (2) yields that T is ME.

Theorem 2. Let X be quasi-reflexive of order 1, with ‖| ·‖| the norm defined by
Corollary 2, and let T be a contraction on (X, ‖| · ‖|); then T ∗ is mean ergodic.

Proof. By Proposition 2 it remains to prove the theorem only for T = I + W
with W weakly compact, which we now assume. From Theorem 1 we know
that T is mean ergodic, and denote Ex := limn→∞

1
n

∑n
k=1 T kx. Then E is a

projection onto Fix (T ), and E2 = E = ET = TE. Hence by Lemma 1 E∗ is
a projection of X∗ onto Fix (T ∗), and E∗∗ projects X∗∗ into Fix (T ∗∗), so we
have E∗∗f0 ∈ Fix (T ∗∗). By Lemma 3 f0 ∈ Fix (T ∗∗), and the decomposition
X∗∗ = X ⊕ [f0] yields that T ∗∗ is mean ergodic. The ergodic decomposition of
X by mean ergodicity of T yields

X∗∗ = X ⊕ [f0] = Fix (T )⊕ (I − T )X ⊕ [f0] (3)

so Fix (T ∗∗) = Fix (T )⊕ [f0]. Hence E∗∗f0 = λf0 +y0 with y0 ∈ Fix (T ). Since
E∗∗ | X = E, we have E∗∗y0 = y0 ∈ X. The functional F0 is in X⊥, so we have

λ = F0(λf0 +y0) = F0(E∗∗f0) = F0(E∗∗E∗∗f0) = F0(λ2f0 +λy0 +E∗∗y0) = λ2.

Case (i): λ = 1. In this case F0(E∗∗f0) = 1, and since ‖|f0‖| = 1 and
‖|E‖| ≤ 1, Corollary 2(i) yields E∗∗f0 = f0. We have observed that T ∗∗ is
mean ergodic with the decomposition (3). Since E∗∗ | X = E and E∗∗f0 = f0,
we obtain that limn→∞

1
n

∑n
k=1 T ∗∗kx∗∗ = E∗∗x∗∗. Hence for x∗ ∈ X∗ we have

that for every x∗∗ ∈ X∗∗

x∗∗(
1
n

n∑
k=1

T ∗kx∗) = (
1
n

n∑
k=1

T ∗∗kx∗∗)(x∗) → E∗∗x∗∗(x∗) = x∗∗(E∗x∗).

Thus 1
n

∑n
k=1 T ∗kx∗ converges weakly to E∗x∗, and therefore in norm [9, p. 72].

Hence T ∗ is mean ergodic.
Case (ii): λ = 0. In this case we have E∗∗f0 ∈ Fix (T ), so E∗∗(Fix (T ∗∗)) ⊂

Fix (T ) (and equality holds). Let y∗∗ ∈ Fix (T ∗∗), and put y = E∗∗y∗∗ ∈
Fix (T ). Since (for any contraction on a Banach space) Fix (T ∗) separates
Fix (T ), there exists y∗ ∈ Fix (T ∗) such that y∗(y) 6= 0. By Lemma 1 E∗y∗ =
y∗, which yields

y∗∗(y∗) = y∗∗(E∗y∗) = E∗∗y∗∗(y∗) = y∗(y) 6= 0.

Hence Fix (T ∗) separates Fix (T ∗∗), so by Sine’s criterion T ∗ is mean ergodic.

Lemma 4. Let X be a Banach space such that all contractions are mean ergodic.
Then every strongly continuous semi-group of contractions {Tt}t≥0 on X is
mean ergodic, i.e.

lim
t→∞

1
t

∫ t

0

Tsx ds exists ∀x ∈ X.
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Proof. For the sake of completeness we indicate the standard proof. For x ∈ X

put y =
∫ 1

0
Tsx ds. By the semi-group property Tk = T k

1 and we obtain

1
t

∫ t

0

Tsx ds =
[t]
t
· 1

[t]

[t]−1∑
k=0

T k
1 y +

1
t

∫ t

[t]

Tsx ds −→ E(T1)y

by mean ergodicity of the contraction T1.

Remark. Mugnolo [14] gave a semi-group analogue of the result of [6].

We can now reinforce our negative answer to Sucheston’s question.

Theorem 3. Every separable Banach space Z which is quasi-reflexive of order
1 has an equivalent norm such that all contractions on Z and all contractions
on Z∗ (in the induced dual norm) are mean ergodic. Moreover, every strongly
continuous semi-group of contractions on Z or on Z∗ (in the above norms) is
mean ergodic.

Proof. Let Z be a separable Banach space quasi-reflexive of order 1 and let
X = Z∗. Then also X is quasi-reflexive of order 1 (e.g. [4, p. 10]), and by
the construction of the norm ‖| · ‖| on X obtained in Corollary 2, there is an
equivalent norm on Z, denoted by | · |, for which (X, ‖| · ‖|) = (Z, | · |)∗. Let R
be a contraction on (Z, | · |). Then T = R∗ is a contraction on (X, ‖| · ‖|), and
by Theorem 2 T ∗ = R∗∗ is mean ergodic on X∗ = Z∗∗. But R∗∗ | Z = R, so
the mean ergodicity of R∗∗ yields mean ergodicity of R.

If T is a contraction on (Z, | · |)∗ = (X, ‖| · ‖|), then by Theorem 1 T is mean
ergodic on X.

The mean ergodicity of strongly continuous contraction semi-groups follows
from the above and the previous lemma.

Browder [1, Lemma 5] proved that for T power-bounded on a reflexive Ba-
nach space Y we have

x ∈ (I − T )Y if and only if sup
n

∥∥ n∑
k=0

T kx
∥∥ < ∞. (4)

Lin and Sine [11] showed that (4) holds also for Y = L1 and T any contraction
(even not mean ergodic), and gave an example of a mean ergodic contraction
T on a subspace of L1 for which (4) fails. Thus (4) and mean ergodicity are
incomparable. When (4) holds we say that T satisfies Browder’s condition.

Lemma 5. Let T be a power-bounded operator on a Banach space Y . If T ∗∗ is
mean ergodic (on Y ∗∗), then (4) holds.

Proof. Let supn ‖
∑n

k=0 T kx‖ < ∞. Browder’s result was extended in [10] (see
also [11]) to show that (4) holds when Y is a dual space and T is a dual operator.
We apply this to T ∗∗ and obtain that x ∈ (I − T ∗∗)Y ∗∗. The assumption that
T ∗∗ is mean ergodic yields, by [11, Theorem 1], that a solution y∗∗ ∈ Y ∗∗ of the
equation (I − T ∗∗)y∗∗ = x is given by

y∗∗ = lim
N→∞

1
N

N∑
n=1

n−1∑
k=0

T ∗∗kx = lim
N→∞

1
N

N∑
n=1

n−1∑
k=0

T kx ,

which shows that y∗∗ ∈ Y and x ∈ (I − T )Y .
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Theorem 4. Let Z be a separable Banach space which is quasi-reflexive of order
1, endowed with the equivalent norm defined in Theorem 3. Then every con-
traction on Z and every contraction on X = Z∗ satisfies Browder’s condition.

Proof. Let T be a contraction on Z. Then T ∗ is a contraction on X, and by
Theorem 2 T ∗∗ is mean ergodic on X∗ = Z∗∗. Hence T satisfies Browder’s
condition by the previous lemma.

Now let T be a contraction on Z∗ = (X, ‖| · ‖|) and let x ∈ X satisfy
supn ‖|

∑n
k=0 T kx‖| < ∞; then there exists y∗∗ ∈ X∗∗ with (I − T ∗∗)y∗∗ = x.

Recall (Corollary 1) that T = λI + W with W weakly compact (and |λ| ≤ 1).
Case (i): λ 6= 1. Since W ∗∗y∗∗ = z ∈ X, we obtain

x = (I − T ∗∗)y∗∗ = (1− λ)y∗∗ −W ∗∗y∗∗ = (1− λ)y∗∗ − z ,

which yields y∗∗ = (1− λ)−1(x + z) ∈ X, so x ∈ (I − T )X.
Case (ii): λ = 1. Let y∗∗ = y + αf0, with y ∈ X. By Lemma 3 T ∗∗f0 = f0,

so x = (I − T ∗∗)(y + αf0) = (I − T )y.

5 Problems

It was proved in [6] that if Y is a Banach space such that every power-bounded
operator defined on any closed subspace of Y is mean ergodic (on that subspace),
then Y is reflexive (no basis assumed). The question (related to another question
in [18]) is this: If Y is a Banach space such that every contraction defined on
any closed subspace is mean ergodic, is Y reflexive?

If the answer to the above is negative, what if both Y and Y ∗ have the above
property?
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