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Abstract

Let ®(w), w € Q, be a family of n x N random matrices whose entries ¢; ; are
independent realizations of a symmetric, real random variable n with expectation
IEn = 0 and variance IEn? = 1/n. Such matrices are used in compressed sensing
to encode a vector z € RN by y = ®z. The information y holds about z is
extracted by using a decoder A : R — IRY. The most prominent decoder is the
¢1-minimization decoder A which gives for a given y € IR" the element A(y) € RN
which has minimal ¢;-norm among all z € IRY with ®z = y. This paper is interested
in properties of the random family ®(w) which guarantee that the vector z := A(®x)
will with high probability approximate x in fév to an accuracy comparable with the
best k-term error of approximation in ¢) for the range k < an/logy(N/n). This
means that for the above range of k, for each signal 2 € IR", the vector Z := A(®x)
satisfies

o =ally <C inf flo— 2y

with high probability on the draw of ®. Here, ¥ consists of all vectors with at most
k nonzero coordinates. The first result of this type was proved by Wojtaszczyk [19]
who showed this property when 7 is a normalized Gaussian random variable. We
extend this property to more general random variables, including the particular case
where 7 is the Bernoulli random variable which takes the values +1/1/n with equal
probability. The proofs of our results use geometric mapping properties of such
random matrices some of which were recently obtained in [14].

1 Introduction

Compressed sensing is a new paradigm in signal processing whose goal is to acquire signals
with as few measurements (samples) as possible. It has its theoretical origins in the results
of Kashin [13] and Gluskin-Garneev [10] on Gelfand widths from the 1970’s but it was
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recently put into the practical domain of signal processing with the work of Candés-Tao
[6] and Donoho [9].

In the discrete setting of this paper, the signal is represented by a vector z € RY
where N is large. A sample of z is its inner product with a vector v € IR™. Taking n
samples is then represented by the application of an n x N matrix ® whose rows are the
vectors with which we take inner products. Thus,

y:= dx (1.1)

is the information we record about x. To extract this information, we apply a decoder A
to y which is, typically, a nonlinear operator mapping from IR" to IR". The vector

T := A(Px) (1.2)

is viewed as an approximation to x.

There are several ways to measure the performance of an encoder-decoder pair (¢, A).
The finest measures choose a norm || - ||x on R™ and compare the error ||z — Z||x with
the corresponding error of k-term approximation. To describe the latter, let 3, denote
the set of all vectors in IR™ which have at most k nonzero coordinates. Then, ¥ is a
nonlinear space which is the union of the (]Z) linear spaces Xr, T' C {1,..., N}, with
#(T) < k. Here X consists of all vectors # € IR" which vanish outside of 7. The error
of best k-term approximation is

op(x)x =inf{||lz — z||x : 2z € Xk} (1.3)
If for a value of k there is a constant C' > 0 such that for all z € IRY we have
|z — A(Pz)||x < Cop(x)x (1.4)

then the pair (®, A) is said to be instance-optimal in X of order k with constant C'
If X is one of the £} spaces with the (quasi-)norm

N 1/p
|z]ley == { (Zizl ijlp) , 0<p<oo, (1.5)

max;—; . n |7;[, p= 00,

then a best k-term approximation to x is obtained by retaining the k largest coordinates of
x (with ties handled in an arbitrary way) and setting all other coordinates to zero. Thus,
an instance-optimal pair (®, A) of order k performs almost the same as identifying the &
largest coordinates of z and using these to approximate x. The best pairs (®, A) are those
which give instance-optimality of the highest order k. Note that an instance-optimal pair
of order k will automatically recover exactly any vector z € X, i.e. any k-sparse vector.

If we fix X, the dimensions n, N and the constant C', then there is a largest value of k
for which we can have instance-optimality. Upper and lower bounds on the largest possible
k were proved in [7] for the case when X is an éﬁ,\’ space. We mention two contrasting
results. If X = ¢ the instance-optimality holds for' k < cn/log(N/n) where ¢ depends

'Here and later all logarithms are taken with respect to the base 2.



only on the constant C in (1.4). In going further, we shall refer to this range of k as the
large range of k since it is known from results on Gelfand widths that instance-optimality
can never hold for a larger range (save for the constant c¢). This result for instance-
optimality in ¢ should be compared with what happens when X = (. In this case,
the largest range of k for instance-optimality is k& < en/N where again ¢ depends only
on (. We see that even instance-optimality of order one will not hold unless the number
of measurements n is of the same order as N. In this sense, we can say the compressed
sensing systems do not perform well if we wish to measure the error in the norm of £.

Returning to the case of X = (&, the only systems which are provably instance-optimal
for the large range of k given above, are constructed using probability. Namely, various
constructions of random matrices are shown to yield a favorable ® with high probability.
No deterministic constructions are known for this large range (see [8] for a deterministic
construction for a much more narrow range of k).

Given that there are no deterministic constructions of matrices for the large range
of k, several authors, including those in [7], suggest that a more meaningful measure
of performance of a encoder-decoder pair is instance-optimality in probability. By this
we mean the following. Suppose ®(w), w € €, is a random family of matrices on the
probability space (€2, p) and A(w), w € €, is a corresponding family of decoders. We say
that the family of pairs (®(w), A(w)) is instance-optimal in probability of order k in X
with constant C, if for each = € IRY, we have that

[z — A(®z)|[x < Cor(z)x (1.6)

holds with high probability.

Surprisingly, it was shown in [7] that classical constructions of random families ®(w)
can be used with certain decoders A(w) to attain instance-optimality in probability in £
for the large range of k. Thus, from this new viewpoint, instance-optimality in probability
performs the same for /) as it does for £Y. There was, however, one dampening factor in
the results of [7]. Namely, the decoders used in establishing instance-optimality in prob-
ability in £} were completely impractical and could never be implemented numerically.
This led to the question of whether practical decoders such as ¢;-minimization or greedy
algorithms gave this high level of performance.

Recently, Wojtaszczyk [19] proved that if the random family was given by filling out
the entries in ® using the Gaussian distribution with mean zero and variance 1/n, then this
could be coupled with /;-minimization to give a compressed sensing pair which is instance-
optimal in probability in ¢ for the large range of k. Wojtaszczyk’s proof rested heavily
on the following geometrical property of the Gaussian family: with high probability, a
draw of this matrix will map the unit ball in ¢ onto a set containing an ¢3 ball about
the origin of radius ¢y/log(N/n)/\/n.

Unfortunately, this geometric property does not hold for all classical random con-
structions. For example, if the matrix ®(w) has its entries given by independent draws of
+1/4/n, the resulting Bernoulli matrix cannot satisfy that property. Indeed, the vector
with first coordinate one and all other coordinates zero can be the image of a vector
x € IRY under any of these matrices only if ||z|| ¥ 2 +/n. This means the unit ball of oy

cannot cover an ¢4 ball of radius < 1/y/n.



The purpose of the present paper is to point out that a weaker geometric property of
random matrices, studied already by A. Litvak, A. Pajor, M. Rudelson and N. Tomczak-
Jaegermann in [14], when coupled with decoding by ¢;-minimization will yield instance-
optimality in probability in ¢) for the large range of k. This new geometric property
replaces the role of the ¢} ball as an image by an ¢ ball intersected with an (2 ball of
smaller radius.

The organization of this paper is as follows. The first sections of the paper concentrate
on proving instance-optimality for Bernoulli matrices where the proofs are most trans-
parent. In Section 3, we present a geometric mapping property of Bernoulli matrices, see
Theorem 3.5, which can be derived as a special case from Theorem 4.2 in [14]. We use
this property to prove in Section 4 that instance-optimality in probability in £ holds
for Bernoulli matrices. We organize our arguments to extract the essential properties of
Bernoulli matrices that are needed for the proof. In Section 5, we show that these prop-
erties hold for quite general random families and thereby obtain a broad generalization
of the Bernoulli case.

2 Preliminary results and notation

In the first sections of this paper, we let & = ®(w) := (¢;;) denote the random family
of n x N Bernoulli matrices. Here ¢;; = \/iﬁfr’m-, where the 7; ; are independent Bernouli
random variables which take the values 1 each with probability 1/2. We denote by
o, € R", 7 =1,...,N, the columns of ® and introduce the abbreviated notation L :=
log(N/n) since this term appears frequently.

From the fact that the random variables ¢; ; are independent and have zero mean, it is
easy to deduce that for any = € IR", the random variable ||®(w)z ?S has expected value

a2, that is,
B(|2(w)l) = |y (2.1)

There are also standard estimates that show that this random variable is strongly con-
centrated about its mean. Namely, we have?

Concentration of Measure Property (CMP) for Bernoulli random matrices:
For any x € RY and any 0 < § < 1, there is a set Qo(x, ) with

p(Qo(z,6)) < Coe 0, (2.2)
such that for each w € Qo(x,d) we have

(1= 0)llaly < @)l < (1+ )l (2.3)

For example, this concentration of measure property is proved in [1] with ¢(0) =
62/4—06%/6 and Cy = 2. We will use these values for our analysis of the Bernoulli random
matrices.

2In this paper we will use S¢ to denote the complement of a set S.



There are several important consequences that can be drawn from the CMP. As a first
example, we mention the Restricted Isometry Property (RIP) as introduced by Candés,
Romberg, and Tao [4]. Given an n x N matrix A, it is said to have RIP of order k with
constant 0 if

(1 =0)llzlley < [lAz

g < (1+0)zlley (2.4)

holds for all z € ¥.

It was shown in [2, Th. 5.2] that any random family of matrices which satisfies a
CMP as above, will automatically satisfy the RIP of order k for any k < c¢n/L with high
probability. In our analysis of Bernoulli matrices, we shall use the following special case.
There are absolute constants &,Cy > 0, @ > 0 and sets Q; (k), with

p(u(k)) < Cre=a" (2.5)

such that for each k < an/L and each w € Q4 (k), the matrix ® = ®(w) satisfies the RIP
property of order 2k with constant § = 1/4, i.e.

3 )
el < 1@(@)zlle < Jllzlley, 2 € Ban. (2.6)

To close out this section, we wish to prove another simple fact about Bernoulli matrices
which can be derived easily from the CMP.

Lemma 2.1 For each v € IRY there is a set Qy(x) with
p(Q(x)°) < 27 4 2neat (2.7)

such that for all w € Qy(x), the n x N normalized Bernoulli matrizc ® = ®(w) satisfies

3
oty < /2l 28)

(2.9)

and

[Pz len, < \/—||x||zN
Proof: Without loss of generality we can assume that ||z[|, = 1. Fix such an z. We al-
ready know that (2.8) holds for w € y(z,1/2) (see (2.2) and (2 3)), where p(Qp(x,1/2)¢) <
2¢~™/24 We concentrate on establishing the /7 bound. We note that each entry y; of ¥
is of the form

N
1

where the 7, ; are independent Bernoulli random variables and « = (z1,...,zy). We shall
use Hoeffding’s inequality (see page 596 of [11]) which says that for independent mean
zero random variables ¢; taking values in [a;,b;], j =1,..., N, we have
N —252
" (fZej\ > 5) < 2emt, (2.11)
j=1

bt



We apply this to the random variables €; := \/Lﬁxjri’j, 7 =1,..., N, which take values in

\/Lﬁ[—mj,xj]. Since Z;.V:l(szj)z = 4, we deduce that

2
Pr(|y;| > 6) <2 % . (2.12)
Applying a union bound, we get
—T 2
Pr(ylle > 06) < 2ne™% . (2.13)

We now take § = 1/v/L and deduce

Pr (Hyue& > 1/\/5) < 2net . (2.14)
We now can take Q(x) := Qo(x,1/2) N {w : ||y(w)|le_. < 1/VL}. Then, (2.7) follows
from a union bound on probabilities. The estimate (2.8) follows from the upper bound in

(2.3) and (2.9) follows from the definition of € (x) and (2.14). O

Remark 2.2 Note that in the above lemma we could require a much smaller £, bound
on y and still achieve this with high probability.

3 Geometric mapping property of Bernoulli matrices

In this section, we derive a geometric mapping property of Bernoulli matrices, stated in
Theorem 3.5. As we noted in the introduction this is a special case of Theorem 4.2 from
[14]. We decided to include this proof (which is a simple consequence of a well known
result of Montgomery-Smith [16]) in order to keep our results for the important special
case of Bernoulli matrices easily accessible.

To formulate this geometric property, we define the following norm on IR"

n
oy ol 1)

Notice that |ly||; < 1is equivalent to [Jy||m < 1/y/n and [yllem < \/% A second norm
on IR" we are interested in is

Iylly = max{ﬁny

[ylle := min{||z([y = Pz =y}, (3.2)

where ® is a normalized Bernoulli matrix. It will follow from the arguments given below
that with high probability ® has full rank and thus this is a norm.

Our main goal is to compare these two norms. We want to prove that there is an
absolute constant C' such that with high probability on the draw of ®, we have

lylle < C|lyll;, forall y € IR". (3.3)



Rather than do this directly, we will do this by duality. Given a norm || - || on IR", the
dual space of (IR™,|| - ||) is IR" with the dual norm || - ||* defined for A € IR" by

A" := sup (A, y) = sup (A,y). (3.4)
llyll=1 lyll<1
Of course, we have [[A|[7. = [|Allez, and [[All7s = [|Allg. In order to prove (3.3) for a given

®, it is sufficient to show that
A7 < ClIAl[e, - VA € R™ (3.5)
Indeed, if we have (3.5) then we have

lylle = sup (A, y) < sup (\y) <Cllylls, yeR" (3.6)
A5 =1 A5 <C

So we shall now concentrate on proving that (3.5) holds with high probability on the
draw of ®. We begin by giving a description of these dual norms. For this, we define

KO = it (il +tlellg), ¢ >0, (3.7)

which is the K-functional between ¢} and /5.
The following lemma is well-known (see Lemma 1 of [16]). We include its proof for
completeness since we could not find a proof in the literature.

Lemma 3.1 For any A € IR", we have

1Mo = e 100, 5] = = max [(A, v/n®;)l, (3:8)

and

L
NI == inf {Illg + VEIalg} = =K, V). (39)

1
V= Vi

Proof: We first prove (3.8). Since {y : [[ylle <1} = {®z: [[z[x < 1}, for any A € R",
we have

Mz = sup (A,y) = sup ZA Z@j:@: sup (DN, z) = DAy (3.10)

lylle<1 ||90HZNS1 i—1 ||$Hg{v§1

which proves (3.8). Here @' is the transpose of the matrix ®.
Next, we prove (3.9). Let us first observe that for any decomposition A = A; + Ay, we
have

1 L
A7 = sup (Ay) = sup (M + Ao, ) < —=[[Milly + \/iHMHz", (3.11)

lylls<1 lyllo<1 Vol Ve T
because whenever |y[|; < 1 then [ylls < \/% and ||yl < 1/4/n. If we now take an

infimum over all decompositions A = A\; + Ay, we see that the left side of (3.9) does not
excede the right side.



To show that the right side of (3.9) does not exceed the left side, let us define the
norm |[[(a, B)|| = max{||a|lem, ||8]l} on the space IR" @ IR". We have ||(c/,3)|* =
|&/{[en +1|8'|| . From (3.1) we see that the mapping S from (R, ||-[|;) to (IR" ®R", -]
defined by S(z) = (v/nz,/F2) is an isometry onto its range Z which is a subspace of
dimension n. That is ||z]|; = ||S(2)||. Now A induces a functional with norm ||A]]* on Z
and using the Hahn—-Banach theorem we see that there exists a pair (1, u2) € R" & IR"
such that

(z,\) = (S(z), (u1, o)) for each z € R", (3.12)
A = [, ) I = Ml + Nzl (3.13)

From (3.12) we get (2, \) = (2, v/nu1 + /T uz) for each z € IR", which gives X = A\ + Ay
where A\; = /nuy and Ay = \/¥/L2. From (3.13) we get

1 1
1A = %{IIMH/@ + VL[ Asllgg} > %’C(A’ VL), (3.14)
(Il
Our next goal is to prove that with high probability on the draw of ®, we have for each
individual A € IR" the estimate [|A[|% < C||A|l5 with an absolute constant C. To prove
this, we need to bound from below the probability that a linear combination of Bernoulli
random variables can be small. We shall call this the Lower Bound Property (LBP). Such
a LBP was proven by Montgomery-Smith [16] who showed that for each A € IR", each

t > 0 and independent Bernoulli random variables r;, 2 = 1,...,n, we have
a 1
Pr <| > A > §K(A,t)) > 2" ¢ =4In24. (3.15)
i=1

Since for any C' > 1, we have CIC(\,t) > K(\, Ct), it follows that
Pr (20] Z i > (A, C’t)) > 2¢~ 1t (3.16)
i=1
for any C' > 1. 3 Now we use (3.15) to prove the following lemma.

Lemma 3.2 Given n, N and any X\ € IR", there is a set Q1(\) with
P (V) < e 2V (3.17)
such that for each ® = ®(w), w € Q1(A), we have
1A < Cul[Alls, (3.18)

with C1 := 2+4/2¢;.

3The estimates (3.15) and (3.16) are formulated in [16] with slightly different constants. Our constants
immediately follow from arguments in [16].




Remark 3.3 There should be no confusion between the sets Q1(x) of Lemma 2.1 and the
sets Q1 () since v € RN and X € IR".

Proof: We fix A. With a view towards Lemma 3.1 we want to find a set €, (\) (with the
favorable lower bounds on its measure) such that for w € £4(\) we have

K(\ VL) < Cy max [(A,v/n®;)], (3.19)
1<G<N

where ®; are the columns of ®(w).
Each of the inner products appearing on the right side of (3.19) is a sum of the type

appearing in (3.16). We take t = ,/% and C' = y/2¢; > 1 in (3.16) and obtain

Pr <cly > i = K, \/Z)> > 2¢7 1% = 2, /%, Ch = 2v/2¢;. (3.20)
=1

Now define () as the set of all w € €2 such that (3.20) holds for (\/n®;, ), j =
1,...,N, with ®; the columns of ®(w). Each inner product of A with \/n®; is a sum of
the above form and so

Pr (cl ax (), Vnd,)| < IC()\,\/Z)) < {1 _2\/%N. (3.21)

Since 1 —x < e ” for x > 0, we have

Pr (01 max |\, vid;)| < KA, \/Z)) < e 2V (3.22)
SIS
This shows that (3.18) holds with probability > 1 — e~2YNn a5 desired. O

The lemma shows that for each A € IR", we have the desired inequality with high
probability. To obtain a uniform bound with high probability, we use a covering argument.

Lemma 3.4 Let B} be the unit ball in (IR",| - ||5). Then for each € > 0 there is a set
of points A, C B with #(A.) < (3/€)™ and for each A € B there is a N € A, such that
A =Ng <

Proof: This is a classical result about entropy in finite dimensional spaces (see Proposi-
tion 1.3 of Chapter 15 in [15]). O

We now prove the main result of this section, which is a particular case of Theorem
4.2 from [14].

Theorem 3.5 Let C| := 2C,, where Cy is the constant in Lemma 3.2. Then, there is a
set Q) with

p(%) < eV (3.23)
such that for each w € $y, any n x N normalized Bernoulli matrizx ® := ®(w) with
N > [In6]*n satisfies

lylle < Cillylls, Yy € R". (3.24)



Proof: We take e = 1/2 and apply Lemma 3.4 to find a set of points A, with cardinality
#(A) < 6" satisfying the lemma for this choice of €. Let 1 := Nyep Q21(N), where Q1 (\)
are the sets of Lemma 3.2. Then,

p(Qi) S #(AG)G—Q\/W S €n1n6—2\/m S 6_\/m, (325)

provided N > [In6]?n. Fix any w € O and let C* = C*(w) be the smallest constant such
that for & = ®(w), we have

A7 < C*l[A[g, VA € R™ (3.26)

The existence of such C* follows because any two norms on a finite dimensional space
are equivalent. Inequality (3.26) is equivalent to [[All% < C* for all A € IR" such that
|Alls = 1. Let us fix such a A. Then, by Lemma 3.4 for e = 1/2, there is A’ € A5, such
that

A =N < INle < 1, (3.27)

N | —

and by Lemma 3.2, since w € €}y,
N5 < CLINIG < Ch. (3.28)
It follows then from (3.26), (3.27) and (3.28) that

* * * * * % C*
A < 1A= XI5+ IV < €A = Xlly + V)5 < S + .

From the minimality of C*, we have C* < Cy 4+ C*/2. This implies that C* < 2C; = (1,
which proves that
1Al < CilMlE, VA € R".

As noted at the beginning of this section, this inequality is sufficient to show (3.24). O

4 Instance Optimality for Bernoulli

In this section we show how the geometric fact established in the previous section can
be used to prove instance-optimatimality in probability in 3 for the ¢;-minimization
decoder. Let us write

L
Uy = {Z/ € R": |yllew <1/Vn, llylley < \/;} (4.1)

for the unit ball in || - || ;.

Theorem 4.1 Let C] be the constant from Theorem 3.5 and C’l, ¢, and a be the constants
in the RIP (2.5),(2.6). There is an absolute constant Cy and a set Qo with

p(Q5) < Cre " 4+ e VN, (4.2)

such that for each w € Qy, the n x N normalized Bernoulli matriz ®(w), N > [In6]*n,
has the following property. For each y € Uy there is z € IRY, such that y = ®z, and
[2]lev < CF and ||zl < CQ%E, for all k <an/L.

10



Proof: We define Oy := Q,(k) N Qy, where Q; (k) is the set of the RIP of order 2k with
constant 6 = 1/4 and €2 is the set from Theorem 3.5. Because of (3.23) and (2.5), we
have that

p(2%5) < Cre o 4 VA

and so (4.2) is satisfied.
Now let y € U;. Then |ly||; < 1 and by Theorem 3.5, for each w € Qy C Q; the matrix
:= ®(w) has the property that there is z € IRY, such that y = &z and [2]lev < CF.

We have left to prove that |z||y < C’g\/iﬁ. For this, we follow the argument from [5],

used also in [19]. Consider the vector z* which is the decreasing rearrangement of z, i.e.
2* = (2iy, ..., 2iy), Where |z;,| > ... > |ziy|. Let Ty = {i1,..., i} be the set of the first
k indices, T} be the set of the next k£ indices and so on. The last set Ty may have < k
elements. Clearly {1,..., N} =ToUT,...UT, 2z =23, + ...+ 21, and

[T Y \FIIZTZHeN (=0.1,...,5-1,

since k|z;;| < ||z7, || for all 4; € Ty, Then we have

s—1

lenu.onley = llon - onlly < D lom ey
£=0

1 4 1 C
< — 2 < —|lz < L. 4.3
< X llenly < lele < (4.3)

We have left to bound [|27, ||, Let us first note that the reasoning in (4.3), together
with condition (2.6), which holds for w € Q, C Q4 (k), gives

g = HZCD(ZTZ)HEQSZH@(Z’TZ)HL);

s—me ﬁ- (1.4)

1@ (2r,0..01,)

Therefore by again employing (2.6) and (4.4), we obtain

lzmlley < —II‘P(ZTO)IIz" = éllfbZ - CI)(ZTlu...uTs) o

5CY

i) < H?JHz N

1_1\/§+ 5C 4f 5C1 4\/E+50;

n 3RS 3VE 3k 3k

where the next to last inequality uses the definition of U; and the last inequality uses
that k < an/L. This is the bound we want for ||zz[[sy-

< [||<I>z]|gn + 1@ (zryu..0m) e

<

(4.5)

11



Combining (4.3) and (4.5), we obtain

- 4a+ 5C! N Cr 4a+ 80
N —_— _— = _—,
“T vk vk 3vk
which proves the theorem with Cy = 4\/53801. O

Now we are ready to show that Bernoulli random matrices coupled with decoding by
¢1-minimization give instance-optimality in ¢) with high probability for the large range
of k. The ¢;-minimization decoder A is defined by

12lley < Nlzmlley + ll2m0..0m,

A(y) := argmin [[w]|,. (4.6)

dw=y
Given that y = ®x, we shall also use the notation
T = A(Px). (4.7)

In particular, if & = ®(w) is the random Bernoulli matrix then £ = Z(w) will depend on
the draw w € 2. We shall also use the abbreviated notation

or(z) == ox(x)y, € R". (4.8)
The main result of this section is the following theorem.

Theorem 4.2 For an absolute constant Cs > 0, we have the following. For each x € RY
and each k < an/log(N/n), N > [In6|*n, there is a set Q(x, k) with

p(Q(x, k)) < Cre™ " 4 e VN 4 267/ 4 dpeoatym (4.9)
such that for each w € Q(x, k), we have
|7 = Z|ly < Caou(), (4.10)

where @, ¢, Cy are the constants from (2.5).

Proof: We will prove the theorem for the largest k satisfying k¥ < an/L. The theorem
follows for all other k from the monotonicity of o,. Let xp be a best approximation to
z from X, so ||z — zyllgy = ox(x), and let y' = @(x — x5). We shall take Q(z, k) =
Qo N Qy(x — x) where €y is the set from Theorem 4.1 and Qy(z — xy) is the set from
Lemma 2.1. Then the estimate (4.9) follows from (4.2) and (2.7).

We now prove (4.10). According to Lemma 2.1, we have for all w € Q(x, k) C Q(x —

xy) that
3 3
1y len < \/;||$ — xk”zg = \/;Ukz(l"),
1

19 [lez, < ﬁ”x — xplly =

and

ﬁak(x).
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Hence the vector fﬁ(x) \/Zy’ € Uy. For w € Q(x,k) C 2y, Theorem 4.1 says that there

is a vector 2/ € IRY, such that ®(z — x;) = 3 = &2’ and
12|y < \/>C'20k \/»\/_ and 2|, < \/70’1/ —op(x (4.11)

/ e / ~ s / ~ /
Otk + 2y 1= 10 flog + 27— Fllay = dnf |27 — (@ —2p)llge < ey

Note that

and therefore using (4.11) it follows that

3

Since ®z = ®(x,+2'), we have that 7 = A(®(zx+2")). Forany w € Q(z,k) € Qy € Q(k),
the Bernoulli matrix ®(w) satisfies the RIP of order 2k and constant § = 1/4. Under these
conditions, Candés showed [3] (improving the result from [5]) that there is an absolute
constant C' such that

2 + 2" — 2y < ﬁ%(xk + 2 )

This inequality and (4.12) give

[k + 2" = Z|| gy < \/70’0% \/>— < C'oy (4.13)

where the last inequality uses the definition of k to conclude that k > a'n/L for an
absolute constant a’ > 0. Therefore, it follows from (4.11) and (4.13) that

lz = Zlley < llw =2k = 2llgy + llon + 2" = 2y
< lw = znllgy + 121y + llow + 2" = Zllgy

/3
1+ ﬁCg -+ Cl ak(:z:) = CgO’k(;C), (414)

which proves the theorem. O

IN

5 Generalizations to other random matrices

In this section, we shall extend the above results to more general random families of
matrices. We assume in this section that the random matrix ® = ®(w) has entries given
by independent realizations of a fixed symmetric random variable 1 with expectation
En = 0 and variance IEn* = 1/n. The columns ®;, j = 1,..., N, of ® will be vectors
in R" with IF||®|l;z = 1. We shall show that under quite mild conditions on 7, such a
matrix, when coupled with the /;-minimization decoder (4.6), will give instance-optimality
in probability in ¢) for the large range of k, 1 < k < an/log(N/n). We shall use the
notation r = y/nn to denote the random variable scaled to have variance one.

Our road map to proving instance-optimality is to follow the proof given in the previous
sections for the Bernoulli case. That proof depends on four basic properties:

13



(a) The Concentration of Measure Property, i.e.(2.2) and (2.3) should hold with some
choice of ¢y(d) and Cp for the n x N random family ®(w), whose entries ¢, ; are
independent realizations of 7 for all n and N.

(b) The random family ®(w) should with high probability satisfy the Restricted Isome-
try Property (2.5),(2.6) of order 2k and constant § = 1/4 for 1 < k < an/log(N/n)
for some constants C, ¢; and a.

(c) The £, bound for ®z given in (2.9) of Lemma 2.1 should be valid. Namely, for each

No

z € IRY there is a set Qi (x) with p(Qy(2)¢) < 2ne” ™os7 | where M > 1 is an
S

absolute constant, such that for all w € ;(x) we have || ®z||m < \/WHZEH%V

(d) The Lower Bound Property given in (3.15) (and therefore (3.16)) should be valid
for the independent random variables r; = /nn; for some constant ¢; > 1/2. The
requirement ¢; > 1/2 is needed to assure that a proof similar to the one of Lemma

3.2 holds.

If all these properties are satisfied, then the proof given in the Bernoulli case carries
over in an almost word for word fashion to the more general random matrices. Therefore,
our discussion in this section will center on sufficient conditions on 7 so that (a-d) hold.
The main point of this section is that to establish the validity of (a-d) it is enough to
have (a). Our main result is the following theorem.

Theorem 5.1 If the symmetric random variable n satisfies property (a), then (a-d) are
valid. Using the random matrices ®(w), whose entries are independent realizations of
n, to encode and {1-minimization (4.6) to decode gives an encoder-decoder pair which is
instance-optimal in probability in (Y for the large range of k. That is, given any x € RN
and any k < an/log(N/n), for N > [In6]*n, there is a set Qy(x, k) such that

- _ _ Vn
p(Q2<x,k)C) < Cre am 4 e—\/ﬂ + 006—00(1/2)71 + 2ne” TMTos(N/n) (51)

where a, Cy, ¢1, C, co(1/2) are the constants from (a-d), M > 1 is an absolute constant,
and for each w € Qs(z, k) we have

& — A®W)) oy < Cron(a), (52)
with Cy depending only on the constants in (a-d).

Remark 5.2 According to Theorem 5.1, the Concentration of Measure Property (a) is
the only property that a symmetric random variable n needs to satisfy so that the corre-
sponding compressed sensing matriz ®(w) coupled with the 1-minimization decoder gives
a pair which is instance-optimal in probability in (Y for the large range of k. Thus, our
result covers practically all random variables used to assemble encoders appearing in the
literature.
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As we have already mentioned, the proof of this theorem is the same as the proof in
the Bernoulli case once we show (a-d). Therefore, in the remainder of this section we
discuss why (b-d) follow from (a).

Proof (a) implies (b): It is well-known and proven in [2] that (a) implies the
RIP of order 2k and constant ¢ for every 0 < 6 < 1 and a range of k of the form
k < a(0)n/log(N/n) for some constants Cy and ¢, depending on 4. O

Before we proceed further, let us prove the following technical result.

Lemma 5.3 Let ) be a random variable that satisfies (a) and r = \/nn. Then
Pr(|r| > t) < Cse™Y >0, (5.3)

where ¢; and Cs depend only on the constants co(1/2) and Cy in (a). Furthermore, if a
random variable satisfies (5.3), then there is a constant M > 1 such that

ALY

2 )
Proof: To show (5.3) we apply the CMP to the vector x = (1,0,...,0) and obtain for
alln e IN

Elr|* < for all integers k > 2. (5.4)

n

1 n
Pr(r? > 3n/2) < Pr (ﬁ > ot > 3/2> — Pr <Z m > 3/2) < Coe ", (5.5)
j=1

j=1
with v := ¢(1/2). From this and monotonicity, we have Pr(|r| > t) < Coele 371,
t> \/g Since Pr(|r| > t) < 1, we find Pr(|r| > t) < Cse~ %", for all ¢ > 0, with

2
Cs :=max{l,Cp}le”, c¢5:= =7.

3
To prove (5.4), we use (5.3) and obtain
Elrl* = k[ t*'Pr(lr| > t)dt < k [ t* 7 Csem e dt = G5 (K < Lps
= 5 9 k/2 2 =9 : )

0
for some M = M(C5,c5). If M < 1, we can just set M = 1 in the above inequality. O
We shall need the following Bernstein-type inequality (see [17] Ch.IT Th 17).

Theorem 5.4 Let {X;}72, be a collection of independent random variables with finite
second moments and define o3 = Z;n:l jEXjQ. If there is a constant My such that

—_

> EIX;F < SKlogME?,  for all integers k > 3, (5.6)

[\

then, for any d > 0,

m 2
<| > (X - EX;)| > 5) < 2e G Mod) (5.7)
7j=1
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Using Lemma 5.3 and Theorem 5.4, we prove the following result.

Lemma 5.5 Let n be a random variable that satisfies (a). Then, for each x € RY and
N > 3n, there is a set Qy(x) with

NG
p( (z)%) < Coe™ VD" 4 2pe” TToaNTm) (5.8)
such that for all w € Q4 (x),
3
[Pl < /5 llwlley, (5.9)
2
and
[logd ey (5.10)

T ( N/n)
Here, Cy and co(1/2) are the constants in the CMP (see (2.2)) and M 1is the constant
from (5.4).

Proof: As in the proof of Lemma 2.1, we can assume that |z[/, = 1 and we fix such
x € IRN. Property (a) guarantees (see (2.2) and (2.3)) that there is a set Qy(z, 1/2) with

p(Qo(z,1/2)°) < Coe0/2n (5.11)

such that for each w € Qy(x,1/2) we have (5.9).
To prove (5.10), we note that each entry y;, i = 1,...,n, in y = ®x takes the form

N
i= > i (5.12)
j=1
We let X; := z;n, ;. Since ]EX]2 = %?,
ol = ZEXQ |z lGy En® = 1/n. (5.13)

Similarly, for any k > 3, we have

N N M 1 N
E\X;|F = k2 Bk < 2k | — — |k 5.14

j=1 j=1

L
Tk
1. [M1F21 1
< k= R
< (] a-w[E A

where we have used (5.4) from Lemma 5.3 and [Zjvzl |z, ¥k < [zl =1 for k > 2.
This means that the conditions of Theorem 5.4 are satisfied and (5.7) gives

N
Pr(|y;| > 90) = (! Z:an”\ > 6) <2 ST < 2e” B , foro<1. (5.15)

7=1
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The last inequality follows from the fact that (2 —0)M+y/n >1for M > 1 and § < 1.
We now take § = 1/v/L < 1 for N > 3n and define Q(z) as the intersection of

Qo(z,1/2) with the sets {w : || <1/VL},i=1,...,n. Then, (5.9) and (5.10) are both

valid for w € Q(x). The estimate (5.8) follows from a union bound. O
Proof (a) implies (c): This is (5.10) of Lemma 5.5. O

For the proof that (a) implies (d) we shall use the following lemma.

Lemma 5.6 Let X be a symmetric random variable with finite fourth moment IEX* =
My, EX? =1 and EX = 0. Let X;, j = 1,...,m, be a sequence of independent
random variables with distribution such as X. Then for any sequence of numbers A =
(A1, Am) €45 and t > 0, we have

= 1
Pr <| Z)\ij| > §IC()\,t)) > 2" ¢ = 41In(max{24,8M}). (5.16)

J=1

Proof: This lemma can be proved using the arguments of [16] given for the Bernoulli
case. However, one needs to use the full strength of Theorem 3 in Chapter 3 from [12]
and not its special case as in Lemma 3 from [16]. A more general version of this lemma
is proved in detail in Lemma 4.3 from [14]. O

Remark 5.7 Note that in the Bernoulli case, My = 1 and therefore the constant in (3.15)
iscp =4In24 .

Proof of (a) implies (d): If 5 satisfies the CMP (a), then by Lemma 5.3 F|r|* is
finite and (d) follows from Lemma 5.6. O

6 Remarks

Finally, we wish to make some remarks concerning the relationship between the Con-
centration of Measure Property (a) and the subgaussian distribution estimate (5.3) of
Lemma 5.3. First, note that the proof of Lemma 5.3 shows that if we assume that (2.2)
and the upper estimate in (2.3) hold for all n and some N = N(n), then we have shown
that the random variable r = /nn satisfies the distributional inequality (5.3). Now we
will show the coverse.

Lemma 6.1 Let r be a zero mean random variable that satisfies (5.3). Then, the n x N

random family ®(w), whose entries ¢; ; are independent realizations of n = \/Lﬁr satisfies

the CMP (a) for allm and N.
Proof: Let us fix  such that [[z[, = 1 and consider the random variables X; :=

2
‘Z =1 TiTig| o 0= 1,...,n. Since a sum of subgaussian random variable is itself subgaus-
sian, we have

N
Pl"(Xl > t) =Pr <| ijri,ﬂ > \/Z) < 0667661‘/. (61)
j=1
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The constants Cg, cs can be taken independent of x since ||z[|x = 1 and the r; ; are drawn
from the same distribution (see [18]).
As in the proof of Lemma 5.3, we have for k > 2,

E|X;|" = k;/tk‘l Pr(X; > t)dt < k/tk_lCGe_CGt dt = %kr(/ﬁ) = ﬁk'. (6.2)
ct c§
0 0

Since [Er? = 1, by Holder’s inequality it follows that IEr* > 1, and therefore

N
FE Z.Ijﬁ] = Ert Zx +6 Z x?acf

1<j<i<N

> Z:c +2 ) wdrl =y =1, (6.3)

1<j<i<N

E|X;)? =

where we have used the independence of r; ;. It follows from (6.2) for & = 2 that IE|X;|* <
2C5/c2, and therefore for o3 := " | [F|X;|?, see (6.3), we have

n <o < 2n026 (6.4)

C6

which combined with (6.2) results in

C
ZE|X k< n—k' < —6/<;' 2 < k:'M’“ 262, for k > 3, (6.5)

where My = M5(Cy, ¢g) is an absolute constant.
In order to prove the CMP (a), we need to estimate Pr(|||<1>:p||§g — [lz||2y] > 0) for
2

0 < < 1. Since

2 2

1 n
w2

i=1

N N
E T E LT

Jj=1 Jj=1

and [|z([,y = 1, we have to estimate Pr (230, Xi— 1] > 6) =Pr (X1, Xi — n| > nd).
Since IFX; =1,7=1,...,n, we have that
> n6> .

Pr(iXi—n >n6> :Pr(

i=1
This probability can be estimated from above using Theorem 5.4, since all conditions are
satisfied, see (6.5). We obtain

n
1Pz =

i=1

n

> (Xi - EX;)

i=1

n

Pr(|[| @]l — lllFy| > 8) = Pr(}_(Xi — EX;) > nd)

=1
52n2
< e 2(03+Madn)
o 5202
< e 2(2nCg/c+Mgadn)

— 26700(6)717



with ¢(8) = 52— where we have used (6.4) in the last inequality. This is the

2(205/C§+M25) )

Concentration of Measure Property (a). O

Using Lemma 6.1 and Lemma 5.3 we conclude that the following properties of a

random variable r with IEr = 0 and IEr? = 1 are equivalent:

(i) r satisfies (5.3)

(ii) For each n there exists an N := N(n) such that the random n x N matrix family

®(w), whose entries ¢; ; are independent realizations of —=r, satisfies the Concen-

NG

tration of Measure Property with some constants Cy and cy(9).

(ili) For each n and N the random n x N matrix family ®(w), whose entries ¢, ; are

independent realizations of —=r, satisfies the Concentration of Measure Property

NG

with some constants Cp and cy(0).
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