
Approximation of Functions of Few Variables in High
Dimensions

Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk ∗

August 3, 2009

Abstract

Let f be a continuous function defined on Ω := [0, 1]N which depends on only `
coordinate variables, f(x1, . . . , xN) = g(xi1 , . . . , xi`). We assume that we are given
m and are allowed to ask for the values of f at m points in Ω. If g is in Lip1
and the coordinates i1, . . . , i` are known to us, then by asking for the values of f
at m = L` uniformly spaced points, we could recover f to the accuracy |g|Lip1L

−1

in the norm of C(Ω). This paper studies whether we can obtain similar results
when the coordinates i1, . . . , i` are not known to us. A prototypical result of this
paper is that by asking for C(`)L`(log2 N) adaptively chosen point values of f , we
can recover f in the uniform norm to accuracy |g|Lip1L

−1 when g ∈ Lip1. Similar
results are proven for more general smoothness conditions on g. Results are also
proven under the assumption that f can be approximated to some tolerance ε (which
is not known) by functions of ` variables.

1 Introduction

The numerical solution of many scientific problems can be reformulated as the approxima-
tion of a function f , defined on a domain in IRN , with N large. Most classical numerical
methods and the corresponding theory of approximation for N -variate functions deterio-
rate severely with the growth of N . This is the so-called curse of dimensionality. On the
other hand, the functions f that arise as solutions to real world problems are thought to
be much better behaved than a general N -variate function in the sense that they depend
on only a few parameters or variables or they can be well approximated by such functions.
This has led to a concerted effort to develop a theory and algorithms which approximate
such functions well without suffering the effect of the curse of dimensionality. There are
many impressive approaches (see [1, 4, 12, 8, 11, 13] as representative) which are being

∗This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113,
ONR N00014-09-1-0107; the AFOSR Contract xxxxxx; the ARO/DoD Contracts W911NF-05-1-0227
and W911NF-07-1-0185; the NSF Grant DMS-0810869; and the Polish MNiSW grant N201 269335.
This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah
University of Science and Technology (KAUST).

1

developed in a variety of settings. There is also the active literature in compressed sens-
ing which is based on the model that real world functions are sparsely represented in a
suitable basis (see e.g. [2, 6, 3] and the references in these papers).

The present paper will study one particular version of variable reduction in high di-
mension. Our first results assume that f is a continuous function defined on Ω := [0, 1]N

but it depends on just ` of the coordinate variables: f(x1, . . . , xN) = g(xi1 , . . . , xi`), where
i1, . . . , i` are not known to us. We are given a budget m of questions we can ask about
f . Each question takes the form: What is the value of f at a point of our choosing? We
want then to approximate f from these point values. We are interested in what are the
best questions to ask and to what error can we capture f as we allow the number m of
questions to increase. We shall measure the error of approximation in the norm

‖ · ‖ := ‖ · ‖C(Ω), (1.1)

where C(Ω) is the space of continuous functions on Ω and the norm is the supremum
norm on Ω. Measuring the error in other norms is also of interest but is not discussed
here. The quantitative results we obtain will be made under some smoothness assumption
on g in the form of Lipschitz or Besov smoothness.

We consider both the nonadaptive setting, where the m points are set in advance, as
well as the adaptive setting, where the questions are allowed to depend on the answers to
the prior querries. A second problem we discuss is when f is not a function of ` variables
but it can be approximated to some tolerance ε by such a function. We seek again sets of
points where the knowledge of the values of f at these points will allow us to approximate
f well.

Let us mention one special case of our theory which is particularly easy to understand.
Suppose that g is in Lipα and the coordinates i1, . . . , i` are known to us. Then, by
asking for the values of f at m = L` appropriately spaced points, we could recover f
to the accuracy |g|Lip αL−α in the norm of C(Ω). We show that we can obtain similar
estimates even when the coordinates i1, . . . , i` are not known to us. However, to achieve
this performance we have to ask slightly more questions. For example, we give an adaptive
algorithm in §4, see Theorem 4.2, which asks for the values of f at m = C(`)L`(log2 N)
points and from these values gives an approximation with accuracy |g|Lip αL−α. The
additional factor log2 N is the price our algorithm pays for not knowing the coordinates
i1, . . . , i`.

The paper is organized as follows. In the next section, we gather a few well-known
results about multivariate functions and their approximation which we need later. In §3,
we discuss the case when g is a univariate function. Our reason for discussing this case
separately from the general case of g being `-variate is that the arguments are particularly
simple and transparent. This will give the reader a good anchor for understanding the
general case which is discussed in §4.

In §4, we consider two settings. Our first algorithms apply when f is known to
depend only on ` variables. The construction of the favorable set of points where we
ask for the values of f in these algorithms is based on having a family A of partitions
of {1, . . . , N} into ` disjoint sets. The requirements on A are given in what we call the
Partition Assumption, formulated in §4. The second algorithms we consider apply to
any continuous f which is defined on Ω and the performance of the algorithms depends

2

on how well f can be approximated by functions which depend only on ` variables. The
second algorithms require a second set B of partitions which satisfy a property we call
Partition Assumption II.

The smaller the collection A, the smaller the number of point evaluations of f that
is needed in our algorithms. Therefore, it is very interesting to give constructions of
partitions which satisfy the Partition Assumption with #(A) small. The Paritition
Assumption is called perfect hashing in theoretical computer science (see [7, 9]). We
recall what is known about constructions of such sets A in the last section of this paper.
There, for the convenience of the reader, we include a standard probabilistic argument
to show the existence of sets A with small cardinality which satisfy the Partition As-
sumption for general `. We also discuss how to obtain collections B which satisfy the
Partition Assumption II.

Finally, let us mention that hashing and perfect hashing techniques are frequently used
in theoretical computer science to reduce computational cost. The closest work in that
field to what we are doing in this paper is what are called the JUNTA theorems. The
JUNTA theorems use hashing to determine change variables in a discrete setting. While
their techniques have similarity to our approach, they do not consider the approximation
setting of our paper.

2 Simple facts about approximation

Let Ω0 := [0, 1]`. Given any h = 1/L with L an integer, we denote by

L := hL` := {h(i1, . . . , i`) : 0 ≤ i1, . . . , i` ≤ L}, (2.1)

the lattice of equally spaced points (spacing h) on Ω0. Given the values of a function
g ∈ C(Ω0) at the set of points L, there are many ways to create a favorable approximation
to g from these values. Rather than spell out exactly the approximation scheme and the
corresponding smoothness classes which guarantee an approximation rate, we instead
postulate the properties we need of such a system. We give some examples of such
approximation schemes at the end of this section.

We now describe the formal setting in which we shall work. For each h = 1/L, we
assume that Ah is a linear mapping from C(Ω0) into itself which satisfies the following:

Approximation Properties:

(i) The value of Ah(g) depends only on g|hL`
. Thus, if g = g̃ on hL`, then Ah(g) =

Ah(g̃).

(ii) There is an absolute constant C0 such that ‖Ah(g)‖C(Ω0) ≤ C0 max
x∈hL`

|g(x)|, for all

h = 1/L, L = 1, 2,

(iii) Ah(g)≡g if g is constant.

(iv) If g|hL`
depends only on the variables xj1 , . . . , xjk

, k ≤ ` then Ah(g) also depends
only on these variables.

3

(v) If π is any permutation of the variables x = (x1, . . . , x`) (which can respectively be
thought of as a permutation of the indices {1, . . . , `}), then Ah(g(π(·)))(π−1(x)) =
Ah(g)(x), x ∈ Ω0.

We define the following approximation class:

As := As((Ah)) = {g ∈ C(Ω0) : ‖g−Ah(g)‖C(Ω0) ≤ Chs, h = 1/L, L = 1, 2, . . .}, (2.2)

with semi-norm
|g|As := sup

h

{
h−s‖g − Ah(g)‖C(Ω0)

}
. (2.3)

We obtain the norm on As by adding ‖ · ‖C(Ω0) to the semi-norm. As will be discussed
below, there is typically a range 0 < s ≤ S, where the approximation classes can be
characterized as smoothness spaces.

We need the following simple fact about As functions.

Lemma 2.1 Suppose g ∈ As and |g(x)| ≤ ε, x ∈ hL`. Then,

‖g‖C(Ω0) ≤ C0ε + |g|Ashs, (2.4)

where C0 is the constant in Approximation Property (ii).

Proof: This follows directly from the triangle inequality

‖g‖C(Ω0) ≤ ‖g − Ah(g)‖C(Ω0) + ‖Ah(g)‖C(Ω0) ≤ |g|Ashs + C0ε. 2

There are several ways to construct operators Ah of the above form. However, spelling
out their details can be cumbersome and this is why we have chosen the above approach
of merely postulating their existence. The most prominent operators would be tensor
product quasi-interpolant constructions such as those used in spline theory, shift invariant
space theory, and wavelet theory (see e.g. [5, 10] as representative). Quasi-interpolants
begin with a function φ, its dilate φh and the shift invariant space Sh(φ) spanned by
the translates of φh with respect to the lattice hL`. A common setting (for example in
multivariate box spline theory) is that the shifts of φ are locally linearly independent.
It follows that the point evaluation functionals at the lattice points hL` are linearly
independent and span the space of all functionals defined on Sh(φ). This enables one to
construct projectors Ah mapping C(IR`) into Sh(φ) of the form

Ah(f) =
∑

p∈hL`

cp(f)φh(x− p), (2.5)

where each linear functional cp is a finite linear combination of point evaluation functionals
at points from the lattice hL` near p. These functionals can even be chosen so that
the evaluations are done only at points inside Ω0 whenever the support of φh(· − p)
intersects Ω0 nontrivially. In quasi-interpolant constructions, the spaces As correspond
to the generalized Lipschitz spaces of order s (equivalently the Besov space Bs

∞(C(Ω0))).

4

3 The case of one change variable

It will be instructive to consider first the case when f depends only on one coordinate
variable where the arguments and proofs are most transparent. That is, we first suppose
f(x1, . . . , xN) = g(xj) with j unknown to us. Later we treat the case where f is only
approximated by such a function g.

3.1 Non-adaptive algorithms

We first consider non-adaptive algorithms in which we spell out all the query points in
advance. Later, we consider adaptive algorithms which allow the query points to depend
on the answers to the previous questions.

The set of points where we will ask for the values of f is the union of two point sets.
The first of these sets consists of what we call base points. In the case of one variable
the base points are all points in the set P := {Pi := L−1(i, i, . . . , i)}L

i=0. Clearly there are
L + 1 such base points. The important property of this set is that when its points are
projected onto any of the coordinate axes, we get a set of L + 1 equally spaced points.

The second set of points we need are padding points. These points are used to find
the coordinate j. Padding points are associated to a pair of points P, P ′ ∈ P and are
constructed as follows. Every integer j ∈ {1, ..., N} has a unique binary representation
j = 1 +

∑n
k=0 bk(j)2k, where n := dlog2 Ne − 1 and each bit bk(j) ∈ {0, 1}. Given a pair

of points P, P ′ ∈ P and a value of k ∈ {0, 1, ..., n}, we define the point [P, P ′]k whose j-th
coordinate is P (j) (i.e. the same as the j-th coordinate of P) if bk(j) = 0 and otherwise
this coordinate of [P, P ′]k is defined to be the same as the j-th coordinate of P ′.

3.1.1 Algorithm 1

For this first algorithm, we ask for the values of f at the base points in P given above.
We also ask for the values of f at the following set Q of padding points. To each pair
Pi−1, Pi, i = 1, . . . , L, of consecutive points, we associate the padding points [Pi−1, Pi]k,
k = 0, . . . , n. Thus the collection of padding points is Q := {[Pi−1, Pi]k, i = 1, . . . L, k =
0, . . . , n}. Clearly there are L(n + 1) points in Q.

Notice that f(Pi) = g(i/L), i = 0, . . . , L. Therefore, after receiving the values of f at
the base points P , we know g(i/L), i = 0, . . . , L. We use the approximation operator Ah

of the previous section to construct the function ĝ = Ah(g). Note that the construction of
ĝ only uses the points from P . The function ĝ(xj) would provide a good approximation
to f if we knew j. Also, observe that if f is constant on P then we do not need to know j.
If f is not constant on P then we use the padding points to find j. There is an i such that
f(Pi−1) 6= f(Pi) with 1 ≤ i ≤ L. For each k = 0, . . . , n, the value f([Pi−1, Pi]k) is either
f(Pi−1) or f(Pi) because of the way the padding points are constructed and the fact that
f depends on only one variable. If it is f(Pi−1), then we know that bk(j) = 0; if it is f(Pi)
then we know bk(j) = 1. Thus from the answer to these questions, we know all the bits of
j and hence we know j. We define our approximation to f to be f̂(x1, . . . , xN) := ĝ(xj).

Theorem 3.1 If f(x1, . . . , xN) = g(xj) with g ∈ As, then the function f̂ defined above
satisfies

5

‖f − f̂‖C(Ω) ≤ |g|Ashs. (3.1)

This algorithm uses at most L + 1 + Ldlog2 Ne evaluations of f .

Proof: We have f(x1, . . . , xN) − f̂(x1, . . . , xN) = g(xj) − Ah(g)(xj). Therefore, (3.1)
follows from (2.2) and (2.3) since g ∈ As. 2.

Note that the logarithm appearing in the number of evaluations needed of f is the
price we pay for not knowing the change coordinate j.

3.1.2 Algorithm 2

The purpose of our second algorithm is to handle the case where f is not necessarily
a function of just one variable but it can be approximated well by such a function. To
describe this we introduce the following notation. Given a univariate function g, we define
the multivariate functions

Iν(g)(x1, . . . , xN) := g(xν), ν = 1, . . . , N. (3.2)

Our starting assumption about f is that for some g ∈ As, some ν ∈ {1, . . . , N}, and
some ε > 0, we have

‖f − Iν(g)‖C(Ω) ≤ ε. (3.3)

The algorithm given below does not need to know g, ν or ε.
In this second algorithm we take Q := {[Pi, Pi′]k, 0 ≤ i < i′ ≤ L, k = 0, . . . , n}.

Clearly there are now (n + 1)(L + 1)L/2 points in Q. As in the first algorithm, we use
the values of f at the points Pi ∈ P , i = 0, . . . , L and apply the operator Ah, h = 1/L to
receive a function ĝ.

Now to find a change coordinate j from this information, we choose a pair Pi, Pi′ ,
i < i′, for which |f(Pi) − f(Pi′)| is the largest among all such pairs. To identify the
change coordinate, we proceed as follows. We consider the value f(Qk) at each of the
points Qk := [Pi, Pi′]k, k = 0, . . . , n. If this value is closest to f(Pi), we assign the bit
bk = 0. If this value is closest to f(Pi′) or if there is a tie, we assign the bit bk = 1. These
bits determine an integer j := 1 +

∑n
k=0 bk2k. If j ≤ N , we define f̂(x1, . . . , xN) = ĝ(xj).

Otherwise, we define f̂(x1, . . . , xN) := ĝ(x1).

Theorem 3.2 Suppose that f is a function of N variables for which there is a function
g ∈ As and a ν ∈ {1, . . . , N}, such that

‖f − Iν(g)‖C(Ω) ≤ ε. (3.4)

Then the function f̂ defined above satisfies

‖f − f̂‖C(Ω) ≤ (6C0 + 1)ε + 3|g|Ashs, (3.5)

where C0 is the constant of Lemma 2.1. The definition of f̂ uses at most L + 1 +
dlog2 NeL(L + 1)/2 point evaluations of f .

6

Proof: We consider two cases.
Case 1: We assume in this case that the maximum deviation in the values f(Pi),

i = 0, . . . , L, is > 4ε. We choose i, i′ such that |f(Pi) − f(Pi′)| is largest. At each of the
padding points Qk := [Pi, Pi′]k, k = 0, . . . , n, we have |f(Qk) − Iν(g)(Qk)| ≤ ε. Now if
bk(ν) = 0 then Iν(g)(Qk) = Iν(g)(Pi) (since Iν(g) is a function only of the ν-th variable)
and therefore f(Qk) is within 2ε of f(Pi) but further than 2ε from f(Pi′). This means
that the bit bk assigned by the algorithm is zero and therefore bk = bk(ν). The same
conclusion holds if bk(ν) = 1. Hence the value j determined by the algorithm is equal to
ν. We therefore obtain from the definition of As that

‖f − f̂‖C(Ω) ≤ ‖f − Iν(g)‖C(Ω) + ‖g − ĝ‖C([0,1]) ≤ ε + |g|Ashs, (3.6)

which is the desired inequality.
Case 2: In this case, the maximum deviation of f over the points Pi, i = 0, . . . , L,

is ≤ 4ε. Hence the maximum deviation of g over the points hL1 = {0, 1/L, . . . , 1} is at
most 6ε. We consider the function g̃ = g − c, where c is the median value of g on hL1.
Then |g̃| ≤ 3ε on hL1 and |g̃|As = |g|As . From Lemma 2.1, we see that ‖g̃‖C([0,1]) ≤
3C0ε + |g|Ashs. It follows that

‖Iν(g) − Ij(g)‖C(Ω) ≤ ‖Iν(g) − c‖C(Ω) + ‖c− Ij(g)‖C(Ω) = 2‖g̃‖C([0,1]) ≤ 6C0ε + 2|g|Ashs.
(3.7)

Hence,

‖f − Ij(g)‖C(Ω) ≤ ‖f − Iν(g)‖C(Ω) + ‖Iν(g) − Ij(g)‖C(Ω) ≤ (6C0 + 1)ε + 2|g|Ashs. (3.8)

Finally, using that ‖f̂ − Ij(g)‖C(Ω) ≤ |g|Ashs with (3.8), we arrive at (3.5). Notice that in
this case we may have selected a wrong change coordinate j. However, since the maximum
deviation of f over Pi, i = 1, . . . , L, is small, estimate (3.5) still holds. 2.

3.2 Adaptive algorithms

The algorithms we have just described and analyzed are non-adaptive. We can save some
on the number of point values we need for f if we work adaptively. We begin by asking
for the values of f on the point set P of base points exactly as before. However, now,
for the adaptive version of Algorithm 1, we identify i such that f(Pi−1) 6= f(Pi); if there
is no such pair we do not have to identify a change coordinate since Ah(g) is constant.
To identify the change coordinate, we only ask for the values of f at the padding points
[Pi−1, Pi]k associated with this pair. This means the total number of values we need for f
is L + 1 + dlog2 Ne. Similarly, in Algorithm 2, we identify the pair Pi, Pi′ corresponding
to maximum deviation of f on P and ask only for the values of f at the padding points
[Pi, Pi′]k associated with this pair. This again gives L + 1 + dlog2 Ne point values.

In this adaptive version of Algorithm 1, one can prove that the number of points at
which we require the value of f is (up to a fixed constant multiplicative factor) optimal,
provided we use standard constructions of the operators Ah (such as univariate spline
interpolants). This is proved by using widths and Kolmogorov entropy. However, this
will be reported on in another work.

7

4 The general case of ` variables

In this section, we consider the general case where the number of variables in g is `. We
assume that we know ` (the algorithms work equally well if we only know a bound for `).
We present two algorithms which generalize Algorithms 1 and 2 from above. They have
a similar flavor to the one variable case but have some important differences.

Our starting point is to assume that we have a set P of base points in IRN with certain
properties. Let A be a collection of partitions A of {1, 2, . . . , N}. Each A consists of `
disjoint sets A1, . . . , A`. We require:

Partition Assumption: The collection A is rich enough so that given any ` distinct
integers i1, . . . , i` ∈ {1, . . . , N}, there is a partition A in A such that each set in A
contains precisely one of the integers i1, . . . , i`.

This condition is known as perfect hashing in theoretical computer science and is
heavily used in sparse approximation and in finding change coordinates in a different
setting than ours. It is an interesting question how to create such a class of partitions and
how many partitions are needed to guarantee the Partition Assumption. We discuss
this issue in the following section, where we show that C(`) log2 N partitions suffice. But
for the remainder of this section, we merely assume that we have such a collection A in
hand.

Corresponding to any A ∈ A, we construct the set of base points

P = h
∑̀
i=1

αiχAi
, αi ∈ {0, 1, . . . , L}, h = 1/L. (4.1)

In other words, P has coordinate value hαi at each of the coordinate indices in Ai. We
denote by P the set of all such base points. Note that there are (L + 1)`#(A) such base
points. An important property of the base points which we use often is the following:

Projection Property: Given any j = (j1, . . . , j`), with distinct jq ∈ {1, . . . , N},
q = 1, . . . , `, and any integers 0 ≤ ij1 , . . . , ij`

≤ L, there is a point P ∈ P such that the
coordinate jν of P is hijν , ν = 1, . . . , `.

Indeed, it is enough to take a partition A from A such that each jν is in a different
set Ai of A. Then the point (4.1) with the appropriate value of αi = ijν when jν ∈ Ai

has the value hijν at coordinate jν .
In analogy with our previous notation, given a sequence j = (j1, . . . , j`), of distinct

integers from {1, . . . , N}, and a function g defined on Ω0 := [0, 1]`, we define

Ij(g)(x1, . . . , xN) = g(xj1 , . . . , xj`
). (4.2)

We also use the following restriction operator. Given any partition A = (A1, . . . , A`)
of {1, 2, . . . , N} we define the mapping RA from functions on Ω into functions on hL` by

RA(f)(h(i1, . . . , i`)) = f(h
∑̀
j=1

ijχAj
), h = 1/L. (4.3)

8

4.1 General adaptive algorithm 1

In this section, we introduce an algorithm which gives an approximation to any function f
which is equal to Ij(g) with both j and g unknown to us. In contrast with the one variable
case, we first describe the adaptive version of this algorithm and then later mention the
modifications necessary to have a non-adaptive algorithm. We call this adaptive algorithm
GA Algorithm 1, indicating that it is general (applies to a general `) and adaptive. The
algorithm requires us to know ` (essentially just a bound for `) but the assumption of
knowing ` is ameliorated in the second algorithm which works in an approximation setting.

We start GA Algorithm 1, by asking for the values of f at all of the base points
P described in (4.1). We examine the values of f at these points and from these values
we choose one of the partitions in A, call it A∗, as follows. Given any A ∈ A, A =
(A1, . . . , A`), we examine the base points P subordinate to this A. We say the set Ai is a
change set if there are P and P ′, both subordinate to A, for which P and P ′ only differ
on Ai and f(P) 6= f(P ′). We define n(A) as the number of sets Ai, i = 1, . . . , `, in A,
which are change sets. Now we define

A∗ := argmax
A∈A

n(A). (4.4)

We call any such partition a maximal change partition for f . We note that A∗ is not
necessarily unique and so the statements below referring to A∗ refer to any of the A∗’s.

We say that the change coordinate jν is visible at scale h = 1/L if there exist two
points h(i1, . . . , iN) and h(i′1, . . . , i

′
N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L, which are identical in all

coordinates except for the jν-th coordinate and f(h(i1, . . . , iN)) 6= f(h(i′1, . . . , i
′
N)). We

can always take i′jν
= ijν + 1. Then the following lemma holds.

Lemma 4.1 If A∗ is any maximal change partition, then every change set A∗
i from A∗

contains exactly one coordinate visible at scale h. The sets A∗
i from A∗ which are not

change sets do not contain any coordinates visible at scale h.

Proof: Let j′1, . . . , j
′
k, k ≤ ` be the change coordinates which are visible at scale h.

From the Partition Assumption there is a partition A∗∗ such that each j′ν lies in a
different set A∗∗

i of A∗∗. Let us now check that each set A∗∗
i which contains a visible

change coordinate (call it j′ν) is a change set. Indeed, there exists two points h(i1, . . . , iN)
and h(i′1, . . . , i

′
N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L, which are identical in all coordinates except

for the j′ν-th coordinate and f(h(i1, . . . , iN)) 6= f(h(i′1, . . . , i
′
N)). We define P as the point

subordinate to A∗∗ such that for any A∗∗
µ which contains a visible change coordinate j,

the coordinate values of P on A∗∗
µ is the same as ij. For sets that do not contain a visible

change coordinate, we can define the coordinate value in an arbitrary way. It follows
that f(P) = f(h(i1, . . . , iN)). Indeed, we can change P to h(i1, . . . , iN) by just altering
coordinates which are not visible change coordinates of f at scale h. We define P ′ by using
the same construction. Then we see that f(P) = f(h(i1, . . . , iN)) 6= f(h(i′1, . . . , i

′
N)) =

f(P ′) and so A∗∗
i is a change set.

We have just shown that there is a partition A∗∗ which contains k change sets. Ob-
viously, no partition A can contain more than k change sets since each change set must

9

contain at least one visible change coordinate. Finally, for any partition A∗ such that
n(A∗) = k, we must have that each visible change coordinate lies in a different set A∗

i . 2
We can now easily identify each of the change coordinates that is visible at scale h. For

the partition A∗, we mark the change sets A∗
i (each one of them, by Lemma 4.1 contains

a visible change coordinate). We take a pair of base points P, P ′ subordinate to A∗ which
differ only on the coordinates in A∗

i and satisfy f(P) 6= f(P ′). For P, P ′ we create the
padding points Qk := [P, P ′]k, k = 0, . . . n, corresponding to binary partitions as follows:
Qk and P differ only on the coordinates in A∗

i which have k-th binary bit equal to one,
and on these coordinates Qk has the same value as P ′. We ask for the value of f(Qk) and
check whether it is f(P) (in which case we assign bk = 0) or f(P ′) (in which case bk = 1).
The bits bk, k = 0, . . . , n, uniquely determine the change coordinate in A∗

i .
The change coordinates of f that are visible at scale h have been identified. There

may be k ≤ ` of these coordinates, so we add arbitrarily ` − k coordinates to obtain
j′ = (j′1, j

′
2, · · · , j′`), with 1 ≤ j′1 < j′2 < · · · < j′`.

We fix a partition A′ that separates all the coordinates in j′ and we consider the base
points P defined in (4.1), subordinate to this partition. We can assume without loss of
generality that j′1 ∈ A′

1, . . . , j
′
` ∈ A′

`. We define ĝ = Ah(RA′(f)) and f̂(x1, . . . , xN) :=
Ij′(ĝ) = ĝ(xj′

1
, . . . , xj′

`
).

Theorem 4.2 If f = Ij(g) with g ∈ As, then the function f̂ determined by GA Algo-
rithm 1 satisfies

‖f − f̂‖C(Ω) ≤ |g|Ashs. (4.5)

The number of point values used in the algorithm is

≤ (L + 1)`#(A) + `dlog2 Ne. (4.6)

Proof: The algorithm requires the values of f at each of the base points which is #(P) =
(L + 1)`#(A) and then for each cell of A∗ which has a change coordinate it asks for
n + 1 = dlog2 Ne padding points to determine the binary bits of the visible change
coordinate in this cell. Since there are at most ` visible change coordinates we arrive at
(4.6).

To prove the bound on the approximation error, we define S0 := Ah(g) and write

f − f̂ = Ij(g) − Ij(S0) + Ij(S0) − Ij′(ĝ). (4.7)

The first term on the right side satisfies

‖Ij(g) − Ij(S0)‖C(Ω) = ‖g − Ah(g)‖C(Ω0) ≤ |g|Ashs. (4.8)

From Approximation Properties (iii), (iv) and (v), and the fact that both j and
j′ contain the coordinate indices of any visible coordinates, we see that Ij(S0) = Ij′(ĝ).
This means that the second term on the right side of (4.7) is identically zero. We have
therefore proved (4.5). 2.

10

4.2 A non-adaptive version of GA Algorithm 1

If we want to work non-adaptively, i.e. spell out all queries in advance independent of f ,
then we need to only make the following modification in GA Algorithm 1. Since we
do not know which partition has maximal change, we need to define the padding points
[P, P ′]k, k = 0, 1, . . . , n, for each partition A, each choice of points P, P ′, subordinate to
this partition and each choice of a set Ai from A. The set Q of all such padding points
has cardinality dlog2 Ne`L(L + 1)`#(A). We can then proceed as in GA Algorithm 1
to find a maximal change partition A∗ and then use the padding points to find the visible
change coordinates. We see that the total number of queries needed in the non-adaptive
algorithm is considerably more than in the adaptive case.

4.3 General adaptive algorithm 2

We now consider the case where f is not a function of ` variables but rather that it can
be approximated by such a function. We assume that we are given a function f on Ω for
which there is a function g ∈ As and a j = (j1, . . . , j`), 1 ≤ j1 < · · · < j` ≤ N , such that

‖f − Ij(g)‖C(Ω) ≤ ε. (4.9)

We do not assume that we know ε, j or g. However, we do assume we know `. One could
equally well work with just a bound for `.

The algorithm we describe is adaptive. It begins with the same set P of base points as
in GA Algorithm 1. However, we modify significantly the padding points which enter
into the algorithm.

For each A and each i = 1, . . . , `, we choose exactly one pair of base points P, P ′

subordinate to A as follows. We require that P and P ′ agree on all of the sets Aµ 6=
Ai. Among all these possible pairs of points we choose one for which the oscillation
osc(P, P ′) := |f(P)− f(P ′)| is maximal. There are `#(A) such pairs. We call these pairs
maximal.

We construct padding points associated to any maximal pair P, P ′. However, now the
padding points are constructed by using a different set of partitions than the binary ones.
We consider partitions B of {1, . . . , N} into two disjoint sets B0 and B1. We introduce
the following property of a set B of such partitions:

Partition Assumption II: The set B of partitions is said to have this property if
given ` + 1 distinct integers j, j1, . . . , j`, there is a partition B ∈ B such that the set in
B that contains j does not contain any of the j1, . . . , j`.

We want such a set B with cardinality as small as possible. We shall see in the next
section that B is easily constructed from perfect hashing sets. We fix a B that satisfies
Partition Assumption II.

For each maximal pair P, P ′ and each B ∈ B, we define two padding points Qν :=
[P, P ′]B,ν , ν = 0, 1, as follows. The j-th coordinate of Qν for each j ∈ Aµ, µ 6= i, is the
common j-th coordinate of P and P ′. Namely, we do not alter the base points except on
Ai. For each j ∈ Ai, the j-th coordinate of Qν is the same as that of P ′ if j ∈ Ai ∩ Bν .
Otherwise it is the same as that of P . In other words, the padding points have the same
coordinates as P , except that the coordinates with indices in Bν ∩Ai are changed to the

11

coordinates of P ′. For each maximal pair there will be at most 2#(B) padding points,
corresponding to the #(B) choices of B and the two choices for ν.

We are only interested in certain maximal pairs. We call a pair P, P ′ useful if for each
B ∈ B, there is exactly one value ν(B) ∈ {0, 1} such that

|f([P, P ′]B,ν(B)) − f(P ′)| < 1

4
osc(P, P ′), (4.10)

and

|f([P, P ′]B,µ) − f(P)| < 1

4
osc(P, P ′), (4.11)

for µ 6= ν(B).
For each maximal and useful pair of points P, P ′ which differ on Ai, we define

JP,P ′ :=
⋂
B∈B

Bν(B) ∩ Ai. (4.12)

We say that a change coordinate jν is ε-visible at scale h, if for some pair of points
P = h(i1, . . . , iN) and P ′ = h(i′1, . . . , i

′
N), 0 ≤ i1, i

′
1, . . . , iN , i′N ≤ L which are identical in

all coordinates except for the jν-th coordinate, we have

|f(P) − f(P ′)| ≥ 12ε. (4.13)

The following lemma will show that the set of indices JP,P ′ is either empty or contains
precisely one integer j.

Lemma 4.3 The following properties hold:
(i) For each maximal and useful pair P, P ′ the set JP,P ′ is either empty or it contains

precisely one integer j,
(ii) For each change coordinate jr which is ε-visible at scale h, there is a maximal,

useful pair P, P ′ for which JP,P ′ = {jr}.

Proof: (i) Given any two distinct integers j, j′ ∈ Ai, we want to show that not both
of these integers can be in JP,P ′ . To see this, we take a partition B such that j ∈ B0 and
j′ ∈ B1. The existence of such a partition follows from the Partition Assumption II.
From the definition of useful, we cannot have |f([P, P ′]B,ν) − f(P ′)| < osc(P, P ′)/4 for
both ν = 0, 1. So only one of these integers j, j′ can be in JP,P ′ .

(ii) Given a change coordinate jr which is ε-visible at scale h, we know there are
points R := h(i1, . . . , iN) and R′ := h(i′1, . . . , i

′
N) at which |f(R′) − f(R)| ≥ 12ε and R

and R′ differ only in the coordinate jr. By the Partition Assumption, we can choose a
partition A such that each set Aµ, µ = 1, . . . , `, contains exactly one change coordinate.
Let jr be in the set Ai. Consider the pairs Q, Q′ subordinate to A, for which Q and
Q′ differ only on Ai. We can take such a pair, call it Q0, Q

′
0, so that Q0 is identical to

R at each change coordinate and Q′
0 is identical to R′ at each change coordinate. The

pair Q0, Q
′
0 may not be maximal so we choose a pair P, P ′ which is maximal from the

various Q, Q′. Then clearly osc(P, P ′) ≥ osc(Q0, Q
′
0) ≥ 12ε. By construction, we have

that Ij(g)(Q0) = Ij(g)(R) and Ij(g)(Q′
0) = Ij(g)(R′).

12

We want to show that P, P ′ is useful and jr ∈ Bν(B) for all B ∈ B. First note that
osc(P, P ′) ≥ osc(Q0, Q

′
0) ≥ |Ij(g)(R′) − Ij(g)(R)| − 2ε ≥ 8ε. Now, given any B ∈ B, let

jr ∈ Bν(B), ν(B) ∈ {0, 1}. Then [P, P ′]B,ν(B) agrees with P ′ in all change coordinates.
Hence Ij(g)([P, P ′]B,ν(B)) = Ij(g)(P ′), and therefore we have

|f([P, P ′]B,ν(B)) − f(P ′)| ≤ |f([P, P ′]B,ν(B)) − Ij(g)([P, P ′]B,ν(B))| + |Ij(g)(P ′) − f(P ′)|

≤ 2ε ≤ 1

4
osc(P, P ′). (4.14)

Similarly if µ is the complementary index in {0, 1} to ν(B), then [P, P ′]B,µ agrees with
P in all change coordinates and hence

|f([P, P ′]B,µ) − f(P)| ≤ |f([P, P ′]B,µ) − Ij(g)([P, P ′]B,µ)| + |Ij(g)(P) − f(P)|

≤ 2ε ≤ 1

4
osc(P, P ′). (4.15)

Thus, P, P ′ is useful and jr ∈ JP,P ′ , as desired. 2

Let us denote by J := ∪{JP,P ′ : P, P ′ is maximal and useful}. For any j ∈ J , there
may be many useful pairs P, P ′ which generate j. We define osc(j) := max{osc(P, P ′) :
JP,P ′ = {j}}. Note that the above argument shows that

osc(j) ≥ 8ε, whenever j is an ε−visible change coordinate at scale h. (4.16)

We can now describe our second algorithm.

GA Algorithm 2:

(i) We identify the maximal pairs P, P ′ and check if they are useful or not.

(ii) For each maximal, useful pair P, P ′ we find JP,P ′ and then the set J .

(iii) We choose ` distinct entries j′1, . . . , j
′
` in J for which osc(j) is largest with ties

preferring the smallest j. If #J < `, we add arbitrary coordinates to have ` of
them to arrive at 1 ≤ j′1 < · · · < j′` ≤ N .

(iv) Now that we have found the ` potential change coordinates j′ = (j′1, . . . , j
′
`), we fix

a partition A′ = (A′
1, . . . , A

′
`) ∈ A which separates j′1, . . . , j

′
`. The existence of such

a partition follows from the Partition Assumption. We can assume without loss
of generality that j′1 ∈ A′

1, . . . , j
′
` ∈ A′

`. We define our approximating function

f̂ = Ij′AhRA′(f). (4.17)

The defined f̂ is not necessarily unique but the results which follow will hold for any such
f̂ .

Lemma 4.4 Every change coordinate j1, . . . , j` which is ε-visible at scale h is in the list
j′1, . . . , j

′
`.

13

Proof: If jr is an ε-visible change coordinate at scale h, then by (4.16) osc(jr) ≥ 8ε.
Thus, it is enough to show that for any j ∈ J which is not a change coordinate, we have
osc(j) < 8ε. Suppose P, P ′ is any maximal, useful pair for which JP,P ′ = {j}. We use
Partition Assumption II to find a B ∈ B such that j ∈ B0 and all the j1, . . . , j` ∈ B1

(the reverse case is handled in the same way). Since P, P ′ is useful and j ∈ B0, we have
that ν(B) = 0 and for Q0 := [P, P ′]B,0

|f(P ′) − f(Q0)| ≤
1

4
osc(P, P ′). (4.18)

But we also have

|f(P) − f(Q0)| ≤ 2ε + |Ij(g)(P) − Ij(g)(Q0)| = 2ε, (4.19)

where we have used the fact that Ij(g)(P) = Ij(g)(Q0) because B0 does not contain any
change coordinate from j. Combining (4.18) and (4.19), we obtain

osc(P, P ′) = |f(P ′) − f(P)| ≤ 1

4
osc(P, P ′) + 2ε. (4.20)

Hence osc(P, P ′) ≤ 8
3
ε. This shows that osc(j) ≤ 8

3
ε, and proves the lemma. 2

Our main result of this section is the following theorem.

Theorem 4.5 Suppose that f ∈ C(Ω) and there exists a function g ∈ As and a vector
j = (j1, . . . , j`) such that ‖f − Ij(g)‖C(Ω) ≤ ε. Then the function f̂ created by GA
Algorithm 2 satisfies

‖f − f̂‖C(Ω) ≤ |g|Ashs + (C0 + 1)(28` + 1)ε, (4.21)

where C0 is the constant of Approximation Property (ii). The number of point values
used in the algorithm is

≤ (L + 1)`#(A) + 2`#(A)#(B).

Proof: The algorithm requires the values of f at each of the base points whose number
is (L + 1)`#(A) and then for each maximal pair (there are `#(A) such pairs) it asks for
at most 2#(B) padding points to determine the maximal, useful pairs.

To prove (4.21), we write f = Ij(g) + η, where ‖η‖C(Ω) ≤ ε. It follows that

f̂ = Ij′AhRA′Ij(g) + Ij′AhRA′(η). (4.22)

From Approximation Property (ii), we obtain

‖f − f̂‖C(Ω) = ‖Ij(g) + η − Ij′AhRA′Ij(g) − Ij′AhRA′(η)‖C(Ω)

≤ ‖Ij(g) − Ij′AhRA′Ij(g)‖C(Ω) + ‖η‖C(Ω) + ‖Ij′AhRA′(η)‖C(Ω)

≤ ‖Ij(g) − Ij′AhRA′Ij(g)‖C(Ω) + (C0 + 1)ε. (4.23)

To estimate the remaining term we let 1 ≤ j̄1 < · · · < j̄r ≤ N , be the indices from j
that are ε-visible at scale h (see (4.13)). Recall that our algorithm has identified each of

14

them and hence they are all in j′. We define φ(x1, . . . , xN) := Ij(g)(x̄) where x̄ is identical
to x in all coordinates with indices j̄1, . . . , j̄r and zero otherwise. Let us first note that

‖Ij(g) − φ‖C(Ω) ≤ 14`ε. (4.24)

Indeed, for any coordinate in j that is not in j̄, incrementing just the variable corresponding
to this coordinate cannot change g more than 14ε because these coordinates are not ε
visible at scale h. Since we can go from x̄ to x with ≤ ` such increments, we arrive at
(4.24). This allows us to estimate

‖Ij(g) − Ij′AhRA′Ij(g)‖C(Ω) ≤ ‖Ij(g) − φ‖C(Ω) + ‖φ− Ij′AhRA′φ‖C(Ω)

+ ‖Ij′AhRA′(φ− Ij(g))‖C(Ω)

≤ 14`(C0 + 1)ε + ‖φ− Ij′AhRA′φ‖C(Ω),

where we have used Approximation Property (ii). Now let A be the partition which
separates j. We can again assume jν ∈ Aν , ν = 1, . . . , `. Then Ij′AhRA′φ = IjAhRAφ
because of property (v) and the fact that j̄1, . . . , j̄r are in j and in j′ and φ only depends
on the variables indexed by j̄1, . . . , j̄r. Hence,

‖φ− Ij′AhRA′φ‖C(Ω) = ‖φ− IjAhRAφ‖C(Ω)

≤ ‖φ− Ij(g) − IjAhRA(φ− Ij(g))‖C(Ω)

+ ‖Ij(g − AhRAIj(g))‖C(Ω)

≤ 14`(C0 + 1)ε + |g|Ashs,

which proves the theorem. 2

4.4 A non-adaptive version of GA Algorithm 2

Similarly to GA Algorithm 1, if we want to work non-adaptively, then we need to only
make the following modification in GA Algorithm 2. Since we do not know which pair
of base points P, P ′ is maximal, we need to define the padding points [P, P ′]B,ν , B ∈ B,
ν = 0, 1 for each partition A, each choice of points P, P ′, subordinate to this partition
and each choice of a set Ai from A. The set Q of all such padding points has cardinality
2`L(L+1)`#(B)#(A). We can then proceed as in GA Algorithm 2 to find the maximal
pairs P, P ′ and then check whether they are useful or not. As before, we see that the
total number of queries needed in the non-adaptive algorithm is considerably more than
in the adaptive case.

5 Constructing separating parititions

The algorithms we have given begin with a set A of partitions that satisfy the Partition
Assumption. It is important to know how large A needs to be for this assumption to
hold. Indeed, #(A) controls the size of the sets of base points P and padding points Q
where we sample f . For the completeness of our exposition, we give a probabilistic proof

15

that for any ` there exists a set of partitions A which satisfies the Partition Assumption
and has reasonable cardinality.

We have already noted that the Partition Assumption is known in theoretical
computer science as perfect hashing. We would like to thank Professor Janos Körner
for pointing out bounds for the cardinality of such sets A, see [7, 9]. Here, we give
a simple probabilistic argument, which we learned from Tomasz Luczak, for obtaining
upper bounds on the cardinality of A that gives estimates close to the best known.

Suppose we are given N and ` < N . We are interested in partitions A = (A1, . . . , A`)
of {1, . . . , N} consisting of ` disjoint sets A1, . . . , A`. We view each Ai as a bucket which
will have in it a collection of integers from {1, . . . , N}. To create such sets, we make
draws from a box of balls labeled 1, . . . , `. We randomly draw the first ball. If this ball
has label i then the integer one is placed into the bucket Ai. We then replace the first
ball and randomly draw again, receiving a ball with label i′. We place the integer two
into the bucket Ai′ . We continue in this way N times, thereby putting each integer from
{1, . . . , N} into one of the sets A1, . . . , A`. This gives the first partition A = (A1, . . . , A`).
Notice that some of the sets A1, . . . , A` may be empty. We repeat this experiment m
times, which results in m partitions. We shall decide m later.

If we are given j = (j1, . . . , j`), then it is easy to see that the probability that a random
partition A separates the entries of j into distinct sets is `!/``. Indeed, the probability
that ji is in Ai, for each i = 1, . . . , `, is `−`. But any permutation of the ji will do as well
and we have `! of these. So the probability that a random partition does not separate a
given j is a := (1 − `!

``). Therefore, if we have m independent partitions, the probability

that none of them separates j is am. There are
(

N
`

)
`-tuples j = (j1, . . . , j`), j1 < . . . < j`.

Thus, if
(

N
`

)
am < 1, then a set of m random partitions will separate every j with positive

probability.
To see how large we need to take m we use Stirling’s formula to find(

N

`

)(
1− `!

``

)m

≤
(

N

`

)(
1−

√
2π`

e`

)m

≤ N `(1− e−`)m. (5.1)

If we take m = 2`e` ln N and use the fact that (1 − 1/x)x ≤ e−1, for x > 1, the right
side of (5.1) is < N `e−2` ln N ≤ N−`. Thus, if we take m ≥ 2`e` ln N partitions generated
randomly, then with probability greater than 1−N−`, the resulting set A will satisfy the
Partition Assumption.

We can also use perfect hashing to show the existence of sets B of partitions which
satisfy Partition Assumption II. We take a perfect hashing collectionA which separates
all selections of ` + 1 distinct integers chosen from {1, . . . , N}. Each partition A =
(A1, . . . , A`+1) generates ` + 1 partitions into two sets (Aj,

⋃
i6=j Ai). It is clear that

the collection B of all those partitions satisfy Partition Assumption II. There are
(` + 1)#(A) such partitions in B; We know from the above arguments that A can be
constructed with #(A) ≤ 2(` + 1)e`+1 ln N and so there are constructions which give B
with #(B) ≤ 2(` + 1)2e`+1 ln N . We note that we could also use a direct probabilistic
argument (similar to that above) which gives the slightly better bound #(B) ≤ (` +
1)2` ln N .

16

It remains an interesting question to design partitions constructively which could be
used in conjunction with our algorithms for general `.

References

[1] M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation, Neural Computation, 15 (2003), 1373–1396.

[2] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and
inaccurate measurements, Comm. Pure and Appl. Math., 59 (2006), 1207–1223.

[3] A. Cohen, W. Dahmen and R. DeVore, Compressed sensing and best k-term approx-
imation, JAMS, 22(1) (2009), 211–231.

[4] R. Coifman and M. Maggioni, Diffusion wavelets, Appl. Comp. Harm. Anal., 21(1)
(2006), 53–94.

[5] C. de Boor, Quasi-interpolants and approximation power of multivariate splines,
Computation of Curves and Surfaces, Kluwer, Dordrecht, 1990, 313–345.

[6] D. Donoho, Compressed Sensing, IEEE Trans. Information Theory, 52 (2006), 1289–
1306.

[7] M. Fredman and J. Komlos, On the size of separating systems and families of perfect
hash functions, SIAM J. Alg. Disc. Meth., 5 (1984), 61–68.

[8] E. Greenshtein, Best subset selection, persistence in high-dimensional statistical
learning and optimization under `1 constraint, Ann. Stat., 34 (2006), 2367–2386.

[9] J. Körner and K. Marton, New bounds for Perfect Hashing via Information Theory,
Europ. J. Combinatorics, 9 (1988), 523–530.

[10] J. Levesley and M. Roach, Quasi-interpolation on compact domains, Approximation
Theory, Wavelets and Applications, S. P. Singh (ed.), Kluwer Academic Publishers,
1995, 557–566.

[11] E. Mossel, R. O’Donnell and R. Servedio, Learning Juntas, Proceedings of the 35th
Annual ACM Symposium on Theory of Computing (STOC) San-Diego, 2003, 206–
212.

[12] E. Novak and H. Wozniakowski, Tractability of Multivariate Problems vol. I: Linear
Information, European Math. Soc., 2008.

[13] R. Todor and C. Schwab, Convergence rates for sparse chaos approximations of ellip-
tic problems with stochastic coefficients, IMA J. Num. Anal., 27(2) (2007), 232–261.

17

Ronald DeVore, Department of Mathematics, Texas A&M University, College Station,
TX, rdevore@math.tamu.edu

Guergana Petrova, Department of Mathematics, Texas A&M University, College Sta-
tion, TX, gpetrova@math.tamu.edu

Przemyslaw Wojtaszczyk, Institute of Aplied Mathematics, University of Warsaw, wo-
jtaszczyk@mimuw.edu.pl

18

