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1. INTRODUCTION
This article continues the point of view that the "natural” theory of

automata on trees is that of automata which are alternating in the sense of
Muller and Schupp [2]. We recall the basic definitions below. In this article we
use alternating automata to give a “direct” automata-theoretic characterization of

the languages of k-ary trees which are weakly—-definable. that is to say. definable

by a formula in the weak monadic logic of the tree where one allows
quantification only over finite sets. We define a "weak" acceptance condition and
show that a language is weakly definable if and only if it is accepted by an
alternating automaton using the weak acceptance condition. Secondly, alternating
automata are closely related to complexity and we give a simple proof of a bound
on the complexity of deciding formulas whose prenex normal form has n
alternations of quantifiers.

The study of automata on infinite trees rests on the fundamental
articles of Rabin (3.41. In [4] Rabin gave an ingeneous characterization of
weakly definable languages and our proof uses one direction of his resuit in an
essential way. We thus begin with a discussion of acceptance conditions and
explain Rabin’s resuit. in his pioneering work on finite automata accepting infinite
words Biichi worked with nondeterministic automata and supposed the
acceptance condition to be defined by a subset F of the state set Q. An
infinite calcuiation h of the automaton accepts if h contains some state from
F infinltely often. The problem with nondeterministic automata is. of course.
compiementation, and given a BUchi automaton on infinite words, It is not
generaly true that there is a deterministic Blchi automaton which accepts the
same language. In order to be able to determinize. one must use the
acceptance condition of Muller which is defined by a family F of subsets of the
state set. An infinite calculation h of the automaton accepts if Inf(h) e F
where Inf(h) Is the set of states occurring infinitely often in h. McNaughton
proved that any regular set of infinite words can be accepted by a deterministic
Muller
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automaton. The relationship between Muller acceptance and complementation is
not surprising when one notes that the denial of a Biichi acceptance condition
is not a condition of the same type while the denial of the Muller condition
defined by a family F is simply the condition defined by the complementary
family F. '

Rabin [31 showed that it was necessary to use Muller acceptance when
considering automata on trees. In the tree case one cannot determinize and a
simple solution for compiementation requires alternating automata. Nonetheless.
automata using the Biichi acceptance condition are used by Rabin [4] to
characterize the weakly definable languages. Rabin calls such automata special
but we shall call then Blichi and we say that a language is Buchi if it is
accepted by a Bichi automaton. Rabin proves that a language L is weakly
definable if and only if both L and L are Blchi. There are several
characterizations of this general character in logic and set theory, ranging from
the basic fact that a set S of natural numbers is recursive if and only if both
S and § are recursively enumerable, to the considerably less evident fact
that a set X of real numbers is Borel if and only if both X and X are

analytic.

We shall consider a "weak acceptance condition" which would be
extremely weak for nondeterministic automata. We shall consider alternating
automata whose state set is written as a disjoint union Q = CJQi and we
suppose that there is a partial ordering on the collection of the Q;.
Furthermore. we suppose that the transition function is such that given a
q € Q;. then if q' Is any state occurring in 8z(q) then q' € Qj where Qj
€ Q. Thus if h Is an infinite individual history. from some point onwdrd ali
the states in h belong to the same set Q;. We say that Q; = f(h) is the
finality of h. We suppose that each Q; Is designated as accepting or
rejecting. The history h s accepting if f(h) is an accepting set. For

alternating automata. weak acceptance gives exactly weak definability.

Theorem | Let L be a language of k-ary trees labelled from an alphabet L.
Then L Is weakly definable if and only if L is accepted by an alternating

automaton using the weak acceptance condition.
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We shall simply say that an alternating automaton using the weak
acceptance condition is a weak alternating automaton. This articie has the

following plan. We first recall the basic definitions about alternating automata
from [2] and the compiementation theorem., which remains valid for weak
acceptance : if M accepts a language L then the dual automaton M
accepts L. The class of languages accepted by weak alternating automata is
thus closed under complementation. The proof of the theorem then proceeds In
two steps. We first show that the class of languages accepted by weak
alternating automata includes all weakly definable languages. Since we already
have closure under complementation it suffices to estabiish closure under finite
quantification and this is an easy lemma. We next show that a weak alternating
automaton M can be simulated by a Blichi automaton N. Since we have
ciosure under complementation, if L is accepted by a weak alternating
automaton then both L and L are Bichi and L is thus weakly definable
by Rabin’s theorem. Note that we have used only one direction of Rabin’s
theorem and this direction Is, in fact, the one with the shorter, more conceptual
proof. Most of the space in Rabin’s article (4] is devoted to showing that if L
is weakly definable then both L and L are indeed Blchi, but this fact is a
consequence of the two lemmas cited above. We view this as strengthering our
contention that it is simply much easier to calculate with alternating automata.
We then consider the complexity of deciding the truth of formulas with n

alternations of guantifiers.

. WEAK ALTERNATING AUTOMATA ON THE TREE

We review our conception of alternating automata as given in [21. In
Rabin’s theory of nondeterministic automata on the binary tree, a single copy of
the automaton begins in its initial state at the root of the tree. The automaton
then splits into two copies. one moving to the left successor and the other
moving to the right successor. The states of the two copies are given by a
nondeterministic choice from the possibilities allowed by the transition function. In
Rabin‘s notation. if the automaton is in state qg reading the letter a. the
vaiue of the transition function for (gg.a) might be ((gy.qp) (qq.93))
where the left (right) member of a pair denotes the next state of the automaton
moving to the left (right) successor vertex. We can represent this situation in
our lattice formulation by using the free distributive lattice L({0.1} x Q)
generated by all the possible pairs (direction, state). Namely, we write :
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(where, as usual., A has precedence over v).
Wlg) = (oednl,g.) v (9g)a( 95)

We interpret this expression as saying that the automaton has the
choice of splitting into one copy in state q3 going to the left successor and
one copy in state qp going to the right successor or of splitting into one copy
in state qu going to the left and one copy in state qa going to the right.
We note that both "and” and "or" are present in the conception of an automaton

on the binary tree.

In the general case of an aiternating automaton we allow 8&z(q) to
be an arbitrary element of the free distribution lattice L(({0.1} x Q). For

example, the dual of the expression above is :
'E(qo) = (0,qPIN(0.gxv(0.qPA(T,93)v(0, g AT, qplv (T.92)M (1. q3).

This expression iliustrates that we do not require the automaton to send
copies in ali directions (aithough at least one copy must go in some direction)
and that severai copies may go in the same direction. One may think of an
alternating automaton as a sort of completion of a nondeterministic automaton. It
is only by going to L({0.1} x Q) that one can always calculate the dual of a

given expression.

We review our conventions of the k-ary tree Tk viewed as a
structure. The vertex set of Tk Is the set K* of all words on the direction
alphabet K = {0,.... k-1}. with the empty word being the origin of the tree.
Given a vertex v and a letter d € K there Is an edge e with label d
from v to vd and v is the d-successor of v. The lavel jv| of a vertex v
is thus the length of v as a word. We thus think of the edges in Tk as
being labelled by letters from K whiie the vertices are unlabelied.

Definition 1 A weak alternating automaton on K-ary p-trees is a tuple

M = <L(KxQ). L.5.qq.F>

where K is a set of directions, the state set Q Is written as a disjoint union
Q = u Q; where there is a partiai order 2> on the coilection of the Q. the
set [ is the input alphabet, the transition function
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5! L xQ~LKx Q)

has the property that if q € Q; and q' occurs in the expression &(a.q)
then q' € Q; where Qj < Q;. The final family F is a list of these Q
considered to be accepting. The dual of M s

M= <«(KxQ. L 8 gg F

obtained by dualizing the transition function by interchanging A and v as usual

and taking the compliment F of F.

The reader should consult [&] for complete details but the only result
from {41 which we use in this article is the fact that acceptance of the
complementary language by the dual automaton is an expression of a
combinatorial relation between a machine and its dual and is independent of the
acceptance condition. therefore remaining valid for weal alternating automata.

Complementation Theorem. Let M be a weak alternating automaton and let

L(M) be the language accepted by M. Then the dual automaton M accepts

the complement L(M).

Definition 2. Let A and L be alphabets with A2 and let n: A~ L be
a function which is the identity function on [. Let L be a language of k-ary
trees labelled from L. We define the language my(L) on the alphabet [
which is obtained from L and mn by finite projection. A tree t° belongs to
n(L} if there exists a tree t « L containing oniy finitely many vertices labelled
from A~ and such that t = n() where. as usual. n{t) denotes the result

of replacing the label of each vetex of t by its image under n.

Lemma 1 The class of languages accepted by weak alternating automata is

closed under finite projection.
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Proof Given a weak alternating automaton M = <(K x Q), A, 8, qo.F> we
can construct M’ accepting m(L{(M)) as follows. Since the weak acceptance
condition is independent of past history. in order to simuiate the behaviour of M
up to a finite distance It is necessary to keep track of all the possibie copies
running in M only up to the information of current state. We think that tweo
machines having the same information "merge" and since M is weak, one has

not last any information.

The automaton M’ begins in a nondeterministic mode where. at a
given vertex, it keeps track of a possibility for an existing coliection of machines
in M up to the information of current state. Thus M’ requires a state set of
the form P(Q) for its nondeterministic mode. For S e P(Q) and a letter a
being read. M’ chooses a preimage in n~Y(a), a set of choices of the copies
of M represented in § on this preimage. and sends in each direction d

the collection Sy resulting from S and the choices made.

At any vertex M’ aiso has the choice of guessing that it will not see
any more letters form A~-L in the subtree beginning at the vertex. if M’
makes this choice it enters its alternating mode where it simply simulates M in
an alternating fashion but will go into a special rejecting state q, |if it sees a
letter of A-L. in order to do this, M has a copy of Q which is disjoint from
P(Q). The ordering is P(Q) > Q; for each . Q; in the decomposition of Q
in M. The transition form a "nondeterminis;tic" state S # @ to the alternating
mode is from S to /\qi where q; € 8. M also has a special state qg
indicating the absence of any copy of M and the transition form @ 1Is to
qg. The transition function of M’ on a state q € Q Is exactly the same as
that of M on letters from [ but M’ goes into a special rejecting state gq
on any letter form a-L. A copy in qg or in g, always stays in that state in

every direction.
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The ordering on the special states is Q; > {q,} for each Q; and
P(Q) > {qg}. The final family F' of M’ consists of the final family F of
M together with {gg}. Note that P(Q) Is rejecting. Thus that an individual
history h in M has f(h) e ' requires that M’ has made the transition
to the alternating mode and that the simutation of M is accepting. and that no
letters from A-T are encountered in the alternating mode. The Konig Infinity
lemma assures that since M’ has guessed on every branch the total subtree
covered in the nondeterministic mode is indeed finite. We note that the

construction of M’ is really simply the subset construction.o

Lemma 2 A weak alternating automaton can be simuiated by a Bichi

automaton.

Proof Let M = <(Kx Q). L. 6. go. F> be a weak alternating automaton. We
can construct a Blichl automaton B simultating M as follows. As in the
proof of Lemma 1, B wuses a copy of P(Q) to keep track of the possibliities
of machines running in M up to the information of current state, But we must
now test that all the individual histories of machines in M are acceptling. Let
F = {Qg.....Qr-1) be a consecutive list of those sets in the decomposition of
Q which are not accepting. (This indexing has nothing to do with the partial
order on the Q). Let Z, be a copy of the integers modulo r. An individual
history h is rejecting it and oniy if it eventually arrives in some set Q; e F
and there after remains in Q;. Let V= ({8 : 8 <c Q. O<1i<r-1} be the
collection of subsels of the Q; occurring in F. The state set of B s

P(Q) x Zy x V. The P(Q)-component is the simulation track, the Z,~component
is the testing—index and the V-component is the testing-track. The initiai state of
B is ({qg)}. 0. @ . As in the previous lemma. if a copy of B reads a
letter a at a vertex and S is the first component of the current state, then
B selects a set of possible choices for the copies of M represented in S
and. in each direction d. puts the collection Sg. resulting from S and the

choices made. in the simulation track.
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Suppose that the testing track contains @. in this case. B advances
the testing Index (moduio r) by one, say to . and, for each direction d, puts
Sg n Q; in the testing track.

Suppose now that the testing index is | and that the testing track
contains a non-empty set C € S. In each direction d, B puts in the testing
track the set Cg4 which consists of those states in Sg n Q; which arise from
a state in C. Thus Gy records these copies in C which remain in a state
from Q; according to the selection of choices made for the simulation track.
(Note that states not In C may give rise to states in Q; but these are not
recorded in Cg). if Cyg = @ the testing track is discharged. The acceptance
condition for B is that one encounters @ infinitely often in the testing track.
This condition exactly prevents an infinite history of a copy of M from forever
remaining in a rejecting set Q;. Thus B accepts an input if and only if M
does.n

.- THE COMPLEXITY OF WEAK MONADIC THEORIES

Alternating automata give a very simple proof of an (n+1)-exponential
complexity bound on deciding the class F, of formulas of the weak monadic
theory which are in prenex normal form and which have n alternations of
quantifiers. The natural object of study here is. in fact, the monadic theory of
the k-ary tree Tk together with an arbitrary partition T = {Sy..... Sp} of Tk
into finitely many subsets. We suppose that the monadic language contains only
set variables. the set constants Sy..... Sp. the constant vg, denoting the set
whose only element is the origin, for each d e K. the set-valued successor
function ag4. yielding for a subset X € Tk the set Xog = {xd : x € X} of d-
successors of elements of X. and the relation < of set inclusion and the

unary reiation X} = 1. (Compare Muiler and Schupp [11).
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The idea of an automaton M (of any type whatever) with an oracle
tor 1 is very simple. The automaton M has a collection {8} of transition
functions and M applies 5; at exactly those points beionging to the set s
of the partition. For alternating automata, the dual automaton has the collection
(?s'i), The lemmas which we have proved and the compiementation theorem
relativige immediately to the case of automata with oracles.

Since for weak alternating automata, complementation costs no states
while a block of existential quantifiers costs one exponential, the automaton M,
associated with a formula in F(n.ID. the sentences of WMT(Tg.M In prenex
normai form with n alternations of quantifiers, have a state set whose size is
n axponentials. One application of Lemma 2 converts to a Blchi automaton.
The emptiness problem for Bichi automata without oracle is polynomial by Rabin
[4). Thus we have

Theorem ii. Let T = {Sy..... 8p) be an arbitrary partition of Tk. Let
F(n.{» be the set of formulas of WMT(Tk.I) having n alternations of
quantifiers Iin prenex normal form. There is an (n+1)-exponential reduction of
deciding F(n. ID to the emptiness problem for Blichi automata with an oracle

for 1I.
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