

$$
S \in \operatorname{Stmt}::=\ldots|\operatorname{read} x| \text { write } e
$$

Semantic domains

$$
\begin{aligned}
\text { Stream } & =\text { Int } \times \text { Stream }+\{\text { eof }\} \\
\text { Input } & =\text { Stream } \\
\text { Output } & =\text { Stream } \\
\text { State } & =\text { Store } \times \text { Input } \times \text { Output }
\end{aligned}
$$

Actually:
Stream $=\left(\right.$ Int \otimes_{L} Stream $) \oplus\{\text { eof }\}_{\perp}$
Stream includes:

- finite lists, ended by eof
- unfinished finite lists
- infinite lists

Semantic functions

$$
\begin{aligned}
& \mathcal{E}: \operatorname{Exp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { State } \rightarrow(\text { Int }+\{? ?\})}_{\text {EXP }} \\
& \mathcal{B}: \operatorname{BExp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { State } \rightarrow(\text { Bool }+\{? ?\})}_{\text {BEXP }}
\end{aligned}
$$

Only one clause to modify here:

$$
\mathcal{E} \llbracket x \rrbracket \rho_{V}\langle s, i, o\rangle=s l \text { where } l=\rho_{V} x
$$

Semantics of statements

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { State } \rightharpoonup(\text { State }+\{? ?\})}_{\text {STMT }}
$$

Again, one clause to change:

$$
\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\langle s[l \mapsto n], i, o\rangle \text { where } l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V}\langle s, i, o\rangle
$$

(plus a similar change in $\mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \ldots=\ldots$) and two clauses to add:

$$
\begin{aligned}
& \mathcal{S} \llbracket \operatorname{read} x \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\left\langle s[l \mapsto n], i^{\prime}, o\right\rangle \text { where } l=\rho_{V} x,\left\langle n, i^{\prime}\right\rangle=i \\
& \mathcal{S} \llbracket \text { write } e \rrbracket \rho_{V} \rho_{P}\langle s, i, o\rangle=\langle s, i,\langle n, o\rangle\rangle \text { where } n=\mathcal{E} \llbracket e \rrbracket \rho_{V}\langle s, i, o\rangle
\end{aligned}
$$

$$
\left\langle n, i^{\prime}\right\rangle=i \text { yields ?? when } i=\text { eof }
$$

Programs

New syntactic domain:

$$
\text { Prog }::=\operatorname{prog} S
$$

with obvious semantic function:

$$
\mathcal{P}: \operatorname{Prog} \rightarrow \underbrace{\text { Input } \rightharpoonup(\text { Output }+\{? ?\})}_{\text {PROG }}
$$

given by:

$$
\begin{aligned}
& \mathcal{P} \llbracket \operatorname{prog} S \rrbracket i=o^{\prime} \text { where } \mathcal{S} \llbracket S \rrbracket \rho_{V}^{\emptyset} \rho_{P}^{\emptyset}\left\langle s^{\emptyset}, i, \text { eof }\right\rangle=\left\langle s^{\prime}, i^{\prime}, o^{\prime}\right\rangle, \\
& \qquad \rho_{V}^{\emptyset} x=? ?, \rho_{P}^{\emptyset} p=?, s^{\emptyset} n e x t=0, s^{\emptyset} l=? ?
\end{aligned}
$$

Looks okay, but. . .

- Do we want to write in the reverse order?
- Do we want to disregard outputs from infinite loops?
- Don't we want to disallow statements to erase or modify earlier outputs?

```
denotational semantics so far: direct semantics
```

Other problems:

- exits, jumps, exceptions, ...

Continuation semantics

History, late 60s, 70s:

- Wadsworth (PRG/Oxford) 1971-73
- Mazurkiewicz (Warsaw) 1969-71

Changing philosophy

From: What happens now?
To: What the overall result will be?

Changing philosophy

Direct semantics

$\mathcal{S} \llbracket S \rrbracket:$ "a present" (a current state) \mapsto "a future present" (a future state)

Continuation semantics

$\mathcal{S} \llbracket S \rrbracket$: "a future" (from a current state) \mapsto "a past future" (from a past state)

Direct semantics

$$
\begin{array}{cccccc}
\text { begin } \ldots & ; \quad \ldots & ; & \ldots & \text { end } \\
s^{\emptyset} \\
\xrightarrow{\mathcal{S} \llbracket \ldots \rrbracket} s_{i} \xrightarrow{\mathcal{S} \llbracket \ldots \rrbracket} s_{j} \xrightarrow{\mathcal{S} \llbracket \ldots \rrbracket} s^{\prime} m \rightarrow \text { "overall result" }
\end{array}
$$

Continuation semantics

begin ... ; ... ; ... end

Continuations

$$
\text { Cont }=\text { State } \rightarrow \text { Res }
$$

Now:

- states do not include outputs
- overall results are outputs

$$
\begin{aligned}
\text { State } & =\text { Store } \times \text { Input } \\
\text { Res } & =\text { Output }
\end{aligned}
$$

- these are continuations for statements; semantics for statements is given by:

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }}
$$

That is: \quad STMT $=$ VEnv \rightarrow PEnv \rightarrow Cont \rightarrow State \rightarrow Res

Expression and declaration continuations

- continuations for other syntactic categories may be additionally parameterised by whatever these pass on:
- expressions pass on values, so

$$
\begin{array}{ll}
\text { Cont }_{\mathrm{E}}=\text { Int } \rightarrow \text { State } \rightarrow \text { Res } & (=\text { Int } \rightarrow \text { Cont }) \\
\text { Cont }_{\mathrm{B}}=\text { Bool } \rightarrow \text { State } \rightarrow \text { Res } & (=\text { Bool } \rightarrow \text { Cont })
\end{array}
$$

- declarations pass on environments, so

$$
\begin{array}{ll}
\text { Cont }_{\mathrm{D}_{\mathrm{V}}}=\text { VEnv } \rightarrow \text { State } \rightarrow \text { Res } \quad(=\text { VEnv } \rightarrow \text { Cont }) \\
\text { Cont }_{\mathrm{D}_{\mathrm{P}}}=\text { PEnv } \rightarrow \text { State } \rightarrow \text { Res } \quad(=\text { PEnv } \rightarrow \text { Cont })
\end{array}
$$

Tiny ${ }^{+++}$

$$
\begin{aligned}
& N \in \operatorname{Num}::=0|1| 2 \mid \cdots \\
& x \in \operatorname{Var}::=\cdots \\
& p \in \operatorname{IDE}::=\cdots \\
& e \in \operatorname{Exp}::=N|x| e_{1}+e_{2}\left|e_{1} * e_{2}\right| e_{1}-e_{2} \\
& b \in \operatorname{BExp}::=\operatorname{true} \mid \text { false }\left|e_{1} \leq e_{2}\right| \neg b^{\prime} \mid b_{1} \wedge b_{2} \\
& S \in \operatorname{Stmt}::=x:=e|\operatorname{skip}| S_{1} ; S_{2} \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \mid \text { while } b \text { do } S^{\prime} \\
& \mid \operatorname{begin} D_{V} D_{P} S \text { end } \mid \text { call } p \mid \text { read } x \mid \text { write } e \\
& D_{V} \in \operatorname{VDecl}::=\operatorname{var} x ; D_{V} \mid \varepsilon \\
& D_{P} \in \operatorname{PDecl}::=\operatorname{proc} p \text { is }(S) ; D_{P} \mid \varepsilon \\
& \operatorname{Prog}::=\operatorname{prog} S
\end{aligned}
$$

Semantic domains

Semantic functions

Sample semantic clauses

Programs:

$$
\begin{aligned}
& \mathcal{P} \llbracket \operatorname{prog} S \rrbracket i=\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\emptyset} \rho_{P}^{\emptyset} \kappa^{\emptyset}\left\langle s^{\emptyset}, i\right\rangle \\
& \quad \text { where } \rho_{V}^{\emptyset} x=? ?, \rho_{P}^{\emptyset} p=?, \kappa^{\emptyset} s=\text { eof, } s^{\emptyset} n e x t=0, s^{\emptyset} l=? ?
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{D}_{P} \llbracket \varepsilon \rrbracket \rho_{V} \rho_{P} \kappa_{P}=\kappa_{P} \rho_{P} \\
& \mathcal{D}_{P} \llbracket \operatorname{proc} p \text { is }(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}= \\
& \mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}\left[p \mapsto P \rrbracket \text { where } P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P]\right. \\
& \mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \rho_{V} \kappa_{V}\langle s, i\rangle= \\
& \mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} \kappa_{V}\left\langle s^{\prime}, i\right\rangle \text { where } l=s \text { next }, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], \\
& \quad s^{\prime}=s[l \mapsto ?, \text { next } \mapsto l+1]
\end{aligned}
$$

No continuations really used here, if desired may be rewritten to a more standard continuation style

Sample semantic clauses

Expressions:

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket \rho_{V} \kappa_{E}=\lambda\langle s, i\rangle: \text { State. } \kappa_{E} n\langle s, i\rangle \text { where } l=\rho_{V} x, n=s l \\
& \quad \text { this means: ?? if } \rho_{V} x=\text { ?? or } s l=? ? \\
& \mathcal{E} \llbracket e_{1}+e_{2} \rrbracket \rho_{V} \kappa_{E}= \\
& \quad \mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} \lambda n_{1}: \text { Int }^{?} \cdot \underline{\mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} \lambda n_{2}: \text { Int }^{?} \cdot \kappa_{E}\left(n_{1}+n_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B} \llbracket \text { true } \rrbracket \rho_{V} \kappa_{B}=\kappa_{B} \text { tt } \\
& \begin{array}{l}
\mathcal{B} \llbracket e_{1} \leq e_{2} \rrbracket \rho_{V} \kappa_{B}= \\
\quad \mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} \lambda n_{1}: \text { Int }^{? ?} . \mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} \lambda n_{2}: \text { Int }^{?} . \\
\\
\quad \kappa_{B} \text { ifte }_{\text {Bool? }}\left(n_{1} \leq n_{2}, \mathrm{tt}, \mathrm{ff}\right)
\end{array}
\end{aligned}
$$

Keep checking the types!

Statements

$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{E} \llbracket e \rrbracket \rho_{V} \lambda n:$ Int $^{?}{ }^{?} . \lambda\langle s, i\rangle:$ State. $\kappa\langle s[l \mapsto n], i\rangle$ where $l=\rho_{V} x$ $\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V} \rho_{P}=i d_{\text {Cont }}$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P}\left(\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \kappa\right)$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V} \rho_{P} \kappa=$
$\mathcal{B} \llbracket b \rrbracket \rho_{V} \lambda v: \operatorname{Bool}^{? ?}$. ifte $_{\text {Cont }}\left(v, \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \kappa, \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \kappa\right)$
$\mathcal{S} \llbracket$ while b do $S \rrbracket \rho_{V} \rho_{P} \kappa=$
$\mathcal{B} \llbracket b \rrbracket \rho_{V} \lambda v: \operatorname{Bool}^{? ?}$. ifte $_{\text {Cont }}\left(v, \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}\left(\mathcal{S} \llbracket\right.\right.$ while b do $\left.\left.S \rrbracket \rho_{V} \rho_{P} \kappa\right), \kappa\right)$
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P$ where $P=\rho_{P} p$
$\mathcal{S} \llbracket \operatorname{read} x \rrbracket \rho_{V} \rho_{P} \kappa\langle s, i\rangle=\kappa\left\langle s[l \mapsto n], i^{\prime}\right\rangle$ where $l=\rho_{V} x,\left\langle n, i^{\prime}\right\rangle=i$
$\mathcal{S} \llbracket$ write $e \rrbracket \rho_{V} \rho_{P} \kappa=\mathcal{E} \llbracket e \rrbracket \rho_{V} \lambda n:$ Int $^{?} . \lambda\langle s, i\rangle:$ State. $\langle n, \kappa\langle s, i\rangle\rangle$

Blocks

$\mathcal{S} \llbracket$ begin $D_{V} D_{P} S$ end $\rrbracket \rho_{V} \rho_{P} \kappa=$ $\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} \lambda \rho_{V}^{\prime}:$ VEnv. $\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V}^{\prime} \rho_{P} \lambda \rho_{P}^{\prime}:$ PEnv. $\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} \kappa$

This got separated, because we will add jumps later...

Warming up:

Exceptions

$$
\begin{aligned}
S \in \mathrm{Stmt} & ::=\ldots \mid \text { do } S_{1} \text { catch } \text { exn } \Rightarrow S_{2} \mid \text { raise } \operatorname{exn} \\
e x n \in \mathrm{XName} & :=\ldots
\end{aligned}
$$

- Raising an exception named exn in its corresponding S_{1}
- interrupts S_{1} (skipping the rest of it), and
- starts S_{2} in the current state.
- Raising exn outside its corresponding S_{1} causes an error.
- If exn is not raised within its corresponding S_{1}, catch exn $\Rightarrow S_{2}$ is disregarded.

Semantics - sketch

- Another environment:

$$
\text { XEnv }=\text { XName } \rightarrow(\text { Cont }+\{?\})
$$

- The semantic function for statements gets another environment parameter:

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { XEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }}
$$

- Semantic clauses for statements of the "old" forms take the extra parameter and disregard it (passing it "down" if needed), for instance:

$$
\begin{aligned}
& \mathcal{S} \llbracket \text { skip } \rrbracket \rho_{V} \rho_{P} \rho_{X}=i d_{\text {Cont }} \\
& \mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{X}\left(\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa\right)
\end{aligned}
$$

- Semantic clause for new statements:

$$
\begin{aligned}
& \mathcal{S} \llbracket \text { do } S_{1} \text { catch exn } \Rightarrow S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa= \\
& \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{X}\left[\text { exn } \mapsto \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa\right] \kappa \\
& \mathcal{S} \llbracket \text { raise exn } \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa=\rho_{X} \text { exn }
\end{aligned}
$$

(or perhaps a more explicit version of the clause for raising exception:

$$
\left.\mathcal{S} \llbracket \text { raise } e x n \rrbracket \rho_{V} \rho_{P} \rho_{X} \kappa=\lambda\langle s, i\rangle \text { :State. } \kappa_{\text {exn }}\langle s, i\rangle \text { where } \kappa_{\text {exn }}=\rho_{X} \text { exn }\right)
$$

- Semantic clause for programs introduces an initial exception environment with no exceptions declared:

$$
\begin{aligned}
& \mathcal{P} \llbracket \operatorname{prog} S \rrbracket i=\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\emptyset} \rho_{P}^{\emptyset} \rho_{X}^{\emptyset} \kappa^{\emptyset}\left\langle s^{\emptyset}, i\right\rangle \\
& \quad \text { where } \rho_{V}^{\emptyset} x=?,, \rho_{P}^{\emptyset} p=?, \rho_{X}^{\emptyset} \text { exn }=?, \kappa^{\emptyset} s=\operatorname{eof}, s^{\emptyset} n e x t=0, s^{\emptyset} l=? ?
\end{aligned}
$$

Exceptions in procedures

Static binding of exception names

```
"raising in its corresponding S S" " "statically (textually) within S S'
```

Then:

$$
\begin{aligned}
& \mathrm{PROC}_{0}=\text { Cont } \rightarrow \text { Cont } \\
& \mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \mathbf{P E n v} \rightarrow \mathbf{X E n v} \rightarrow \text { Cont }_{\mathbf{D}_{\mathbf{P}}} \rightarrow \text { Cont }}_{\text {PDECL }} \\
& \mathcal{D}_{P} \llbracket \operatorname{proc} p \text { is }(S) ; D_{P} \rrbracket \rho_{V} \rho_{P} \rho_{X}= \\
& \quad \mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \rho_{X} \text { where } P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \rho_{X} \\
& \mathcal{S} \llbracket \text { call } p \rrbracket \rho_{V} \rho_{P} \rho_{X}=P \text { where } P=\rho_{P} p
\end{aligned}
$$

Exceptions in procedures - expected alternative

Dynamic binding of exception names
"raising in its corresponding $S_{1}{ }^{"} \equiv$ "dynamically during the execution of $S_{1}{ }^{\prime \prime}$
Then:

$$
\begin{aligned}
& \mathrm{PROC}_{0}=\text { XEnv } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \mathcal{D}_{P}: \mathbf{P D e c l} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Cont }_{\mathbf{D}_{\mathbf{P}}} \rightarrow \text { Cont }}_{\text {PDECL }} \\
& \mathcal{D}_{P} \llbracket \operatorname{proc} p \text { is }(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}= \\
& \quad \mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \text { where } P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \\
& \mathcal{S} \llbracket \text { call } p \rrbracket \rho_{V} \rho_{P} \rho_{X}=P \rho_{X} \text { where } P=\rho_{P} p
\end{aligned}
$$

Goto's

$$
\begin{aligned}
& S \in \mathrm{Stmt}::=\ldots|L: S| \text { goto } L \\
& L \in \mathrm{LAB}::=\ldots
\end{aligned}
$$

- Labels are visible (statically) inside the block in which they are declared
- No jumps into blocks are allowed; jumps into other statements are okay

Clarification: programs and procedure bodies are treated as blocks

Semantics - sketch

- Yet another environment:

$$
\mathrm{LEnv}=\mathrm{LAB} \rightarrow(\text { Cont }+\{? ?\})
$$

- The appropriate semantic functions get another environment parameter:

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont }_{\mathrm{D}_{\mathrm{P}}} \rightarrow \text { Cont }}_{\text {PDECL }}
\end{gathered}
$$

- Semantic clauses for declarations and statements of the "old" forms (except blocks) take the extra parameter and disregard it (passing it "down"); semantics for programs introduces label environment with no label declared.
Change required: programs and procedure bodies should be treated as blocks.

Goto's - sketch of the semantics continues

- We add a declaration-like semantics for statements:

$$
\mathcal{D}_{S}: \text { Stmt } \rightarrow \text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { LEnv } \rightarrow \text { Cont } \rightarrow \text { LEnv }
$$

- With a few trivial clauses, like:

$$
\mathcal{D}_{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\rho_{L}
$$

and similarly for skip, call p, read x, write e and goto L, where no visible labels can be introduced. Perhaps surprisingly, also:

$$
\mathcal{D}_{S} \llbracket \text { begin } D_{V} D_{P} S \text { end } \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\rho_{L}
$$

Goto's - sketch of the semantics continues

- And then a few not quite so trivial clauses follow:

$$
\begin{aligned}
& \mathcal{D}_{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad\left(\mathcal{D}_{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{L}\left(\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right)\right) \rtimes\left(\mathcal{D}_{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right) \\
& \mathcal{D}_{S} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad\left(\mathcal{D}_{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right) \rtimes\left(\mathcal{D}_{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right) \\
& \mathcal{D}_{S} \llbracket \text { while } b \text { do } S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad \mathcal{D}_{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L}\left(\mathcal{S} \llbracket \text { while } b \text { do } S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right) \\
& \mathcal{D}_{S} \llbracket L: S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \quad\left(\mathcal{D}_{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa\right)\left[L \mapsto \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa \rrbracket\right.
\end{aligned}
$$

The only extra thing to explain here is "updating":

$$
\left(\rho_{L} \rtimes \rho_{L}^{\prime}\right) L= \begin{cases}\rho_{L} L & \text { if } \rho_{L}^{\prime} L=? \\ \rho_{L}^{\prime} L & \text { if } \rho_{L}^{\prime} L \neq ?\end{cases}
$$

Goto's - sketch of the semantics continues

- Finally we need new clauses for the (usual) semantics of labelled statements, of jumps (trivial) and of blocks - rather complicated

$$
\begin{aligned}
& \mathcal{S} \llbracket L: S \rrbracket=\mathcal{S} \llbracket S \rrbracket \\
& \mathcal{S} \llbracket \text { goto } L \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa=\kappa_{L} \text { where } \kappa_{L}=\rho_{L} L \\
& \mathcal{S} \llbracket \text { begin } D_{V} D_{P} S \text { end } \rrbracket \rho_{V} \rho_{P} \rho_{L} \kappa= \\
& \mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} \lambda \rho_{V}^{\prime}: V E n v . \mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V}^{\prime} \rho_{P} \rho_{L} \lambda \rho_{P}^{\prime}: \text { PEnv. } \\
& \qquad \mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} \rho_{L}^{\prime} \kappa \text { where } \rho_{L}^{\prime}=\mathcal{D}_{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime}\left(\rho_{L} \rtimes \rho_{L}^{\prime}\right) \kappa
\end{aligned}
$$

Requires a few final (easy!) touches

and change for procedure declarations and programs similar to that for blocks

- make labels within a block visible within procedure declarations in this block
- require that the labels within a block are unique (and check this)
- restrict modification of the label environment for S to the labels introduced by S

"Standard semantics"

- continuations (to built overall results, to handle flow of control, and to simplify notation)
- careful classification of various domains of values (assignable, storable, output-able, closures, etc) with the corresponding semantics of expressions (of various kinds)
- Scott domains and domain equations
- continuous functions only

