Universal algebra

Basics of universal algebra:

- signatures and algebras
- homomorphisms, subalgebras, congruences
- equations and varieties
- equational calculus
- equational specifications and initial algebras
- variations: partial algebras, first-order structures

Plus some hints on applications in

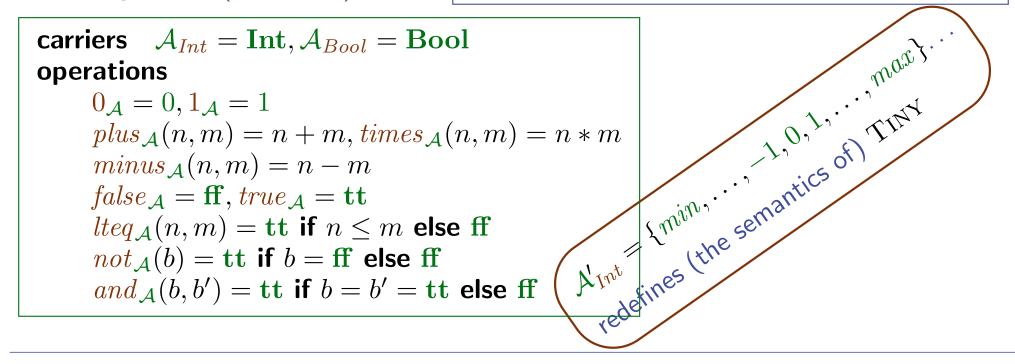
foundations of software semantics, verification, specification, development...

TINY data type

Its signature Σ (syntax):

sorts Int, Bool; **opns** 0, 1: Int; plus, times, minus: Int \times Int \rightarrow Int; false, true: Bool; lteq: Int \times Int \rightarrow Bool; not: Bool \rightarrow Bool; and: Bool \times Bool \rightarrow Bool;

and Σ -algebra \mathcal{A} (semantics):



Signatures

Algebraic signature:

$$\Sigma = (S, \Omega)$$

• sort names: S

• operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity: \Omega \to S^*$ and $sort: \Omega \to S$.

•
$$f: s_1 \times \ldots \times s_n \to s$$
 stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

Compare the two notions

Fix a signature $\Sigma = (S, \Omega)$ for a while. Algebras • Σ -algebra: $A = (|A|, \langle f_A \rangle_{f \in \Omega})$

• carrier sets:
$$|A| = \langle |A|_s \rangle_{s \in S}$$

- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

$$\mathbf{Alg}(\Sigma)$$

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite? Can $A \in \operatorname{Alg}(\Sigma)$ have empty carriers?

Subalgebras

for A ∈ Alg(Σ), a Σ-subalgebra A_{sub} ⊆ A is given by subset |A_{sub}| ⊆ |A| closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A_{sub}|_{s_1}, \ldots, a_n \in |A_{sub}|_{s_n}$,
 $f_{A_{sub}}(a_1, \ldots, a_n) = f_A(a_1, \ldots, a_n)$

- for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A generated by X, ⟨A⟩_X, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

 for A, B ∈ Alg(Σ), a Σ-homomorphism h: A → B is a function h: |A| → |B| that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Fact: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Fact: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $id_A : A \to A$. Composition of homomorphisms $h : A \to B$ and $g : B \to C$ is a homomorphism $h;g : A \to C$.

Isomorphisms

- for A, B ∈ Alg(Σ), a Σ-isomorphism is any Σ-homomorphism i: A → B that has an inverse, i.e., a Σ-homomorphism i⁻¹: B → A such that i;i⁻¹ = id_A and i⁻¹;i = id_B.
- Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Fact: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto"). **Fact:** Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a'_1 \in |A|_{s_1}, \ldots, a_n, a'_n \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a'_1, \ldots, a_n \equiv_{s_n} a'_n$ then $f_A(a_1, \ldots, a_n) \equiv_s f_A(a'_1, \ldots, a'_n)$.

Fact: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Fact: For any Σ -homomorphism $h: A \to B$, the kernel of h, $K(h) \subseteq |A| \times |A|$, where $a \ K(h) \ a'$ iff h(a) = h(a'), is a Σ -congruence on A.

Quotients

- for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra
 A/≡ is built in the natural way on the equivalence classes of ≡:
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv a'\}$

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$f_{A/\equiv}([a_1]_{\equiv}, \ldots, [a_n]_{\equiv}) = [f_A(a_1, \ldots, a_n)]_{\equiv}$$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv} : A \to A/\equiv$.

Fact: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \rightarrow A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Fact: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

Products

• for $A_i \in \operatorname{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:

- for
$$s \in S$$
, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Fact: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

> Define the product of the empty family of Σ -algebras. When the projection π_i is an isomorphism?

Terms

Consider an S-sorted set X of variables.

- terms t ∈ |T_Σ(X)| are built using variables X, constants and operations from Ω in the usual way: |T_Σ(X)| is the least set such that
 - $X \subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_{\Sigma}(X)|_{s_1}, \ldots, t_n \in |T_{\Sigma}(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_{\Sigma}(X)|_s$
- for any Σ -algebra A and valuation $v: X \to |A|$, the value $t_A[v]$ of a term $t \in |T_{\Sigma}(X)|$ in A under v is determined inductively:
 - $x_A[v] = v_s(x)$, for $x \in X_s$, $s \in S$
 - $(f(t_1, ..., t_n))_A[v] = f_A((t_1)_A[v], ..., (t_n)_A[v]), \text{ for } f: s_1 \times ... \times s_n \to s \text{ and} t_1 \in |T_{\Sigma}(X)|_{s_1}, ..., t_n \in |T_{\Sigma}(X)|_{s_n}$

Above and in the following: assuming unambiguous "parsing" of terms!

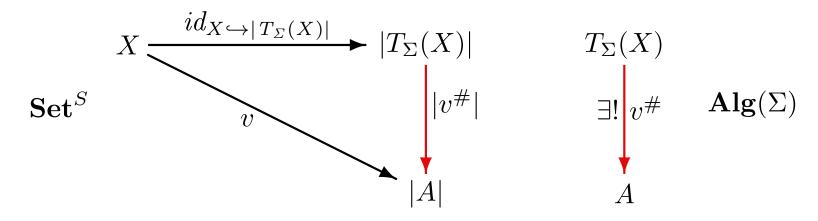
Term algebras

Consider an S-sorted set X of variables.

• The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $t_1 \in |T_{\Sigma}(X)|_{s_1}, \ldots, t_n \in |T_{\Sigma}(X)|_{s_n}$,
 $f_{T_{\Sigma}(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n).$

Fact: For any S-sorted set X of variables, Σ -algebra A and valuation $v: X \to |A|$, there is a unique Σ -homomorphism $v^{\#}: T_{\Sigma}(X) \to A$ that extends v. Moreover, for $t \in |T_{\Sigma}(X)|, v^{\#}(t) = t_A[v].$



Equations

• Equation:

$$\forall X.t = t'$$

where:

$$-X$$
 is a set of variables, and

 $-t,t' \in |T_{\Sigma}(X)|_s$ are terms of a common sort.

• Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$.

Semantic entailment

$$\Phi \models_{\Sigma} \varphi$$

 $\begin{array}{l} \Sigma \text{-equation } \varphi \text{ is a semantic consequence of a set of } \Sigma \text{-equations } \Phi \\ \\ \text{if } \varphi \text{ holds in every } \Sigma \text{-algebra that satisfies } \Phi. \end{array}$

BTW:

- Models of a set of equations: $Mod(\Phi) = \{A \in \operatorname{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$
- Mod and Th form a Galois connection

Equational calculus

$$\frac{\forall X.t = t}{\forall X.t = t} \quad \frac{\forall X.t = t'}{\forall X.t' = t} \quad \frac{\forall X.t = t'}{\forall X.t = t''} \quad \frac{\forall X.t' = t''}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \quad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a = b does *not* follow from a = f(x) and f(x) = b, unless...

Proof-theoretic entailment

 $\Sigma\text{-equation}\ \varphi$ is a proof-theoretic consequence of a set of $\Sigma\text{-equations}\ \Phi$

if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness & completeness

Fact: The equational calculus is sound and complete:

$$\Phi\models\varphi\iff\Phi\vdash\varphi$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

Proof (idea):

- soundness: easy!
- completeness: not so easy!

One motivation

Software systems (data types, modules, programs, databases. . .): sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, ...
- Focusing on: CORRECTNESS

Universal algebra from rough analogy:

module interface → signature module → algebra module specification → class of algebras **Equational specifications**

$$\langle \Sigma, \Phi
angle$$

- signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Fact: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable "modules"

'if'' is delicate

Example

spec NAIVENAT = sort Nat opns 0: Nat; $succ: Nat \rightarrow Nat;$ $_+ _: Nat \times Nat \rightarrow Nat$ axioms $\forall n:Nat.n + 0 = n;$ $\forall n, m:Nat.n + succ(m) = succ(n + m)$

Now:

NAIVENAT
$$\not\models \forall n, m: Nat.n + m = m + n$$

Perhaps worse:

There are models $M \in Mod(NAIVENAT)$ such that $M \models 0 = succ(0)$, or even:

$$M \models \forall n, m: Nat. n = m$$

How to fix this

• Constraints:

initiality: "no junk" & "no confusion"

Also: *reachability* ("no junk"), and their more general versions (freeness, generation).

BTW: Constraints can be thought of as special (higher-order) formulae.

- Other (stronger) *logical systems*: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere...

There has been a population explosion among logical systems...

Initial models

Fact: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

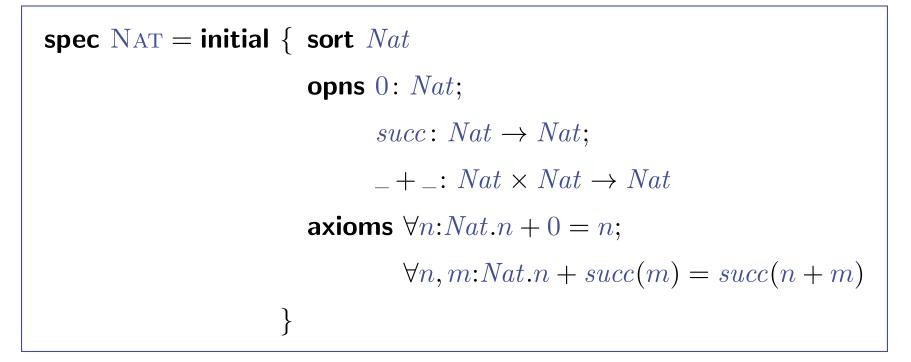
Proof (idea):

- I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t, t' such that $\Phi \models \forall \emptyset . t = t'$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $Mod(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

BTW: Existence of initial (and free) models carries over to specifications with conditional equations, **but not much further!**

Example



Now:

$$NAT \models \forall n, m: Nat. n + m = m + n$$

Try another example

 $\begin{aligned} \text{spec NATPRED} &= \text{ sort } Nat \\ \text{opns } 0: Nat; error: Nat; \\ succ: Nat &\rightarrow Nat; \\ _+_: Nat \times Nat \rightarrow Nat; \\ pred: Nat \rightarrow Nat \\ \text{axioms } \forall n: Nat.n + 0 = n; \\ \forall n, m: Nat.n + succ(m) = succ(n + m); \\ \forall n: Nat.pred(succ(n)) = n; \\ pred(0) = error; \\ pred(error) = error; succ(error) = error; \\ \forall n: Nat.error + n = error; \forall n: Nat.n + error = error \end{aligned}$

Looks okay. But try to add multiplication:

$$0 * n = 0$$
; $succ(m) * n = n + (m * n)$;
 $error * n = error$; $n * error = error$

and now everything collapses!

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A \colon |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for

 $f: s_1 \times \ldots \times s_n \to s$, may now be partial functions.

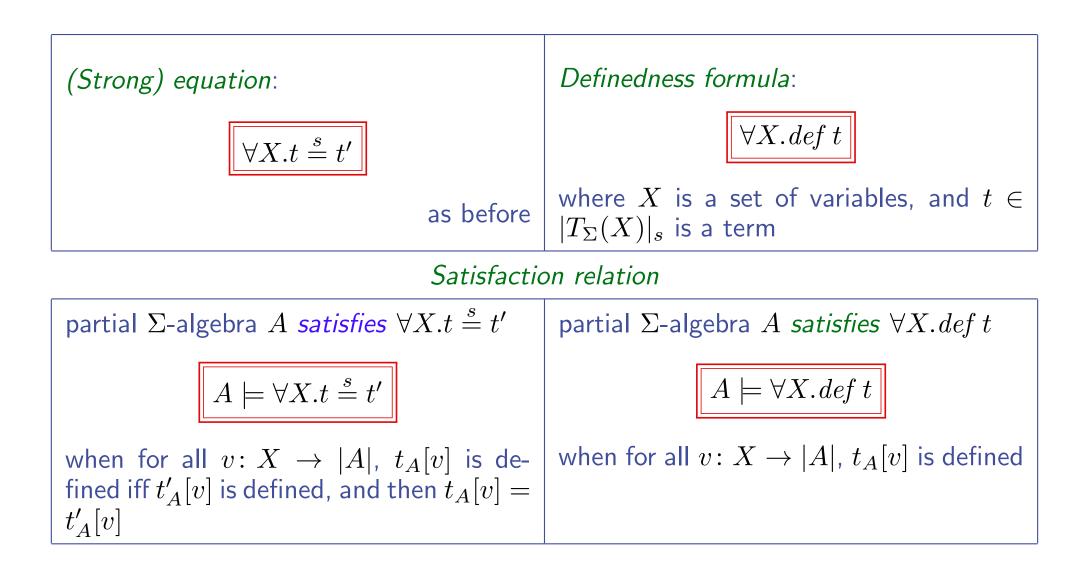
BTW: Constants may be undefined as well.

• $\mathbf{PAlg}(\Sigma)$ stands for the class of all partial Σ -algebras.

Fix a signature $\Sigma = (S, \Omega)$ for a while.

Few further notions

- subalgebra A_{sub} ⊆ A: given by subset |A_{sub}| ⊆ |A| closed under the operations;
 (BTW: at least two other natural notions are possible)
- homomorphism h: A → B: map h: |A| → |B| that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; (BTW: very interesting alternative: partial map h: |A| → |B| that preserves results of operations)
- congruence ≡ on A: equivalence ≡ ⊆ |A| × |A| closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms;
- quotient algebra A/≡: built in the natural way on the equivalence classes of ≡; the natural homomorphism from A to A/≡ is strong if the congruence is strong.



An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $-t, t' \in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t \stackrel{e}{=} t'$

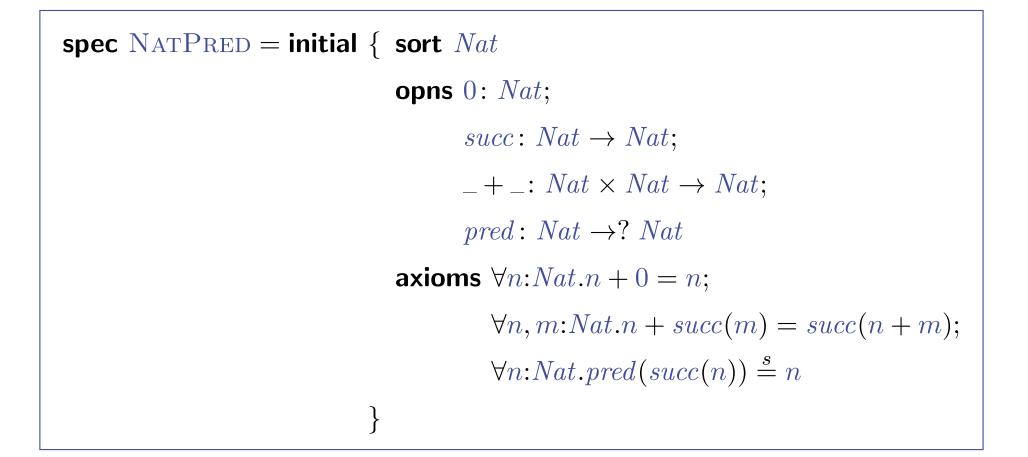
$$A \models \forall X.t \stackrel{e}{=} t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$ — both sides are defined and equal. BTW:

•
$$\forall X.t \stackrel{e}{=} t' \text{ iff } \forall X.(t \stackrel{s}{=} t' \land def t)$$

• $\forall X.t \stackrel{s}{=} t' \text{ iff } \forall X.(def t \iff def t') \land (def t \implies t \stackrel{e}{=} t')$

Example



First-order structures

- First-order signature Σ = (S, Ω, Π): algebraic signature (S, Ω) plus predicate names, classified by arities: Π = ⟨Π_w⟩_{w∈S*}
- First-order Σ -structure:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega}, \langle p_A \rangle_{p \in \Pi})$$

consists of:

- (S, Ω) -algebra $(|A|, \langle f_A \rangle_{f \in \Omega})$
- predicates (relations): $p_A \subseteq |A|_{s_1} \times \ldots \times |A|_{s_n}$, for $p: s_1 \times \ldots \times s_n$ (i.e., $p \in \prod_{s_1 \ldots s_n}$)
- $\mathbf{Str}(\Sigma)$ stands for the class of all first-order Σ -structures.

Fix a signature $\Sigma = (S, \Omega, \Pi)$ for a while.

Few further notions

- substructure A_{sub} ⊆ A: given by subset |A_{sub}| ⊆ |A| closed under the operations and such that the inclusion preserves truth of predicates; the substructure is closed if the inclusion also preserves falsity of predicates;
- homomorphism h: A → B: map h: |A| → |B| that preserves the results of operations and truth of predicates; it is *closed* if in addition it preserves falsity of predicates; (closed) homomorphisms are closed under composition;
- congruence ≡ on A: equivalence ≡ ⊆ |A| × |A| closed under the operations; it is closed if in addition it preserves truth (and falsity) of predicates; (closed) congruences are kernels of (closed) homomorphisms;
- quotient structures A/≡: built in the natural way on the equivalence classes of ≡ so that the natural map from A to A/≡ is a homomorphism; it is closed if the congruence is closed.

Formulae

- atomic Σ -formulae over set X of variables:
 - t = t', where $t, t' \in |T_{(S,\Omega)}(X)|_s$, $s \in S$
 - $p(t_1, \ldots t_n)$, where $p: s_1 \times \ldots \times s_n$, $t_1 \in |T_{(S,\Omega)}(X)|_{s_1}, \ldots t_n \in |T_{(S,\Omega)}(X)|_{s_n}$
- Σ -formulae contain atomic formulae and are closed under logical connectives and quantification; Σ -sentences are Σ -formulae with no free variables
- Satisfaction relation defined as usual between $\Sigma\text{-structures}\;A$ and $\Sigma\text{-sentences}\;\varphi$

As before, this yields the usual notions of the *class of models* for a set of sentences, the *semantic consequences* of a set of sentences, the *theory* of a class of models, etc.

Initial (and free) models exist for first-order specifications with universally quantified conditional atomic formulae, *but in general may fail to exist!*

