Universal algebra

Basics of universal algebra:

- signatures and algebras
- homomorphisms, subalgebras, congruences
- equations and varieties
- equational calculus
- equational specifications and initial algebras
- variations: partial algebras, first-order structures

Plus some hints on applications in
foundations of software semantics, verification, specification, development...

Tiny data type

Its signature Σ (syntax):
and Σ-algebra \mathcal{A} (semantics):

```
sorts Int, Bool;
opns 0,1: Int;
    plus, times, minus: Int }\times\mathrm{ Int }->\mathrm{ Int;
    false, true: Bool;
    lteq: Int }\times\mathrm{ Int }->\mathrm{ Bool;
    not: Bool }->\mathrm{ Bool;
    and: Bool }\times\mathrm{ Bool }->\mathrm{ Bool;
```


carriers $\mathcal{A}_{\text {Int }}=\operatorname{Int}, \mathcal{A}_{\text {Bool }}=\mathrm{Bool}$ operations

$0_{\mathcal{A}}=0,1_{\mathcal{A}}=1$
$\operatorname{plus}_{\mathcal{A}}(n, m)=n+m$ times $_{\mathcal{A}}(n, m)=n * m$
$\operatorname{minus}_{\mathcal{A}}(n, m)=n-m$
false $_{\mathcal{A}}=\mathrm{ff}$, true $_{\mathcal{A}}=\mathrm{tt}$
lteq $_{\mathcal{A}}(n, m)=\mathrm{tt}$ if $n \leq m$ else ff $\operatorname{not}_{\mathcal{A}}(b)=\mathrm{tt}$ if $b=\mathrm{ff}$ else ff $a n d_{\mathcal{A}}\left(b, b^{\prime}\right)=\mathrm{tt}$ if $b=b^{\prime}=\mathrm{tt}$ else ff

Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$

Alternatively:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions

$$
\text { arity }: \Omega \rightarrow S^{*} \text { and sort }: \Omega \rightarrow S
$$

- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$
- the class of all Σ-algebras:

$$
\operatorname{Alg}(\Sigma)
$$

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite?
Can $A \in \mathbf{A} \lg (\Sigma)$ have empty carriers?

Subalgebras

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|A_{\text {sub }}\right|_{s_{1}}, \ldots, a_{n} \in\left|A_{\text {sub }}\right|_{s_{n}}$,

$$
f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)=f_{A}\left(a_{1}, \ldots, a_{n}\right)
$$

- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A generated by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Fact: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Fact: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $i d_{A}: A \rightarrow A$. Composition of homomorphisms $h: A \rightarrow B$ and $g: B \rightarrow C$ is a homomorphism $h ; g: A \rightarrow C$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.
- Σ-algebras are isomorphic if there exists an isomorphism between them.

Fact: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" $1-1$ " and "onto").
Fact: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) .
$$

Fact: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that contains R.

Fact: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,|A / \equiv|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-] \equiv: A \rightarrow A / \equiv$.

Fact: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that []$_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Fact: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.

Products

- for $A_{i} \in \mathbf{A} \lg (\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$

Fact: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Define the product of the empty family of Σ-algebras. When the projection π_{i} is an isomorphism?

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t_{A}[v]$ of a term $t \in\left|T_{\Sigma}(X)\right|$ in A under v is determined inductively:

$$
\begin{aligned}
& -x_{A}[v]=v_{s}(x), \text { for } x \in X_{s}, s \in S \\
& -\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{A}[v]=f_{A}\left(\left(t_{1}\right)_{A}[v], \ldots,\left(t_{n}\right)_{A}[v]\right), \text { for } f: s_{1} \times \ldots \times s_{n} \rightarrow s \text { and } \\
& \quad t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}
\end{aligned}
$$

Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Fact: For any S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$, there is a unique Σ-homomorphism $v^{\#}: T_{\Sigma}(X) \rightarrow A$ that extends v. Moreover, for $t \in\left|T_{\Sigma}(X)\right|, v^{\#}(t)=t_{A}[v]$.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t=t^{\prime}$

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]$.

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ
 $$
\text { if } \varphi \text { holds in every } \Sigma \text {-algebra that satisfies } \Phi \text {. }
$$

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}(\mathcal{C})=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}(\operatorname{Mod}(\Phi))$
- Mod and Th form a Galois connection

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b \text {, unless. } \ldots
$$

Proof-theoretic entailment

Σ-equation φ is a proof-theoretic consequence of a set of Σ-equations Φ if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness \& completeness

Fact: The equational calculus is sound and complete:

$$
\Phi \models \varphi \Longleftrightarrow \Phi \vdash \varphi
$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$
Proof (idea):
- soundness: easy!
- completeness: not so easy!

One motivation

Software systems (data types, modules, programs, databases. . .): sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, ...
- Focusing on: CORRECTNESS

> Universal algebra from rough analogy:
module interface \leadsto signature module \leadsto algebra
module specification \leadsto class of algebras

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Fact: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable "modules"

Example

$$
\begin{aligned}
& \text { spec NAIVENAT }=\mathbf{s o r t} N a t \\
& \qquad \begin{aligned}
& \text { opns } 0: N a t ; \\
& s u c c: N a t \rightarrow N a t ; \\
&-+- N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t . n+0=n ; \\
& \forall n, m: N a t . n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned}
\end{aligned}
$$

Now:

$$
\text { NAIVENAT } \not \models \forall n, m: N a t . n+m=m+n
$$

Perhaps worse:
There are models $M \in \operatorname{Mod}($ NaiveNat $)$ such that $M \models 0=\operatorname{succ}(0)$, or even:

$$
M \models \forall n, m: N a t . n=m
$$

How to fix this

- Constraints:
initiality: "no junk" \& "no confusion"

Also: reachability ("no junk"), and their more general versions (freeness, generation).
BTW: Constraints can be thought of as special (higher-order) formulae.

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
- more about this elsewhere...

Institutions!

There has been a population explosion among logical systems...

Initial models

Fact: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ-terms by the congruence that glues together all ground terms t, t^{\prime} such that $\Phi \models \forall \emptyset . t=t^{\prime}$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

BTW: Existence of initial (and free) models carries over to specifications with conditional equations, but not much further!

Example

$$
\begin{aligned}
& \text { spec NAT }=\text { initial }\{\text { sort } N a t \\
& \text { opns 0: Nat; } \\
& \text { succ: Nat } \rightarrow \text { Nat; } \\
& \text { _ + _: Nat } \times N a t \rightarrow N a t \\
& \text { axioms } \forall n \text { :Nat. } n+0=n \text {; } \\
& \forall n, m: N a t . n+\operatorname{succ}(m)=\operatorname{succ}(n+m) \\
& \text { \} }
\end{aligned}
$$

Now:

$$
\text { NAT } \models \forall n, m: N a t . n+m=m+n
$$

Try another example

$$
\begin{aligned}
& \text { spec NatPred }=\text { sort } N a t \\
& \text { opns 0: Nat; error: Nat; } \\
& \text { succ: Nat } \rightarrow \text { Nat; } \\
& \text { _ + _: Nat } \times \text { Nat } \rightarrow \text { Nat; } \\
& \text { pred: Nat } \rightarrow \text { Nat } \\
& \text { axioms } \forall n \text { :Nat. } n+0=n \text {; } \\
& \forall n, m: N a t . n+\operatorname{succ}(m)=\operatorname{succ}(n+m) ; \\
& \forall n: N a t . \operatorname{pred}(\operatorname{succ}(n))=n \text {; } \\
& \operatorname{pred}(0)=\text { error; } \\
& \operatorname{pred}(\text { error })=\operatorname{error} ; \operatorname{succ}(\text { error })=\text { error; } \\
& \forall n: \text { Nat.error }+n=\text { error } ; \forall n: N a t . n+\text { error }=\text { error }
\end{aligned}
$$

Looks okay. But try to add multiplication:

$$
\begin{aligned}
& 0 * n=0 ; \operatorname{succ}(m) * n=n+(m * n) \\
& \text { error } * n=\text { error } ; n * \text { error }=\text { error }
\end{aligned}
$$

Partial algebras

- Algebraic signature Σ : as before
- Partial $\mathrm{\Sigma}$-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

as before, but operations $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightharpoonup|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$, may now be partial functions.
BTW: Constants may be undefined as well.

- PAlg (Σ) stands for the class of all partial Σ-algebras.

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; (BTW: at least two other natural notions are possible)
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; (BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations)
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms;
- quotient algebra A / \equiv : built in the natural way on the equivalence classes of \equiv; the natural homomorphism from A to A / \equiv is strong if the congruence is strong.

Formulae

(Strong) equation:

$$
\forall X . t \stackrel{s}{=} t^{\prime}
$$

as before

Definedness formula:

$$
\forall X . \operatorname{def} t
$$

where X is a set of variables, and $t \in$ $\left|T_{\Sigma}(X)\right|_{s}$ is a term

Satisfaction relation
partial Σ-algebra A satisfies $\forall X . t \stackrel{s}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{s}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]$ is defined iff $t_{A}^{\prime}[v]$ is defined, and then $t_{A}[v]=$ $t_{A}^{\prime}[v]$

An alternative

- (Existence) equation:

$$
\forall X . t \stackrel{e}{=} t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t \stackrel{e}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{e}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]-$ both sides are defined and equal. BTW:

- $\forall X . t \stackrel{e}{=} t^{\prime}$ iff $\forall X .\left(t \stackrel{s}{=} t^{\prime} \wedge\right.$ def $\left.t\right)$
- $\forall X . t \stackrel{s}{=} t^{\prime}$ iff $\forall X$. (def $\left.t \Longleftrightarrow \operatorname{def} t^{\prime}\right) \wedge\left(\operatorname{def} t \Longrightarrow t \stackrel{e}{=} t^{\prime}\right)$

Example

$$
\begin{aligned}
& \text { spec NATPRED }=\text { initial }\left\{\begin{array}{l}
\text { sort } \\
\text { opns } 0: N a t ;
\end{array}\right. \\
& \qquad \begin{array}{c}
\text { succ }: N a t \rightarrow N a t ; \\
-+{ }_{-}: N a t \times N a t \rightarrow N a t ; \\
\text { pred }: N a t \rightarrow ? N a t
\end{array} \\
& \text { axioms } \forall n: N a t . n+0=n ; \\
& \forall n, m: N a t . n+\operatorname{succ}(m)=\operatorname{succ}(n+m) ; \\
& \forall n: N a t . p r e d(\operatorname{succ}(n)) \stackrel{s}{=} n \\
& \}
\end{aligned}
$$

First-order structures

- First-order signature $\Sigma=(S, \Omega, \Pi)$: algebraic signature (S, Ω) plus predicate names, classified by arities: $\Pi=\left\langle\Pi_{w}\right\rangle_{w \in S^{*}}$
- First-order Σ-structure:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega},\left\langle p_{A}\right\rangle_{p \in \Pi}\right)
$$

consists of:

- (S, Ω)-algebra $\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)$
- predicates (relations): $p_{A} \subseteq|A|_{s_{1}} \times \ldots \times|A|_{s_{n}}$, for $p: s_{1} \times \ldots \times s_{n}$ (i.e., $p \in \Pi_{s_{1} \ldots s_{n}}$)
- $\operatorname{Str}(\Sigma)$ stands for the class of all first-order Σ-structures.

Fix a signature $\Sigma=(S, \Omega, \Pi)$ for a while.

Few further notions

- substructure $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations and such that the inclusion preserves truth of predicates; the substructure is closed if the inclusion also preserves falsity of predicates;
- homomorphism $h: A \rightarrow B:$ map $h:|A| \rightarrow|B|$ that preserves the results of operations and truth of predicates; it is closed if in addition it preserves falsity of predicates; (closed) homomorphisms are closed under composition;
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations; it is closed if in addition it preserves truth (and falsity) of predicates; (closed) congruences are kernels of (closed) homomorphisms;
- quotient structures A / \equiv : built in the natural way on the equivalence classes of \equiv so that the natural map from A to A / \equiv is a homomorphism; it is closed if the congruence is closed.

Formulae

- atomic Σ-formulae over set X of variables:
$-t=t^{\prime}$, where $t, t^{\prime} \in\left|T_{(S, \Omega)}(X)\right|_{s}, s \in S$
- $p\left(t_{1}, \ldots t_{n}\right)$, where $p: s_{1} \times \ldots \times s_{n}, t_{1} \in\left|T_{(S, \Omega)}(X)\right|_{s_{1}}, \ldots t_{n} \in\left|T_{(S, \Omega)}(X)\right|_{s_{n}}$
- Σ-formulae contain atomic formulae and are closed under logical connectives and quantification; Σ-sentences are Σ-formulae with no free variables
- Satisfaction relation defined as usual between Σ-structures A and Σ-sentences φ

$$
A \models \varphi
$$

As before, this yields the usual notions of the class of models for a set of sentences, the semantic consequences of a set of sentences, the theory of a class of models, etc.

Initial (and free) models exist for first-order specifications with universally quantified conditional atomic formulae, but in general may fail to exist!

