
Category Theory in Foundations of Computer Science
2019/2020

Concepts, terminology and notation:

A weighted graph G = 〈N,E, s, t, r, w〉 consists of two sets, N of nodes and E of edges, with functions
s, t:E → N indicating, respectively, the source and target of each node, a root r ∈ N , and a weight
function w:E → N , where N is the set of natural numbers. G is finite if N ∪ E is a finite set. G is
a weighted tree if its underlying graph is a tree, i.e., if for each node n ∈ N , there is a unique path
from R to n in the graph.

A weighted graph morphism θ:G → G′, where G = 〈N,E, s, t, r, w〉 and G′ = 〈N ′, E ′, s′, t′, r′, w′〉,
consists of two functions θ = 〈θnode :N → N ′, θedge :E → E ′〉 that preserves sources and targets of
edges, the root, and does not increase the weights, i.e., for each e ∈ E, s′(θedge(e)) = θnode(s(e)),
t′(θedge(e)) = θnode(t(e)), and w(e) ≥ w′(θedge(e)), and θnode(r) = r′. With the obvious morphism
composition, this yields the category WGraph of weighted graphs and their morphisms, and its full
subcategory WTree of weighted trees and their morphisms. Let J :WTree → WGraph be the
obvious inclusion functor.

We also have their respective full subcategories FWGraph of finite weighted graphs and FWTree
of finite weighted trees, with inclusion functor FJ :FWTree→ FWGraph.

To do:

Prove or justify a negative answer to the following questions:

1. Consider categories:
(a) WGraph

(b) FWGraph

(c) WTree

(d) FWTree
Which of the categories above has all
FC. i) finite products, ii) equalisers, iii) finite limits

FCC. i) finite coproducts, ii) coequalisers, iii) finite colimits

C. i) products, ii) equalisers, iii) limits

CC. i) coproducts, ii) coequalisers, iii) colimits

2. Consider functors:
(a) J :WTree→WGraph

(b) FJ :FWTree→ FWGraph
Which of the functors above

C. is continuous

CC. is cocontinuous

L. has a left adjoint

R. has a right adjoint

Notes:

The questions above are not independent. For instance, a proof of 1.b.C.i is likely to be a proof of
1.b.FC.i as well, and a counterexample to 1.b.FC.ii is a counterexample to 1.b.FC.iii and is likely
to yield a counterexample to 1.b.C.ii and 1.b.C.iii. No need to repeat detailed arguments in such
cases, indicating the dependency is enough.

Sketch of a solution:

Limits in WGraph

Consider a family of weighted graphs G = {Gi = 〈Ni, Ei, si, ti, ri, wi〉 | i ∈ I}. Consider the following
weigthed graph G = 〈N,E, s, t, r, w〉, where

• N =
∏

i∈I Ni

• E = {〈ei〉i∈I ∈
∏

i∈I Ei | {wi(ei) | i ∈ I} is bounded in N}
• s(〈ei〉i∈I) = 〈si(ei)〉i∈I , t(〈ei〉i∈I) = 〈ti(ei)〉i∈I
• r = 〈ri〉i∈I
• w(〈ei〉i∈I) = max({wi(ei) | i ∈ I}), where max(∅) = 0 (this is well-defined for 〈ei〉i∈I ∈ E)

Then G with the obvious morpphisms πi:G → Gi is the product of G: given a weighted graph
G′ = 〈N ′, E ′, s′, t′, r′, w′〉 with morphisms θi:G

′ → Gi, the unique morphism θ:G′ → G such that
θ;πi = θi, i ∈ I, is given by θ(n′) = 〈θi(n′)〉i∈I , for n′ ∈ N ′, and θ(e′) = 〈θi(e′)〉i∈I , for e′ ∈ E ′, which
is well-defined since w′(e′) ≥ wi(θi(e

′)), i ∈ I, and so {wi(θi(e
′)) | i ∈ I} is bounded in N .

Note: the construction above works for I = ∅, yielding the weigthed graph G1 with a root and a
single edge going from the root to the root, with weight 0.

Given two morphisms θ, θ′:G → G′, where G = 〈N,E, s, t, r, w〉 and G′ = 〈N ′, E ′, s′, t′, r′, w′〉, their
equaliser is given by the inclusion into G of the following weighted graph: G0 = 〈N0, E0, s0, t0, r0, w0〉,
where

• N0 = {n ∈ N | θ(n) = θ′(n)}
• E0 = {n ∈ E | θ(e) = θ′(e)}
• s0, t0 and w0 coincide with s, t and w, respectively, on their arguements

• r0 = r

Consequently, WGraph has all limits (and so all finite limits as well)

Limits in FWGraph

Given a full subcategory K′ of K, if a limit of a diagram in K′ exists in K and is in K′, then it is
also a limit of this diagram in K′.

It is easy to check that the construction of the limits ensures that a limit of a finite diagram of finite
weigthed graphs is finite, hence FWGraph has all finite products, equalisers, and all finite limits as
well.

However, products of infinite famlies of finite weigthed graphs need not exist in FWGraph. For
instance, consider a weigthed tree T2, with two edges going out of its root, with both weights being 0.
Suppose that for an infinite I, there exists a product P in FWGraph of T = 〈Ti〉i∈I , where Ti = T2
for each i ∈ I. Let T1 be a weighted tree with a single edge going out of the root, with weight 0.
Then there are infinitely many distincts families 〈θi:T1 → Ti〉i∈I , hence there must be infinitely many
morphisms θ:T1 → P – and so P must have infinitely many edges, which yields a contradiction.

Colimits in WGraph

It’s easy to check that given a family of weighted graphs, its colimit in WGraph is given as the
“disjoint union with a new root replacing all old roots”.

2

Then, given two morphisms θ, θ′:G → G′, where G = 〈N,E, s, t, r, w〉 and G′ = 〈N ′, E ′, s′, t′, r′, w′〉,
their equaliser is given by the inclusion intoG of the following weighted graphG′′ = 〈N ′′, E ′′, s′′, t′′, r′′, w′′〉,
where

• N ′′ = N ′/≡node , where ≡node is the least equivalence on N ′ such that θ(n) ≡node θ
′(n), for each

n ∈ N
• E ′′ = E ′/≡edge , where ≡edge is the least equivalence on E ′ such that θ(e) ≡node θ

′(e), for each
e ∈ E
• s′′([e′]≡edge

) = [s′(e′)]≡node
, and t′′([e′]≡edge

) = [t′(e′)]≡node
for each e′ ∈ E ′ (note that the congru-

ence property holds, so this is well defined)

• w′′([e′]≡edge
) = min({w′(e0) | e0 ≡edge e

′}) for each e′ ∈ E ′
• r′′ = [r]≡node

In other words, colimits in WGraph are constructed on colimits in the category of graphs, with
weights added in the obvious way.

Consequently, all colimits in WGraph exist.

Colimits in FWGraph

Coeqaulisers and finite coproducts, hence all finite colimits, carry over from WGraph to FWGraph
(dually to limits).

However, infinite coproducts need not exist in FWGraph. To see this, a counterexample may be
constructed almost dually to that for infinite products in FWGraph: suppose that for an infinite
I, there exists a product C in FWGraph of T = 〈Ti〉i∈I , where Ti = T1 for each i ∈ I. There are
infinitely many distinct families of morphisms θi: (Ti = T1) → T2. Hence there must be infinitely
many morphisms from C to T2 — which is impossible when C has finitely many edges.

Limits in WTree

Non-empty products in WGraph may be adjusted to yield products in WTree as follows. Consider
a family of weighted trees T = {Ti = 〈Ni, Ei, si, ti, ri, wi〉 | i ∈ I}, and let G = 〈N,E, s, t, r, w〉 be its
products in WGraph, with projections πi:G → Ti. Let P be a reachable part of G. Then each πi
restricted to P is a weighted graph morphism. Hence, P is a weighted tree (since for any i ∈ I, Ti is
a weighted tree). Then it is easy to check that P with such restricted projections is a product of T
in WTree.

Then, the “single infinite line with weighths 0” tree Tl = 〈Nl, El, sl, tl, rl, wl〉 is a terminal object in
WTree, where Nl = N , El = N , sl(k) = k, tl(k) = k + 1, rl = 0, wl(k) = 0, for all k ∈ Nat.

The construction of equalisers in WGraph works for WTree as well.

Hence, WTree has all limits (and so all finite limits as well).

Limits in FWTree

The construction of equalisers in WTree works for FWTree as well. So does the construction of
non-empty products of finite families.

However, there is no terminal object in FWTree: suppose T? is a terminal object in FWTree. Then
it is easy to check, that from each node in T? there may be at most one outgoing edge. Hence T? is
a finite prefix of Tl. None of them is terminal in FWTree though, since there are no morphisms to
any such prefix from “longer” prefixes of Tl.

3

Moreover, products of infinite families in FWTree need not exist: the counterexample for infinite
products in WGraph works here as well.

Colimits in WTree

The construction of coproducts carries over from WGraph to WTree. So does the construction of
coequalisers — given θ, θ′:T → T ′, where T = 〈N,E, s, t, r, w〉 and T ′ = 〈N ′, E ′, s′, t′, r′, w′〉, it is
enough to notice here that for any node n ∈ N , the path from r to n in T is mapped by θ to the path
from r′ to θ(n), and by θ′ to the path from r′ to θ′(n), and so the construction of colimit of θ and θ′

in WGraph yieds a tree when both T and T ′ are trees.

Consequently, all colimits in WTree exist.

Colimits in FWTree

Coeqaulisers and finite coproducts, hence all finite colimits, carry over from WTree to FWTree.

However, infinite coproducts need not exist in FWTree: the counterexample for infinite coproducts
in FWGraph applies here as well.

Continuity and cocontinuity of J and FJ

J :WTree → WGraph does not preserve the terminal object, hence is not continuous. The con-
structions of colimits in WTree coincide with those for WGraph, hence J is cocontinuous.

FJ :FWTree→ FWGraph does not preserve products, hence is not continuous. The constructions
of finite colimits in FWTree coincide with those for FWGraph, hence FJ is finitely cocontinuous.
Those infinite colimits in FWTree that exist are preserves by FJ as well.

Adjoints to J and FJ

Since neither J nor FJ is continuous, neither has a left adjoint.

If FJ :FWTree → FWGraph had a right adjoint, then this right eadjoint would have to map the
terminal object in FWGraph, which exists, to a terminal object in FWTree, which does not exist
– hence FJ does not have a right adjoint.

J :WTree→WGraph does have the right adjoint: this is the “unfolding functor” U :WGraph→
WTree, where for any weigthed graph G = 〈N,E, s, t, r, w〉 , U(G) is the weithed tree of paths in G
starting in r: such paths are nodes in U(G), edges in U(G) expand the paths by one edge from G,
and weights in U(G) are inherited from G.

4

