Universal constructions: limits and colimits

Consider and arbitrary but fixed category ${f K}$ for a while.

Initial and terminal objects

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

Look for initial objects in other categories.

Fact: Initial objects, if exist, are unique up to isomorphism:

- Any two initial objects in K are isomorphic.
- If I is initial in ${\bf K}$ and I' is isomorphic to I in ${\bf K}$ then I' is initial in ${\bf K}$ as well.

Terminal objects

An object $I \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to I.

terminal = co-initial

Exercises:

Dualise those for initial objects.

- Look for terminal objects in standard categories.
- Show that terminal objects are unique to within an isomorphism.
- Look for categories where there is an object which is both initial and terminal.

Products

A product of two objects $A, B \in |\mathbf{K}|$, is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above. Then: $\langle f_1, f_2 \rangle; \pi_1 = f_1$ and $\langle f_1, f_2 \rangle; \pi_2 = f_2$. Moreover, for any h into the product $A \times B$: $h = \langle h; \pi_1, h; \pi_2 \rangle$. Essentially, this equationally defines a product!

projections).

Exercises

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.
- Define products in the *category of relations*, **Rel**, with sets (as objects) and binary relations as morphisms between them.
 - BTW: What about products in \mathbf{Rel}^{op} ?

Coproducts

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$, is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1,f_2]$ for h defined as above. Then: $\iota_1;[f_1,f_2]=f_1$ and $\iota_2;[f_1,f_2]=f_2$. Moreover, for any h from the coproduct A+B: $h=[\iota_1;h,\iota_2;h]$. Essentially, this equationally defines a product!

Fact: Coproducts are defined to within an isomorphism (which commutes with injections).

Exercises: Dualise!

Equalisers

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\ k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

In Set, given functions $f, g: A \to B$, define $E = \{a \in A \mid f(a) = g(a)\}$ The inclusion $e: E \hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , ...

Coequalisers

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv\subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$. The quotient function $[-]_{\equiv}\colon B\to B/\equiv$ is a coequaliser of f and g.

Define coequalisers in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , ...

Most general unifiers are coequalisers in \mathbf{Subst}_{Σ}

Pullbacks

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f: A \to C$ and $f: B \to C$, define $P = \{\langle a, b \rangle \in A \times B \mid f(a) = g(b)\}$ Then P with obvious projections on A and B

Then P with obvious projections on A and B, respectively, is a pullback of f and g.

Define pullbacks in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , ...

Wait for a hint to come...

Few facts

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g:A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle:A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

Pushouts

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to A$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

In Set, given two functions $f\colon A\to C$ and $g\colon B\to C$, define the least equivalence \equiv on $A\uplus B$ such that $f(c)\equiv g(c)$ for all $c\in C$ The quotient $(A\uplus B)/\equiv$ with compositions of injections and the quotient function is a pushout of f and g.

Dualise facts for pullbacks!

Example

Pushouts put objects together taking account of the indicated sharing

sorts String, Nat, Array[String]**Example** in AlgSig ops $a, \ldots, z : String;$ $_$: $String \times String \rightarrow String$; empty: Array[String];sort String $put: Nat \times String \times Array[String]$ ops $a, \ldots, z : String;$ $\rightarrow Array[String];$ $_$: $String \times String$ $get: Nat \times Array[String] \rightarrow String$ $\rightarrow String$ PO sorts Elem, Nat, Array | Elem |**ops** empty: Array[Elem];sort *Elem* $put: Nat \times Elem \times Array[Elem]$ $\rightarrow Array[Elem];$ $get: Nat \times Array[Elem] \rightarrow Elem$

Graphs

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

$$\Sigma_{Graph} =$$
sorts $nodes, edges$

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $\mathbf{Graph} = \mathbf{Alg}(\Sigma_{Graph})$

For any small category K, define its graph, G(K)

For any graph $G \in |\mathbf{Graph}|$, define the category of paths in G, $\mathbf{Path}(G)$:

- objects: $|G|_{nodes}$
- morphisms: paths in G, i.e., sequences $n_0e_1n_1\dots n_{k-1}e_kn_k$ of nodes $n_0,\dots,n_k\in |G|_{nodes}$ and edges $e_1,\dots,e_k\in |G|_{edges}$ such that $source(e_i)=n_{i-1}$ and $target(e_i)=n_i$ for $i=1,\dots,k$.

Diagrams

A diagram in ${f K}$ is a graph with nodes labelled with ${f K}$ -objects and edges labelled with ${f K}$ -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph G(D),
- an object $D_n \in |\mathbf{K}|$ for each node $n \in |G(D)|_{nodes}$,
- a morphism $D_e: D_{source(e)} \to D_{target(e)}$ for each edge $e \in |G(D)|_{edges}$.

For any small category K, define its diagram, D(K), with graph G(D(K)) = G(K)

BTW: A diagram D commutes (or is commutative) if for any two paths in G(D) with common source and target, the compositions of morphisms that label the edges of each of them coincide.

Diagram categories

Given a graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, the category of diagrams of shape G in K, \mathbf{Diag}_{K}^{G} , is defined as follows:

- objects: all diagrams D in \mathbf{K} with G(D)=G
- morphisms: for any two diagrams D and D' in \mathbf{K} of shape G, a morphism $\mu\colon D\to D'$ is any family $\mu=\langle \mu_n\colon D_n\to D'_n\rangle_{n\in N}$ of morphisms in \mathbf{K} such that for each edge $e\in E$ with $source_{G(D)}(e)=n$ and $target_{G(D)}(e)=m$,

$$\mu_n; D'_e = D_e; \mu_m$$

•

Let D be a diagram over G(D) with nodes $N = |G(D)|_{nodes}$ and edges $E = |G(D)|_{edges}$.

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{G(D)}(e) = n$ and $target_{G(D)}(e) = m$, $\alpha_n; D_e = \alpha_m$.

A cocone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon D_n \to X \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{G(D)}(e) = n$ and $target_{G(D)}(e) = m$, $\alpha_n = D_e; \alpha_m$.

Limits and colimits

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A colimit of D (in \mathbf{K}) is a cocone $\langle \alpha_n \colon D_n \to X \rangle_{n \in N}$ on D such that for all cocones $\langle \alpha'_n \colon D_n \to X' \rangle_{n \in N}$ on D, for a unique morphism $h \colon X \to X'$, $\alpha_n; h = \alpha'_n$ for all $n \in N$.

Some limits

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	A imes B
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \xleftarrow{g} B$	pullback	$\{(a,b)\in A\times B\mid f(a)=g(b)\}$

... & colimits

diagram	colimit	in Set
(empty)	initial object	Ø
A B	coproduct	$A \uplus B$
$A \xrightarrow{f \atop g} B$	coequaliser	$B \longrightarrow B/\!\!\equiv$ where $f(a) \equiv g(a)$ for all $a \in A$
$A \xleftarrow{f} C \xrightarrow{g} B$	pushout	$(A \uplus B)/\equiv$
		where $f(c) \equiv g(c)$ for all $c \in C$

Exercises

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - $\ \underline{\underline{\text{morphisms}}} : \text{ a morphism from } \langle \alpha_n \colon X \to D_n \rangle_{n \in N} \text{ to } \langle \alpha'_n \colon X' \to D_n \rangle_{n \in N} \text{ is any } \mathbf{K}\text{-morphism } h \colon X \to X' \text{ such that } h; \alpha'_n = \alpha_n \text{ for all } n \in N.$
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in **Set** of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Show that limiting cones are *jointly mono*, i.e., if $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ is a limit of D then for all $f, g \colon A \to X$, f = g whenever $f \colon \alpha_n = g \colon \alpha_n$ for all $n \in N$.

Dualise all the exercises above!

Completeness and cocompleteness

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If ${f K}$ has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.

Dualise the above!