Institutions
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Tuning up the logical system'

e various sets of formulae (Horn-clauses, first-order, higher-order, modal formulae,

e various notions of algebra (partial algebras, relational structures, error algebras,
Kripke structures, ... )

e various notions of signature (order-sorted, error, higher-order signatures, sets of
propositional variables, .. .)

e (various notions of signature morphisms)

No best logic for everything

Solution:

Work with an arbitrary logical system
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Institutions I

Abstract model theory

for specification and programming

e a standard formalization of the concept of the underlying logical system for
specification formalisms and most work on foundations of software specification
and development from algebraic perspective;

e a formalization of the concept of a logical system for foundational studies:

— truly abstract model theory
— proof-theoretic considerations

— building complex logical systems
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Some institutional topics'

e Institutions: intuitions and motivations
Goguen & Burstall ~1980 — 1992

e Very abstract model theory
Tarlecki ~1986, Diaconescu et al ~2003 — ...

e Structured specifications
CLEAR ~1980, Sannella & Tarlecki ~1984 — ..., CASL ~2004
for CASL see: LNCS 2900 & 2960

e Moving between institutions
Goguen & Burstall ~1983 — 1992, Tarlecki ~1986, 1996, Goguen & Rosu ~2002

e Heterogeneous specifications
Sannella & Tarlecki ~1988, Tarlecki ~2000 — ..., Mossakowski ~2002 — ...

...to be continued by Till Mossakowski (HETS)

@. .apologies for missing some names and for inaccurate years. . D
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Institution: abstraction'

Sen 0 e

plus satisfaction relation:

M=y

and so the usual Galois connection be-
tween classes of models and sets of sen-
tences, with the standard notions induced

(Mod(®), Th(M), Th(®), ® |= ¢, etc).

e Also, possibly adding (sound) conse-

Mod quence: ® - ¢ (implying ® = ) to
deal with proof-theoretic aspects.
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Institution: first insight

(@ )
: : plus satisfaction relation:

Si C X ) and so, for each signature, the usual Ga-
1gNn hY
lois connection between classes of models
and sets of sentences, with the standard
notions induced (Mods(®), Thx(M),

’ ‘ Thx(®), ® E=x ¢, etc).
Mod e Also, possibly adding (sound) conse-
quence: ® Fx ¢ (implying ® =5 )

to deal with proof-theoretic aspects.
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Institution: key insight'

(&)

Sign

\ / \ / imposing the satisfaction condition:
M’ ‘:2/ O'(QO) Iff M"o- |:E @Q
Cl—"—A>)

Truth is invariant
under change of notation

and independent of
any additional symbols around
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Institution '

e a category Sign of signatures

e 2o functor Sen: Sign — Set

— Sen(X)) is the set of X-sentences, for 3 € |Sign|

e a functor Mod: Sign°® — Cat

— Mod(Y) is the category of X-models, for ¥ € |Sign|

e for each X € |Sign|, YX-satisfaction relation =y, C |[Mod(%)| x Sen(>)

subject to the satisfaction condition:

where o: X — ¥ in Sign, M’ € |[Mod(X')|, ¢ € Sen(X),

M|, Esp < M s o(p)

M'|, stands for Mod(co)(M"), and o(p) for Sen(c)(p).
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Typical institutions I

e FOEQ — first-order logic (with predicates and equality)
e PEQ, PFOEQ — as above, but with partial operations
e HOL — higher-order logic

e EQ — equational logic

e logics of constraints (fitted via signature morphisms)

e CASL — the logic of CASL: partial first-order logic with equality, predicates,
generation constraints, and subsorting

CASL subsorting: the sets of sorts in signatures are pre-ordered.;

in every model M, s < s’ yields an injective subsort embedding (coercion)

s<s' | s<s __

emy; : |Ml|s — |M]sy such that em);” = id)y;, for each sort s, and
< / /< /7 < 12 ) ) )

emyr semy~ = emy; , for s < s < §”; plus partial projections and

subsort membership predicates derived from the embeddings.
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Somewhat less typical institutions:'

e modal logics
e three-valued logics

e programming language semantics:

— IMP: imperative programming language with sets of computations as models
and procedure declararions as sentences

— FPL: functional programming language with partial algebras as models and
the usual axioms with extended term syntax allowing for local recursive
function definitions
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Temporal logic I

Institution TL: extremely simplified version

and oversimplified presentation

e signatures A: (finite) sets of actions;

e models R: sets of runs, finite or infinite sequences of (sets of) actions;

e sentences ¢: built from atomic statements a (action a € A happens) using the
usual propositional and temporal connectives, including X¢ (an action happens

and then ¢ holds) and U (¢ holds until ¥ holds)

e satisfaction R = ¢: ¢ holds at the beginning of every run in R

WATCH OUT! Under some formalisations, satisfaction condition may faill

Care is needed in the exact choice of sentences considered,
morphisms (between sets of actions) allowed, and reduct definitions.
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Perhaps unexpected examples:'

® no sentences
e no models
® no signatures

e trivial satisfaction relations

Let's fix an institution I = (Sign, Sen, Mod, (|=x)

e sets of sentences as sentences
e sets of sentences as signatures
e classes of models as sentences

e sets of sentences as models

sc|sign|) for @ while.
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Semantic entailment'

b =5 ¢

Y.-sentence ¢ Is a semantic consequence of a set of Y.-sentences P

if © holds in every >J-models that satisfies ®.

BTW:
e Models of a set of sentences: Mod(®) = {M € |Mod(X)| | M = ®}
e Theory of a class of models: Th(C) = {¢ | C = ¢}
o dl=¢p < e Th(Mod(P))

e Mod and Th form a Galois connection
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Semantic equivalences'

Equivalence of sentences: for ¥ € |Sign|, p,9 € Sen(X) and M C |Mod(X)],

0 =m Y

if for all ¥-models M € M, M |= ¢ iff M = 1. For ¢ =pmoda(s)| ¥ we write:

=1

Semantic equivalence

Equivalence of models: for ¥ € |Sign|, M, N € [Mod(X)|, and & C Sen(X),

MECI)N

if forall p € ®, M = ¢ iff N = ¢. For M =gepn(s;) N we write:

M=N

Elementary equivalence
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Compactness, consistency, completeness. .. I

e Institution I is compact if for each signature 3 € |Sign|, set of -sentences
® C Sen(X), and X-sentences ¢ € Sen(>),

if ® = ¢ then @5, = ¢ for some finite @5, C P

e A set of Y-sentences ® C Sen(X) is consistent if it has a model, i.e.,

Mod(®) #£ 0

e A set of Y-sentences ® C Sen(>) is complete if it is a maximal consistent set of

Y.-sentences, i.e., ® Is consistent and

for ® C @' C Sen(), if @ is consistent then & = @’

Fact: Any complete set of %-sentences ® C Sen(X) is a theory: ® = Th(Mod(®)).
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Preservation of entailment'

Fact:

P s = o(®) s o(p)

foro: ¥ — X', & C Sen(X), ¢ € Sen(X).
If the reduct _|o: Mod(X')| — |[Mod(X)| is surjective, then

Oy = a(P) Fs a(p)
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Adding provability I

Add to institution:

e proof-theoretic entailment:
-y C P(Sen(X)) x Sen(X)

for each signature ¥ € |Sign|, closed under

— weakening, reflexivity, transitivity (cut)

— translation along signature morphisms
Require:
e soundness: Py ¢ = P Ex @

(7) completeness: ® Ex ¢ = PFyx @
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Presentations
(basic specifications)

(%, @)

e signature X, to determine the static module interface

e axioms (X-sentences) ® C Sen(X), to determine required module properties

Use strong enough logic to capture the “right” class of models,
excluding undesirable “modules”
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Presentation morphisms'

Presentation morphism:

o: (X, P) — (X D)

is a signature morphism ¢ : ¥ — 3’ such that for all M" € Mod(¥’):

M'" € Mod(®') = M'|, € Mod(®)

[Then o : Mod(®') — Mod(cb)j

Fact: A signature morphism o : ¥ — ¥’ is a presentation morphism
o: (X, ®) — (X, ifand only if ®" = o (D) .

(BTW: for all presentation morphisms ® =5, ¢ = @' =y 0(90))
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Conservativity I

o: (X, P) — X, D)

A presentation morphism:

is conservative if for all X-sentences ¢: | ¥’ sy 0(p) = @ Ex @

A presentation morphism ¢ : (3, ®) — (3 ®") admits model expansion if for each
M € Mod(®) there exists M" € Mod(®’) such that M'|, = M

(e, —|o : Mod(®") — Mod(®) is surjective).

Fact: Ifo: (3, ®) — (3, &) admits model expansion then it is conservative.

@n general, the equivalence does not hoIdD)

Fact: If (X, ®) is complete and (3, ®') is consistent then any presentation
morphism o : (3, ®) — (3, @) is conservative.
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Categories of presentations & of theories

e Pres: the category of presentations in I has presentations as objects and
presentation morphisms as morphisms, with identities and composition inherited
from Sign, the category of signatures.

e TH: the category of theories in 1 is the full subcateogry of Pres with theories
(presentations with sets of sentences closed under consequence) as objects.

Pres and TH are equivalent:
idy 2 (35, ) — (3, Th(Mod(®)))

Is an isomorphism in Pres

Fact: The forgetful functors from Pres and TH, respectively, to Sign preserve and
create colimits.

Fact: [If the category Sign of signatures is cocomplete, so are the categories Pres
of presentations and TH of theories.
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Proof hint '

in Sign:

/\
\/

in Pres:
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Logical connectives I

e I has negation if for every signature 3 € |Sign| and Y-sentence ¢ € Sen(Y),
there is a Y-sentence “—¢p” € Sen(X) such that for all X-models
M € [Mod(%)|, M | “—¢” ift M = .

e I has conjunction if for every signature 3 € |Sign| and Y-sentences
©, € Sen(), there is a X-sentence “p A 1" € Sen(X) such that for all
Y-models M € [Mod(X)|, M = “pANY” iff M = ¢ and M = 1.

e ...implication, disjunction, falsity, truth ...

Fact: For any signature morphism o : 3 — ¥/ and X-sentence ¢ € Sen(X))

77

o(“¢”) and “—o(p)” are equivalent.

Similarly, for ¥-sentences v, € Sen(%)), o(“@ AY”) and “o(p) AN o(yh)” are
equivalent.

For any institution I, define its closures:

imilarly for other connectives. . . : : :
> Y under negation 1™, under conjunction I, etc.
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Free variables and quantification'

Standard algebra

Institution I

algebraic signature 3 = (S, )

signature X € |Sign|

S-sorted set of variables X

signature extension ¢ : ¥ — X(X)

open X-formula ¢ with variables X

Y(X)-sentence

>.-algebra M

Y.-model M € |[Mod(Y)]

valuation of variables v : X — |M| in M

t-expansion M" of M,
e, MY € [Mod(S(X)), M?|, = M
(M?=v(x) for variable/constant x € X )

satisfaction of formula ¢ in M under v:
M =5 ¢

satisfaction of “open formula” ¢
MY =sx) @

A characterisation of such signature extensions:

o : X — X' is representable iff Mod(3) has an initial model and
“|o : (Mod(E')TM’) = (Mod(£)1(M’|5)) is iso for M’ € [Mod(X')|
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Quantification I

Let 7 be a class of signature morphisms. For decency, assume that it forms a
subcategory of Sign and is closed under pushouts with arbitrary signature morphisms.

e I has universal quantification along I if for every signature morphism 6 : ¥ — >/
in Z and X'-sentence ¢ € Sen(XY’), there is a Y-sentence “V0-1)” € Sen(2X) such
that for all 3-models M € |Mod(X)|, M [ “V0-y” iff for all ¥X'-models with
M"g =M, M" € |Mod ()|, M’ = .

e I has existential quantification along T if for 6 : 3 — ¥’ in Z and X'-sentence
Y € Sen(X'), there is a X-sentence “30-1)” € Sen(3) such that for all ¥-models
M € [Mod(X)|, M [= “d6-¢” iff for some ¥'-model M’ € |Mod(>')| with
M/‘QZM, M’ = 1.
Fact: Forany o :% — Xy, o(“VO-4”) and “VO'-0'(¢)” are equivalent,
where the following is a pushout in Sign with 8’ € T: HI PO Ie’

Similarly for existential quantification. |[ avial cAMATION NEEDED! > 5,
i o
(Define 17O “first-order closure” of I)

O'/ /
]

Andrzej Tarlecki: Category Theory, 2018 - 193 -



Amalgamation for aIgebrasI

A/

ZlLJEg
=Als, 231 Ez Allz, = Ao

ZlﬂEg

Al‘ElﬂZQ AQ‘ElﬂZQ

Fact: For any algebras A1 € |Alg(X1)| and Ay € |Alg(3s)| with common

interpretation of common symbols A4 ‘gmgQ — Ao ‘21m22, there is a unique “union”
OfAl and AQ, A’ < \Alg(Zl U 22)| with A/‘El = Al and A/‘E2 = AQ.
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Amalgamation I

M/
E/
% A
o = M,
May be sensibly stated for any
commuting square of morphisms

0'1 - M2‘O'2

In I, amalgamation property holds for the pushout above if for all M; € |Mod(31)]
and M € [Mod(X2)| with M |s, = M3|o,, there is a unique M" € [Mod(X')[ with
M’ /—MgandM’ /—M1
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Adding amalgamation I

Assume:

e the model functor Mod: Sign®” — Cat is continuous (maps colimits of
signatures to limits of model categories)

Fact: Alg: AlgSig® — Cat is continuous.

Amalgamation property: Amalgamation property follows for a pushout in Sign if
Mod maps it to a pullback in Cat:

ot —| o
5 3 Mod(Z;) ~——— Mod(X)
A A
o PO |oj Mod, o1 PB —lo3
Y Y
> —5— s Mod(Y) - ‘ Mod(3,)
o
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Adding interpolation I

I has the interpolation property for a pushout in Sign

/\
\/

if for all 1 € Sen(X1) and o € Sen(Eg) such that 5 (p1) Exr 0] (p2) there is
0 c SGH(E) such that V1 ‘Igl 0'1(9) and 0'2(9) )222 p2.

Fact: FOEQ has the interpolation property for all pushouts of pairs of morphisms,
where at least one of the morphisms is injective on sorts.

Spell out a version with a set of interpolants (Craig interpolation theorem)
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Consistency theorem I

I has the consistency property for a pushout in Sign

/\ ,
\/ \/

if for all ® C Sen(3) and consistent ®; C Sen(>) and <I>2 Q Sen(X5) such that
o1 : (3, P) = (31, P1) is a conservative presentation morphism and
o9 1 (3, D) — (3, Po) is a presentation morphism, (X' o5 (P1) U oy (P2)) is

consistent. (Robinson consistency theorem (for first-order Iogic))

Fact: In any compact institution with falsity, negation and conjunction, Craig
interpolation and Robinson consistency properties are equivalent.
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The method of diagrams'

Institution I

Standard algebra

Given a signature X and X-model M,
build signature extension ¢ : 3 — (M)

and a (M )-presentation Fjy

so that the reduct by ¢ yields isomorphism
Mod(X (M), Ep) — (Mod(X)1TM)

...and everything is natural ...

(adding elements of |M| as constants)

(all ground atoms true in M™, the nat-
ural t-expansion of M)

(then the reduct by v yields isomorphism
Alg(S(M), Ear) — (Alg(S)TM))

(everything is natural)

Now: M has a “canonical” t-expansion
which is initial in Mod(X(M), Ej)

(M™ , reachable 1-expansion of M, is ini-
tial in Alg(X(M), Enr))
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Equipped with the method of diagrams, one can do a lot!
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Abstract abstract model theory'

Providing new insights and abstract formulations
for classical model-theoretic concepts and results

e amalgamation over pushouts

e the method of elementary diagrams
e existence of free extensions

e interpolation results

e Birkhoff variety theorem(s)

e Beth definability theorem

e logical connectives, free variables, quantificay

e completeness for any first-order logic
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WORK IN AN ARBITRARY INSTITUTION'

.. adding extra structure and assumptions only if really needed ...

Revised rough analogy'

module interface  ~»  signature

module ~ model

module specification ~»  class of models
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