Functors and natural transformations

functors → category morphisms

natural transformations → functor morphisms

Functors

A functor $F \colon K \to K'$ from a category K to a category K' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

such that:

Make explicit categories in which we work at various places here

• **F** preserves identities, i.e.,

$$\mathbf{F}(id_A) = id_{\mathbf{F}(A)}$$

for all $A \in |\mathbf{K}|$, and

• **F** preserves composition, i.e.,

$$\mathbf{F}(f;g) = \mathbf{F}(f); \mathbf{F}(g)$$

for all $f: A \to B$ and $g: B \to C$ in **K**.

We really should differentiate between various components of F

Examples

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set}, \ \mathbf{P}(f)(Y) = \{f(y) \mid y \in Y\}$ for all $Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by
 - $-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}_{-1}(f) \colon \mathbf{P}(X') \to \mathbf{P}(X) \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}_{-1}(f)(Y') = \{ x \in X \mid f(x) \in Y' \} \text{ for all } Y' \subseteq X'$

Examples, cont'd.

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - **List** $(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$
- totalisation functor: $\mathbf{Tot} \colon \mathbf{Pfn} \to \mathbf{Set}_*$, where \mathbf{Set}_* is the subcategory of \mathbf{Set} of sets with a distinguished element * and *-preserving functions
 - $\mathbf{Tot}(X) = X \uplus \{*\}$

Define \mathbf{Set}_* as the category of algebras

$$- \mathbf{Tot}(f)(x) = \begin{cases} f(x) & \text{if it is defined} \\ * & \text{otherwise} \end{cases}$$

Examples, cont'd.

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma}$: $\mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma: \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$ Generalise to many-sorted signatures
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$
- diagonal functors: $\Delta_{\mathbf{K}}^G \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^G$ for any graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, and category \mathbf{K}
 - $\Delta^G_{\mathbf{K}}(A)=D^A$, where D^A is the "constant" diagram, with $D^A_n=A$ for all $n\in N$ and $D^A_e=id_A$ for all $e\in E$
 - $\Delta^G_{\mathbf{K}}(f) = \mu^f \colon D^A \to D^B$, for all $f \colon A \to B$, where $\mu^f_n = f$ for all $n \in N$

Hom-functors

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} \times \mathbf{K} \to \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

- $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$
- $\mathbf{Hom}_{\mathbf{K}}(\langle f,g\rangle) \colon \mathbf{K}(A,B) \to \mathbf{K}(A',B')$, for $\langle f,g\rangle \colon \langle A,B\rangle \to \langle A',B'\rangle$ in $\mathbf{K}^{op} \times \mathbf{K}$, i.e., $f \colon A' \to A$ and $g \colon B \to B'$ in \mathbf{K} , as a function given by $\mathbf{Hom}_{\mathbf{K}}(\langle f,g\rangle)(h) = f;h;g.$

Also: $\mathbf{Hom}_{\mathbf{K}}(A, _) \colon \mathbf{K} \to \mathbf{Set}$ $\mathbf{Hom}_{\mathbf{K}}(_, B) \colon \mathbf{K}^{op} \to \mathbf{Set}$

Functors preserve...

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - ...
- A functor is (finitely) continuous if it preserves all existing (finite) limits. Which of the above functors are (finitely) continuous?

Dualise!

Functors compose...

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals

Comma categories

Given two functors with a common target, $F \colon K1 \to K$ and $G \colon K2 \to K$, define their comma category

 (\mathbf{F},\mathbf{G})

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $\overline{f \colon \mathbf{F}(A_1)} \to \mathbf{G}(A_2)$ in \mathbf{K}
- morphisms: a morphism in (\mathbf{F}, \mathbf{G}) is any pair $\overline{\langle h_1, h_2 \rangle}$: $\overline{\langle A_1, f : \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle} \to \overline{\langle B_1, g : \mathbf{F}(B_1) \to \mathbf{G}(B_2), B_2 \rangle}$, where $h_1 : A_1 \to B_1$ in $\mathbf{K1}$, $h_2 : A_2 \to B_2$ in $\mathbf{K2}$, and $\mathbf{F}(h_1); g = f; \mathbf{G}(h_2)$ in \mathbf{K} .
- composition: component-wise A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_8 A_8 A_9 A_9

Examples

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor ($\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$). Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$

The category of algebraic signatures as a comma category:

$$\mathbf{AlgSig} = (\mathbf{Id_{Set}}, (_)^+)$$

where $(_)^+$: Set \to Set is the non-empty list functor $((X)^+)$ is the set of all non-empty lists of elements from X, $(f)^+(\langle x_1,\ldots,x_n\rangle)=\langle f(x_1),\ldots,f(x_n)\rangle)$. Hint: write objects of this category as $\langle \Omega,\langle arity,sort\rangle:\Omega\to S^+,S\rangle$

Define \mathbf{K}^{\rightarrow} , $\mathbf{K} \downarrow A$ as comma categories. The same for $\mathbf{Alg}(\Sigma)$.

Cocompleteness of comma categories

Fact: If K1 and K2 are (finitely) cocomplete categories, $F: K1 \to K$ is a (finitely) cocontinuous functor, and $G: K2 \to K$ is a functor then the comma category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (\mathbf{F}, \mathbf{G}) , using the corresponding constructions in $\mathbf{K1}$ and $\mathbf{K2}$, and cocontinuity of \mathbf{F} .

State and prove the dual fact, concerning completeness of comma categories

Coproducts:

Coequalisers:

Indexed categories

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$
- morphisms: a morphism from $\langle i,A \rangle$ to $\langle j,B \rangle$, $\langle \sigma,f \rangle \colon \langle i,A \rangle \to \langle j,B \rangle$, consists of a morphism $\sigma \colon i \to j$ in \mathbf{Ind} and a morphism $f \colon A \to \mathcal{C}(\sigma)(B)$ in $\mathcal{C}(i)$
- composition: given $\langle \sigma, f \rangle \colon \langle i, A \rangle \to \langle i', A' \rangle$ and $\langle \sigma', f' \rangle \colon \langle i', A' \rangle \to \langle i'', A'' \rangle$, their composition in $\mathbf{Flat}(\mathcal{C})$, $\langle \sigma, f \rangle \colon \langle \sigma', f' \rangle \colon \langle i, A \rangle \to \langle i'', A'' \rangle$, is given by

$$\langle \sigma, f \rangle; \langle \sigma', f' \rangle = \langle \sigma; \sigma', f; \mathcal{C}(\sigma)(f') \rangle$$

Fact: If Ind is complete, C(i) are complete for all $i \in |Ind|$, and $C(\sigma)$ are continuous for all $\sigma: i \to j$ in Ind, then Flat(C) is complete.

Try to formulate and prove a theorem concerning cocompleteness of $\mathbf{Flat}(\mathcal{C})$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G} \colon \mathbf{K} \to \mathbf{K}'$, a natural transformation from \mathbf{F} to \mathbf{G}

$$au\colon \mathbf{F} o \mathbf{G}$$

is a family $\tau = \langle \tau_A \colon \mathbf{F}(A) \to \mathbf{G}(A) \rangle_{A \in |\mathbf{K}|}$ of \mathbf{K}' -morphisms such that for all $f \colon A \to B$ in \mathbf{K} (with $A, B \in |\mathbf{K}|$), $\tau_A : \mathbf{G}(f) = \mathbf{F}(f) : \tau_B$

Then, τ is a natural isomorphism if for all $A \in |\mathbf{K}|$, τ_A is an isomorphism.

Examples

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_A \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$
- $singleton-list\ functions:\ sing^{\mathbf{List}}:\mathbf{Id}_{\mathbf{Set}} \to |\mathbf{List}|\ (:\mathbf{Set} \to \mathbf{Set}),\ \text{where}$ $|\mathbf{List}| = \mathbf{List};|_{-}|:\mathbf{Set}(\to \mathbf{Monoid}) \to \mathbf{Set},\ \text{and for all}\ X \in |\mathbf{Set}|,$ $sing_X^{\mathbf{List}}:X \to X^* \text{ is a function defined by } sing_X^{\mathbf{List}}(x) = \langle x \rangle \text{ for } x \in X$
- append functions: $append: |\mathbf{List}|; \mathbf{CP} \to |\mathbf{List}| \ (:\mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $append_X: (X^* \times X^*) \to X^*$ is the usual append function (list concatenation) polymorphic functions between algebraic types

Andrzej Tarlecki: Category Theory, 2018

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$

Theorems for free! (see Wadler 89)

Yoneda lemma

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom_K}(A, _), \mathbf{F}) \cong \mathbf{F}(A)$$

natural transformations from $\mathbf{Hom_K}(A,_)$ to \mathbf{F} , between functors from \mathbf{K} to \mathbf{Set} , are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

• Dualise: for $G: K^{op} \to Set$,

$$Nat(\mathbf{Hom_K}(_-, A), \mathbf{G}) \cong \mathbf{G}(A)$$

• Characterise all natural transformations from $\mathbf{Hom}_{\mathbf{K}}(A, _)$ to $\mathbf{Hom}_{\mathbf{K}}(B, _)$, for all objects $A, B \in |\mathbf{K}|$.

Proof

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau_B^a \colon \mathbf{K}(A,B) \to \mathbf{F}(B)$ given by $\tau_B^a(f) = \mathbf{F}(f)(a)$ for $f \colon A \to B$ in \mathbf{K} .

This is a natural transformation, since for $g: B \to C$ and then $f: A \to B$,

$$\mathbf{F}(g)(au_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a))$$

$$= \mathbf{F}(f;g)(a) = au_C^a(f;g)$$

$$= au_C^a(\mathbf{Hom}_{\mathbf{K}}(A,g)(f))$$
Then $au_A^a(id_A) = a$, and so for distinct $a, a' \in \mathbf{F}(A)$, au^a and $au^{a'}$ differ.

• If $\tau \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$ is a natural transformation then $\tau = \tau^a$, where we A put $a = \tau_A(id_A)$, since for $B \in |\mathbf{K}|$ and $f : A \to B$, $\tau_B(f) = \mathbf{F}(f)(\tau_A(id_A))$ by naturality of τ : $B \qquad \mathbf{K}(A,A) \xrightarrow{\tau_A} \mathbf{F}(A)$ $(-); f = \mathbf{Hom}_{\mathbf{K}}(A,f) \qquad \mathbf{F}(f)$ $\mathbf{K}(A,B) \xrightarrow{\tau_B} \mathbf{F}(B)$

K: Set:
$$B \mathbf{K}(A,B) \xrightarrow{\tau_B^a} \mathbf{F}(B)$$

$$g (_);g = \mathbf{Hom_K}(A,g) \mathbf{F}(g)$$

$$C \mathbf{K}(A,C) \xrightarrow{\tau_C^a} \mathbf{F}(C)$$

$$\mathbf{K}(A,A) \xrightarrow{\tau_A} \mathbf{F}(A)$$

$$(_); f = |\mathbf{Hom_K}(A,f)| \qquad \mathbf{F}(f)$$

$$\mathbf{K}(A,B) \xrightarrow{\tau_B} \mathbf{F}(B)$$

Compositions

vertical composition:

horizontal composition:

 \mathbf{F}''

Vertical composition

The *vertical composition* of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{F}'\to\mathbf{F}''$ between parallel functors $\mathbf{F},\mathbf{F}',\mathbf{F}''\colon \mathbf{K}\to\mathbf{K}'$

$$\tau;\sigma\colon\mathbf{F}\to\mathbf{F}''$$

is a natural transformation given by $|(\tau;\sigma)_A = \tau_A;\sigma_A|$ for all $A \in |\mathbf{K}|$.

Horizontal composition

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)$

 $A \in |\mathbf{K}|$.

Multiplication by functor:

$$- \tau \cdot \mathbf{G} = \tau \cdot id_{\mathbf{G}} \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G},$$

i.e., $(\tau \cdot \mathbf{G})_A = \mathbf{G}(\tau_A)$

$$-\mathbf{F}\cdot\boldsymbol{\sigma}=id_{\mathbf{F}}\cdot\boldsymbol{\sigma}\colon\mathbf{F};\mathbf{G}\to\mathbf{F};\mathbf{G}',$$
 i.e., $(\mathbf{F}\cdot\boldsymbol{\sigma})_A=\sigma_{\mathbf{F}(A)}$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

for all

Functor categories

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from \mathbf{K}' to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- ullet View the category of S-sorted sets, \mathbf{Set}^S , as a functor category
- Show how any functor $\mathbf{F} \colon \mathbf{K}'' \to \mathbf{K}'$ induces a functor $(\mathbf{F};_) \colon \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Check when $(F;_-): \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$ is (finitely) (co)continuous, for a given functor $F: \mathbf{K}'' \to \mathbf{K}'$

Yoneda embedding

Given a category K, define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , for $X \in |\mathbf{K}^{op}|$.

Fact: The category of presheaves $\mathbf{Set}^{\mathbf{K}^{op}}$ is complete and cocomplete.

Fact: $\mathcal{Y} \colon \mathbf{K} \to \mathbf{Set}^{\mathbf{K}^{op}}$ is full and faithful.

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $\mathbf{F}_D(n_0e_1n_1...n_{k-1}e_kn_k) = D_{e_1};...;D_{e_k}$, for paths $n_0e_1n_1...n_{k-1}e_kn_k$ in G

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different
- all functors from $\mathbf{Path}(G)$ to $\mathbf K$ are given by diagrams over G

Diagram morphisms $\mu\colon D\to D'$ between diagrams of the same shape G are exactly natural transformations $\mu\colon \mathbf{F}_D\to \mathbf{F}_{D'}$. $\mathbf{Diag}^G_{\mathbf{K}}\cong \mathbf{K}^{\mathbf{Path}(G)}$

Diagrams are functors from small (shape) categories

Double law

then:

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

This holds in **Cat**, which is a paradigmatic example of a two-category.

A category \mathbf{K} is a *two-category* when for all objects $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is again a category, with 1-morphisms (the usual \mathbf{K} -morphisms) as objects and 2-morphisms between them. Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A, B)$) and horizontally, subject to the double law as stated here.

In two-category \mathbf{Cat} , we have $\mathbf{Cat}(\mathbf{K}',\mathbf{K})=\mathbf{K}^{\mathbf{K}'}.$

Equivalence of categories

- Two categories ${\bf K}$ and ${\bf K}'$ are *isomorphic* if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories \mathbf{K} and \mathbf{K}' are equivalent if there are functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and natural isomorphisms $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\epsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Fact: Two categories are equivalent iff they have isomorphic skeletons.

All "categorical" properties are preserved under equivalence of categories