(Universal Algebra and) Category Theory in Foundations of Computer Science

Andrzej Tarlecki

Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

```
http://www.mimuw.edu.pl/~tarlecki office: 4750 tarlecki@mimuw.edu.pl phone: (48)(22)(55) 44475, 20443
```

This course: http://www.mimuw.edu.pl/~tarlecki/teaching/ct/

Universal algebra and category theory: basic ideas, notions and some results

- Algebras, homomorphisms, equations: basic definitions and results
- Categories; examples and simple categorical definitions
- Limits and colimits
- Functors and natural transformations
- Adjunctions
- Cartesian closed categories
- Monads
- Institutions (abstract model theory, abstract specification theory)

BUT: Tell me what you want to learn!

Literature

Plenty of standard textbooks

But this will be roughly based on:

- D.T. Sannella, A. Tarlecki.
 Foundations of Algebraic Specifications and Formal Program Development.
 Springer, 2012.
 - Chap. 1: Universal algebra
 - Chap. 2: Simple equational specifications
 - Chap. 3: Category theory

One motivation

Software systems (modules, programs, databases...):

sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, . . .
- Focusing on: CORRECTNESS

Universal algebra from rough analogy

module interface → signature

module → algebra

module specification → class of algebras

Category theory

A language to further abstract away from the standard notions of universal algebra, to deal with their numerous variants needed in foundations of computer science.

Signatures

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions

$$arity \colon \Omega \to S^* \text{ and } sort \colon \Omega \to S.$$

• $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

Compare the two notions

Fix a signature $\Sigma = (S, \Omega)$ for a while.

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

$$\mathbf{Alg}(\Sigma)$$

Can $\mathbf{Alg}(\Sigma)$ be empty? Finite? Can $A \in \mathbf{Alg}(\Sigma)$ have empty carriers?

Subalgebras

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations:

- for
$$f\colon s_1 imes\ldots imes s_n o s$$
 and $a_1\in |A_{sub}|_{s_1},\ldots,a_n\in |A_{sub}|_{s_n}$,
$$f_{A_{sub}}(a_1,\ldots,a_n)=f_A(a_1,\ldots,a_n)$$

- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof (idea):

- ullet generate the generated subalgebra from X by closing it under operations in A; or
- ullet the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f:s_1\times\ldots\times s_n\to s$$
 and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n}$,
$$h_s(f_A(a_1,\ldots,a_n))=f_B(h_{s_1}(a_1),\ldots,h_{s_n}(a_n))$$

Fact: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Fact: If two homomorphisms $h_1, h_2 \colon A \to B$ coincide on $X \subseteq |A|$, then they coincide on $\langle A \rangle_X$.

Fact: Identity function on the carrier of $A \in \mathbf{Alg}(\Sigma)$ is a homomorphism $id_A : A \to A$. Composition of homomorphisms $h : A \to B$ and $g : B \to C$ is a homomorphism $h : g : A \to C$.

Isomorphisms

- for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.
- Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Fact: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Fact: *Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.*

Congruences

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\equiv \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_s f_A(a_1', \ldots, a_n')$.

Fact: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that conatins R.

Fact: For any Σ -homomorphism $h: A \to B$, the kernel of $h, K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

Quotients

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv} : A \to A/\equiv$.

Fact: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Fact: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

Products

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Fact: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i : \prod_{i \in \mathcal{I}} A_i \to A_i$.

Define the product of the empty family of Σ -algebras. When the projection π_i is an isomorphism?

Terms

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$
- for any Σ -algebra A and valuation $v \colon X \to |A|$, the value $t_A[v]$ of a term $t \in |T_\Sigma(X)|$ in A under v is determined inductively:
 - $-x_A[v]=v_s(x)$, for $x\in X_s$, $s\in S$
 - $(f(t_1, \ldots, t_n))_A[v] = f_A((t_1)_A[v], \ldots, (t_n)_A[v]), \text{ for } f: s_1 \times \ldots \times s_n \to s \text{ and } t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$

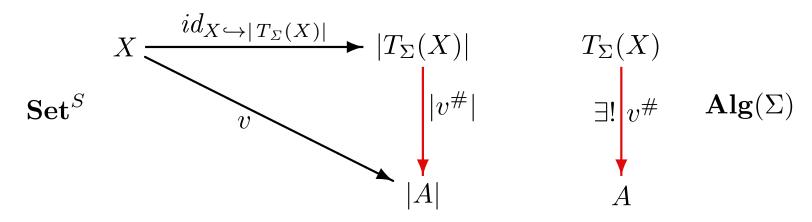
Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

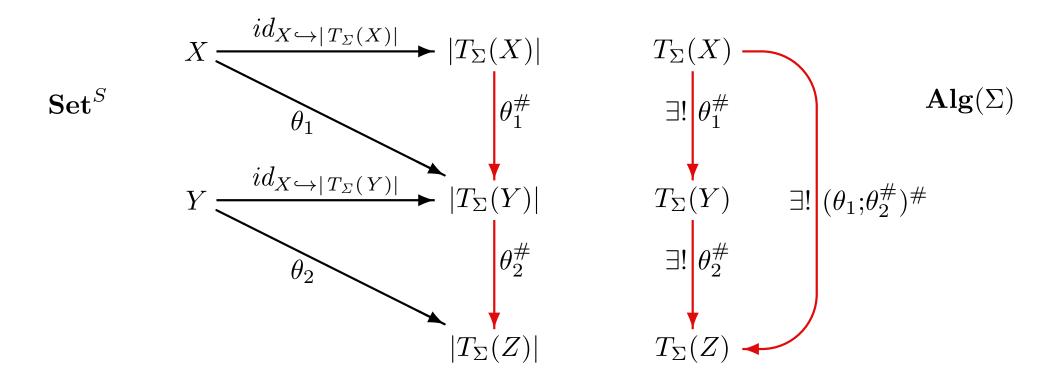
Fact: For any S-sorted set X of variables, Σ -algebra A and valuation $v: X \to |A|$, there is a unique Σ -homomorphism $v^{\#}: T_{\Sigma}(X) \to A$ that extends v. Moreover, for $t \in |T_{\Sigma}(X)|$, $v^{\#}(t) = t_{A}[v]$.



One simple consequence

Fact: For any S-sorted sets X, Y and Z (of variables) and substitutions $\theta_1 \colon X \to |T_{\Sigma}(Y)|$ and $\theta_2 \colon Y \to |T_{\Sigma}(Z)|$

$$\theta_1^{\#}; \theta_2^{\#} = (\theta_1; \theta_2^{\#})^{\#}$$



Equations

• Equation:

$$\forall X.t = t'$$

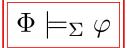
where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$.

Semantic entailment



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

- *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$
- Mod and Th form a Galois connection

Equational specifications

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Fact: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable "modules"

Example

```
 \begin{aligned} \mathbf{spec} \ \text{NAIVENAT} &= \mathbf{sort} \ \textit{Nat}; \\ \mathbf{ops} \ 0 \colon \textit{Nat}; \\ \textit{succ} \colon \textit{Nat} \to \textit{Nat}; \\ \textit{\_+} \mathrel{\_:} \textit{Nat} \times \textit{Nat} \to \textit{Nat} \\ \mathbf{axioms} \ \forall n \colon \textit{Nat} \bullet n + 0 = n; \\ \forall n, m \colon \textit{Nat} \bullet n + \textit{succ}(m) = \textit{succ}(n + m) \end{aligned}
```

Now:

NaiveNat
$$\not\models \forall n, m : Nat \bullet n + m = m + n$$

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere...

Institutions!

- Constraints:
 - reachability (and generation): "no junk"
 - initiality (and freeness): "no junk" & "no confusion"

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. . .

Initial models

Fact: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t,t' such that $\Phi \models \forall \emptyset.t=t'$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $Mod(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

Example

```
\mathbf{spec} \ \ \mathbf{Nat} = \mathbf{free} \ \{ \ \mathbf{sort} \ \ \mathit{Nat}; \\ \mathbf{ops} \ 0 \colon \mathit{Nat}; \\ \mathit{succ} \colon \mathit{Nat} \to \mathit{Nat}; \\ -+_{-} \colon \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n \colon \mathit{Nat} \bullet n + 0 = n; \\ \forall n, m \colon \mathit{Nat} \bullet n + \mathit{succ}(m) = \mathit{succ}(n+m) \\ \}
```

Now:

NAT
$$\models \forall n, m : Nat \bullet n + m = m + n$$

Example[']

$$\begin{aligned} \mathbf{spec} \ \ \mathbf{NAT'} &= \mathbf{free} \ \ \mathbf{type} \ \ Nat ::= 0 \ | \ succ(Nat) \\ \mathbf{op} \ _+ _: \ Nat \times Nat \to Nat \\ \mathbf{axioms} \ \forall n : Nat \bullet n + 0 = n; \\ \forall n, m : Nat \bullet n + succ(m) = succ(n + m) \end{aligned}$$

 $NAT \equiv NAT'$

Another example

```
spec String =
     generated { sort String
                         ops nil: String;
                                a, \ldots, z : String;
                                \_ \widehat{} : String \times String \rightarrow String 
                         axioms \forall s : String \bullet s \cap nil = s;
                                      \forall s : String \bullet nil \ \hat{\ } s = s;
                                     \forall s, t, v : String \bullet s \land (t \land v) = (s \land t) \land v
```

Equational calculus

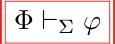
$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \dots \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a=b does **not** follow from a=f(x) and f(x)=b, unless...

Proof-theoretic entailment



 Σ -equation φ is a proof-theoretic consequence of a set of Σ -equations Φ if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness & completeness

Fact: The equational calculus is sound and complete:

$$\Phi \models \varphi \iff \Phi \vdash \varphi$$

- soundness: "all that can be proved, is true" ($\Phi \models \varphi \longleftarrow \Phi \vdash \varphi$)
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

Proof (idea):

- soundness: easy!
- completeness: not so easy!

Moving between signatures

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\sigma\colon \Sigma \to \Sigma'$$

- Signature morphism maps:
 - sorts to sorts: $\sigma: S \to S'$
 - operation names to operation names, preserving their profiles:

$$\sigma: \Omega_{w,s} \to \Omega'_{\sigma(w),\sigma(s)}$$
, for $w \in S^*$, $s \in S$, that is: for $f: s_1 \times \ldots \times s_n \to s$, $\sigma(f): \sigma(s_1) \times \ldots \times \sigma(s_n) \to \sigma(s)$,

Let $\sigma \colon \Sigma \to \Sigma'$

Translating syntax

- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

...and semantics

- σ -reduct: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, where for $A' \in \mathbf{Alg}(\Sigma')$
 - $|A'|_{\sigma}|_s = |A'|_{\sigma(s)}$, for $s \in S$
 - $f_{A'|_{\sigma}} = \sigma(f)_{A'} \text{ for } f \in \Omega$

Note the contravariancy!

Satisfaction condition

Fact: For all signature morphisms $\sigma \colon \Sigma \to \Sigma'$, Σ' -algebras A' and Σ -equations $\varphi \colon$

$$A'|_{\sigma} \models_{\Sigma} \varphi \iff A' \models_{\Sigma'} \sigma(\varphi)$$

Proof (idea): for $t \in |T_{\Sigma}(X)|$ and $v \colon X \to |A'|_{\sigma}$, $t_{A'|_{\sigma}}[v] = \sigma(t)_{A'}[v']$, where $v' \colon X' \to |A'|$ is given by $v'_{\sigma(s)}(x) = v_s(x)$ for $s \in S$, $x \in X_s$.

TRUTH is preserved (at least) under:

- change of notation
- restriction/extension of irrelevant context

Preservation of consequence

Given any signature morphism $\sigma \colon \Sigma \to \Sigma'$, set of Σ -equations Φ and Σ -equation φ :

$$\Phi \models_{\Sigma} \varphi \implies \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Moreover, if $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$ is surjective then:

$$\Phi \models_{\Sigma} \varphi \iff \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

(In general, the equivalence does not hold!)

Specification morphisms

Specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is a signature morphism $\sigma \colon \Sigma \to \Sigma'$ such that for all $M' \in \mathbf{Alg}(\Sigma')$:

$$M' \in Mod(\Phi') \implies M'|_{\sigma} \in Mod(\Phi)$$

Then
$$_|_\sigma\colon Mod(\Phi') o Mod(\Phi)$$

Fact: A signature morphism $\sigma \colon \Sigma \to \Sigma'$ is a specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ if and only if $\Phi' \models \sigma(\Phi)$.

Conservativity

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

BTW: for all specification morphisms $\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$

$$\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$$

A specification morphism $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion if for each $M \in Mod(\Phi)$ there exists $M' \in Mod(\Phi')$ such that $M'|_{\sigma} = M$

(i.e.,
$$-|_{\sigma} : Mod(\Phi') \to Mod(\Phi)$$
 is surjective).

Fact: If $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion then it is conservative.

In general, the equivalence does not hold!

More general signature morphisms

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\delta \colon \Sigma \to \Sigma'$$

• Derived signature morphism maps sorts to sorts: $\delta: S \to S'$, and operation names to terms, preserving their profiles: for $f: s_1 \times \ldots \times s_n \to s$,

$$\delta(f) \in |T_{\Sigma'}(\{x_1:\delta(s_1),\ldots,x_n:\delta(s_n)\})|_{\delta(s)}$$

• Translation of syntax, reducts of algebras, satisfaction condition, and many other notions and results: similarly as before.

not quite all though...

Andrzej Tarlecki: Category Theory, 2018

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$, may now be partial functions.

BTW: Constants may be undefined as well.

• $\mathbf{PAlg}(\Sigma)$ stands for the class of all partial Σ -algebras.

Few further notions

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; (BTW: at least two other natural notions are possible)
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; (BTW: very interesting alternative: *partial* map $h\colon |A|\to |B|$ that preserves results of operations)
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms;
- quotient algebra A/\equiv : built in the natural way on the equivalence classes of \equiv ; the natural homomorphism from A to A/\equiv is strong if the congruence is strong.

Formulae

(Strong) equation:

$$\forall X.t \stackrel{s}{=} t'$$

as before

Definedness formula:

$$\forall X.def t$$

where X is a set of variables, and $t \in |T_{\Sigma}(X)|_s$ is a term

Satisfaction relation

partial Σ -algebra A satisfies $\forall X.t \stackrel{s}{=} t'$

$$A \models \forall X.t \stackrel{s}{=} t'$$

when for all $v: X \to |A|$, $t_A[v]$ is defined iff $t_A'[v]$ is defined, and then $t_A[v] = t_A'[v]$

partial Σ -algebra A satisfies $\forall X.def t$

$$A \models \forall X.def \ t$$

when for all $v: X \to |A|$, $t_A[v]$ is defined

An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t \stackrel{e}{=} t'$

$$A \models \forall X.t \stackrel{e}{=} t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$ — both sides are defined and equal.

BTW:

- $\forall X.t \stackrel{e}{=} t' \text{ iff } \forall X.(t \stackrel{s}{=} t' \land def t)$
- $\forall X.t \stackrel{s}{=} t' \text{ iff } \forall X.(def t \iff def t') \land (def t \implies t \stackrel{e}{=} t')$

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)
- signature morphisms, translation of formulae, reducts of partial algebras, satisfaction condition; specification morphisms, conservativity, etc. (easy)
- even more general signature morphisms: $\delta \colon \Sigma \to \Sigma'$ maps sort names to sort names, and operation names $f \colon s_1 \times \ldots s_n \to s$ to sequences $\langle \varphi_i, t_i \rangle_{i \geq 0}$, where φ_i is a Σ' -formula and t_i is a Σ' -term of sort $\delta(s)$, both with variables among $x_1 \colon \delta(s_1), \ldots, x_n \colon \delta(s_n)$; syntax does not quite translate, but reducts are well defined...

Example

```
\mathbf{spec} \ \mathrm{NATPRED} = \mathbf{free} \ \{ \ \mathbf{sort} \ \mathit{Nat}
                                          ops 0: Nat;
                                                 succ: Nat \rightarrow Nat;
                                                 \_+\_: Nat \times Nat \rightarrow Nat
                                                 pred: Nat \rightarrow ? Nat
                                          axioms \forall n : Nat \bullet n + 0 = n;
                                                       \forall n, m : Nat \bullet n + succ(m) = succ(n + m)
                                                       \forall n: Nat \bullet pred(succ(n)) \stackrel{s}{=} n;
```

Example[']

```
 \begin{aligned} \mathbf{spec} \ \ \mathbf{NATPRED'} &= \mathbf{free} \ \mathbf{type} \ \mathit{Nat} ::= 0 \ | \ \mathit{succ(pred} :? \ \mathit{Nat}) \\ \mathbf{op} \ \_+ \_: \ \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n : \mathit{Nat} \bullet n + 0 = n; \\ \forall n, m : \mathit{Nat} \bullet n + \mathit{succ}(m) = \mathit{succ}(n + m) \end{aligned}
```

 $NATPRED \equiv NATPRED'$