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Universal algebra and category theory:

basic ideas, notions and some results

e Algebras, homomorphisms, equations: basic definitions and results
e (Categories; examples and simple categorical definitions

e Limits and colimits

e Functors and natural transformations

e Adjunctions

e Cartesian closed categories

e Monads

e Institutions (abstract model theory, abstract specification theory)

BUT: Tell me what you want to learn!
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Literature '

Plenty of standard textbooks

But this will be roughly based on:

e D.T. Sannella, A. Tarlecki.
Foundations of Algebraic Specifications and Formal Program Development.
Springer, 2012.

— Chap. 1: Universal algebra
— Chap. 2: Simple equational specifications

— Chap. 3: Category theory
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One motivation '

Software systems (modules, programs, databases. .. ):

sets of data with operations on them

e Disregarding: code, efficiency, robustness, reliability, . ..

e Focusing on: CORRECTNESS

Universal algebra
from rough analogy

module interface~~ signature
module~~ algebra

module specification ~» class of algebras

Category theory I

A language to further abstract away
from the standard notions of univer-
sal algebra, to deal with their numer-
ous variants needed in foundations of

computer science.
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: = (Qy s)wes* ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names ), and arity and result sort functions
arity: 2 — S* and sort: 1 — S.

o f:51 X...X8, — sstands for s1,...,5,,5 €S and f € Qg, . s s

Compare the two notions
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (4], {fa) req)

e > -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... X |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(Y)

Can Alg(>) be empty? Finite?
Can A € Alg(X) have empty carriers?

Andrzej Tarlecki: Category Theory, 2018



Subalgebras I

o for A € Alg(X), a X-subalgebra Agy, C A is given by subset |Agy,| C |A| closed
under the operations:

— for fis1 X ... X8, = sand a1 € |Asublsyy--->0n € |Asubls, .
fAsub(a’]-?"’7a”n) — fA(al,...,a,n)

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {(A)y coincides with A.
Fact: For any A € Alg(X) and X C |A|, (A)x exists.
Proof (idea):
e generate the generated subalgebra from X by closing it under operations in A; or

e the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for frs1 X ...xX 8, > sanda € |Als,...,an €|A]s,
hs(falar,...,an)) = fe(hs,(a1),...,hs, (an))

Fact: Given a homomorphism h: A — B and subalgebras A, of A and By, of B,
the image of Agyp under h, h(Asyup), is a subalgebra of B, and the coimage of By
under h, h™Y(Bgyy), is a subalgebra of A.

Fact: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-

Fact: If two homomorphisms hy,ho: A — B coincide on X C |A|, then they
coincide on (A) x .

Fact: Identity function on the carrier of A € Alg(3) is a homomorphism
ida: A — A. Composition of homomorphisms h: A — B and g: B — C' is a
homomorphism h;g: A — C.

Andrzej Tarlecki: Category Theory, 2018 -8 -



Isomorphisms I

o for A, B € Alg(>), a X-isomorphism is any ¥-homomorphism i: A — B that

has an inverse, i.e., a ¥-homomorphism i=!: B — A such that i::~! = id4 and
.1

[/ ;i — idB.
e Y.-algebras are isomorphic if there exists an isomorphism between them.

Fact: A X-homomorphism is a ¥-isomorphism iff it is bijective (“1-1” and “onto”).

Fact: Identities are isomorphisms, and any composition of isomorphisms is an
Isomorphism.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for f:s1 X ...x 8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, a,...,a, =5, a, then fa(ay,...,a,) =s falal,...,a)).
Fact: For any relation R C |A| x |A| on the carrier of a Y-algebra A, there exists

the least congruence on A that conatins R.

Fact: For any X-homomorphism h: A — B, the kernel of h, K(h) C |A| x |A
where a K (h) o' iff h(a) = h(a’), is a ¥-congruence on A.

7
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Quotients I

o for A € Alg(X) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |A/=|s ={a]l= | a € |A|s}, with [a]l= ={a’ € |A|s | a = a’}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([a’l]Ea JR) [an]E) — [fA(alv R 7an)]

Fact: The above is well-defined; moreover, the natural map that assigns to every

element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Fact: Given two Y -congruences = and =" on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=" such that | |=;h = | ]=".

Fact: For any ¥X-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Products I

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, [1;c7 As is built in the natural
way on the Cartesian product of the carriers of A;, ¢ € Z:
— fors €S, |Hz‘eIAi|S — HiEI | Ails
— for frsyx...xs, wsand ay € |[[,cr Ailsis---san €[] ];e7 Ails,.. for
7: -~ I, ineI A; (CLl, ... ,an)(z) — fAi (&1(7:), ... ,CLn(Z))
Fact: For any family (A;),.; of X-algebras, projections m;(a) = a(i), wherei € 1
and a € |[,c7 |Ai|, are ¥-homomorphisms m;: | [,o7 Ai — As.

Define the product of the empty family of X-algebras.

When the projection m; is an isomorphism?
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Terms '

Consider an S-sorted set X of variables.

e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that

- X ¢ [Tx(X)]
— for frsy x...x 8, = sand t; € |[T5(X)|sys---stn € [T2(X)]|s, .
fltr, .o tn) € [To(X)]s
e for any X-algebra A and valuation v: X — |A|, the value ts|v] of a term
t € |Ts(X)| in A under v is determined inductively:
— xalv] =vs(x), forxz e X, s €S

— (f(t1,...,tn))alv] = fa((tr)alv],. .., (tn)alv]), for f: 81 x ... x s, — s and
t1 € [T (X) sy, - tn € [Tx(X)]s,

Above and in the following: assuming unambiguous “parsing”’ of terms!
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frs1 X ... x 8, = sand t; € |Tx(X)|sys---stn € [T2(X)]s, .
frex)(1, i tn) = f(t1, ... tn).

Fact: For any S-sorted set X of variables, 3:-algebra A and valuation v: X — |A]|,

there is a unique ¥-homomorphism v¥: Ts;(X) — A that extends v. Moreover, for
t € |Ts(X)], v7(t) = tav].

x| T (X))

X > |15 (X)) T5(X)
Set® > 07| [ Alg(X)
4] A
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One simple consequence'

Fact: For any S-sorted sets X, Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

07 .07 = (01;07)#

x| T (X))

X Ts (X)) Ts(X) \
Set” \ 31| 6%

x| 75 (V)

Y\ o)) Ts(Y)  3N(61:63)%
Tx(Z)| T (Z2) ‘J

Alg(Y)
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Equaﬁons'

VXt =1t

e Equation:

where:
— X Is a set of variables, and

— t,t' € [T (X)|s are terms of a common sort.

e Satisfaction relation: Y.-algebra A satisfies VX.t =t/

AEvXt=t

when for all v: X — |A|, talv] = t/4]v].

Andrzej Tarlecki: Category Theory, 2018
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Semantic entailment'

b =5 ¢

Y.-equation @ Is a semantic consequence of a set of Y.-equations ®

if ¢ holds in every Y.-algebra that satisfies ®.

BTW:

Models of a set of equations: Mod(®) = {A € Alg(X) | A = ¢}
Theory of a class of algebras: Th(C) = {p | C E ¢}
¢ =¢ <= pe Th(Mod(®))

Mod and Th form a Galois connection

Andrzej Tarlecki: Category Theory, 2018
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Equational specifications'

(2, @)

e signature X, to determine the static module interface
e axioms (X-equations), to determine required module properties

BUT:

Fact: A class of X-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable “modules”

Andrzej Tarlecki: Category Theory, 2018
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Example

spec NAIVENAT = sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+_: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:
NAIVENAT = Vn,m:Naten+m=m+n

Andrzej Tarlecki: Category Theory, 2018
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. .. ( Institutions! ]

e (Constraints:
— reachability (and generation): “no junk”
— initiality (and freeness): “no junk” & “no confusion”

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. ..
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Initial models '

Fact: Every equational specification (3., ®) has an initial model: there exists a
Y.-algebra I € Mod(®) such that for every ¥.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground X-terms by the congruence that glues
together all ground terms ¢, such that ® = V0.t = ¢

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

BTW: This can be generalised to the existence of a free

model of (3, ®) over any (many-sorted) set of data.
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Example

spec NAT = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat X Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:
NAT E=Vn,m:Naten+m =m+n
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Example’

spec NAT' = free type Nat ::= 0| succ(Nat)
op _+ _: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NAT = NAT'

Andrzej Tarlecki: Category Theory, 2018
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Another example

spec STRING =
generated { sort String
ops nil: String;

a,...,z: String;

axioms Vs:String e s~ nil = s;
Vs:String @ nil ~ s = s;

Vs,t,v:Stringe s~ (t ~ v)

_ 7 _: String x String — String }

(s t) w

Andrzej Tarlecki: Category Theory, 2018
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Equational calculus I

VX.t=1t VXt=t VXt =+t"
VX.t=t VXt =t VX.t=t"

VXt =t] ... VXit,=t VXt =1

for 8: X — [Tx(Y)|
VX.f(t1...tn) = f(t]... 1) VY.t[0] = t'[6]

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b, unless. ..

Andrzej Tarlecki: Category Theory, 2018
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Proof-theoretic entailment I

(I)l—zgp

Y.-equation @ Is a proof-theoretic consequence of a set of Y.-equations o

if © can be derived from ® by the rules.

How to justify this?

Semantics!

Andrzej Tarlecki: Category Theory, 2018
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Soundness & completeness'

Fact: The equational calculus is sound and complete:

PE=p <— PFy

e soundness: “all that can be proved, is true” (® = p <= O F )

e completeness: “all that is true, can be proved” (® = = ® F ¢)

Proof (idea):
e soundness: easy!

e completeness: not so easy!

Andrzej Tarlecki: Category Theory, 2018

- 27 -




Moving between signatures'

Let X = (5,Q2) and ¥/ = (57, Q)

o: Y — Y

e Signature morphism maps:

— sorts to sorts: o: S — 5’

— operation names to operation names, preserving their profiles:

o: €y s = O

/
o(w),

o(s) for w € 8%, s €8, thatis: for f:s1 X ... X s, =5,

o(f):o(s1) X ... x0o(sy) = a(s),

Andrzej Tarlecki: Category Theory, 2018
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Llet o: 2 — Y

Translating syntax'

e translation of variables: X — X', where X!, =4 X,

o(s)=s’

e translation of terms: o: |ITx(X)|s — |Tx/(X')|ss), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

...and semantics'

o o-reduct: _|o: Alg(X') — Alg(X), where for A" € Alg(X')
— |Aols = |A|o(s), for s €S
— fu = o(f)a for €9

(o2

Note the contravariancy!

Andrzej Tarlecki: Category Theory, 2018



Satisfaction condition I

Fact: For all signature morphisms o: ¥ — X', X'/-algebras A’ and Y -equations :

Alls Ex o = Al s o(p)

Proof (idea): for t € [Tx(X)| and v: X — |A"|| t,,| [v] = o(t)ar[v], where

v's X' — A’ is given by v) (@) =vs(x) for s € 5, z € X,

TRUTH is preserved (at least) under:
e change of notation

e restriction/extension of irrelevant context

Andrzej Tarlecki: Category Theory, 2018
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation o:

s = 0(?) Fx o(p)

Moreover, if _|,: Alg(X') — Alg(X) is surjective then:

by o = () Ex o(p)

@n general, the equivalence does not hoIdD)
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Specification morphisms'

Specification morphism:

o: (3, Py — (X D)

is a signature morphism ¢: ¥ — ¥/ such that for all M’ € Alg(X'):

M'" € Mod(®') — M'|, € Mod(®)

(Then ot Mod(®') — Mod((I))j

Fact: A signature morphism o: Y — X' is a specification morphism
o: (3, ®) — (X', ") ifand only if ®' = o (D) .
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Conservativity I

o1 (2, 8) — (X', ')

A specification morphism:

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢

BTW: for all specification morphisms
s = ' fx o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®') such that M'|, = M

(e, —|o: Mod(®’) — Mod(®) is surjective).

Fact: Ifo: (3, ®) — (X, ®') admits model expansion then it is conservative.

@n general, the equivalence does not hoIdD)
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More general signature morphisms'

Let X = (5,Q) and X' = (57, Q0)

o: X =X/

e Derived signature morphism maps sorts to sorts: §: S — S’, and operation
names to terms, preserving their profiles: for f: s1 x ... X s, — s,

6(f) € [T ({x1:6(51), .-y 2n:6(5n) })ls(s)

e Translation of syntax, reducts of algebras, satisfaction condition, and many other

notions and results: similarly as before. _
(not quite all though. . )
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Partial aIgebrasI

o Algebraic signature X: as before

e Partial X:-algebra:

A= (4], {fa) req)

as before, but operations fa: |Als, X ... X |Als, — |A[s, for

f:s81 X...x8, — s, may now be partial functions.

(BTW: Constants may be undefined as well.)

e PAlg(X) stands for the class of all partial 3-algebras.
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Fix a signature X = (S, 2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agup| C |A| closed under the operations;

(BTW: at least two other natural notions are possible)

e homomorphism h: A — B: map h: |A| — |B| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

(BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations)

e congruence = on A: equivalence = C |A| x |A]| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms;

e quotient algebra A/=: built in the natural way on the equivalence classes of =;

the natural homomorphism from A to A/= is strong if the congruence is strong.

Andrzej Tarlecki: Category Theory, 2018
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Formulae '

(Strong) equation:

VX.t=¢

as before

Definedness formula:

VX.def t

where X is a set of variables, and ¢t &€
T5(X)|s is a term

Satisfaction relation

partial X-algebra A satisfies VX.t =t/

AEVXtEt

when for all v: X — |A|, talv] is de-
fined iff ', |v] is defined, and then ¢ 4[v] =

ta[v]

partial X-algebra A satisfies VX .def t

A= VX.deft

when for all v: X — |A|, ta|v] is defined

Andrzej Tarlecki: Category Theory, 2018
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An alternative '

e (Existence) equation:

where:

— X is a set of variables, and

VX.t=1t

— t,t' € |[Tx(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t = ¢’

when for all v: X — |A|, talv] =

BTW:
o VX.t =t iff YX.(t =t' A deft)

AEVXt=t

t'y|[v] — both sides are defined and equal.

o VX.t =t iff VX.(deft <= deft') A (deft = t =1t')

Andrzej Tarlecki: Category Theory, 2018
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Further notions and results'

To introduce and/or check:

partial equational specifications (trivial)
characterization of definable classes of partial algebras (difficult!)

existence of initial models for partial equational specifications (non-trivial for
existence equations; difficult for strong equations and definedness formulae)

proof systems for partial equational logic (ditto)

signature morphisms, translation of formulae, reducts of partial algebras,
satisfaction condition; specification morphisms, conservativity, etc. (easy)

even more general signature morphisms: §: X — >’ maps sort names to sort
names, and operation names f: s; X ...s, — s to sequences {;,t;),~q, Where
; is a '-formula and ¢; is a X'-term of sort §(s), both with variables among
x1:0(81), ..., Tp:6(sn); syntax does not quite translate, but reducts are well
defined. ..

Andrzej Tarlecki: Category Theory, 2018
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Example

spec NATPRED = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat x Nat — Nat
pred: Nat —7 Nat
axioms Vn:Nat en + 0 = n;
Vn, m:Nat e n + succ(m

Vn:Nat e pred(succ(n))

)

= succ(n +m)

Uz

Andrzej Tarlecki: Category Theory, 2018
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Example’

spec NATPRED' = free type Nat ::= 0 | succ(pred :? Nat)
op _+ _: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NATPRED = NATPRED'

Andrzej Tarlecki: Category Theory, 2018
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