Adjunctions
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Recall:

Term algebras I

Fact: For any S-sorted set X of variables, ¥.-algebra A and valuation v: X — |A

7

there is a unique ¥-homomorphism v¥ : Ts(X) — A that extends v, so that

idx ) 7y (x) ;07 =0

1d
x — P 71y (X)) To(X)

Set® 7] [ Alg(X)

Al A
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Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K|, a free object over A w.r.t. G is a K'-object
A’ € |K'| together with a K-morphism na: A — G(A’) (called unit morphism) such
that given any K'-object B’ € |K'| with K-morphism f: A — G(B’), for a unique
K'-morphism f#*: A’ — B’ we have

Paradigmatic example:

Term algebra Tx(X) with unit
idx < rox): X — |Ts(X)] is
free over X € |Set®| w.r.t. the
carrier functor | |: Alg(X) —
Set®

na;G(f7*)=f
K - G K’
A A - G(A) A’
f G(f7#) 3| f#
G(B') B’
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free
over G w.r.t. the graph functor G: Cat — Graph.

e Discrete topologies, completion of metric spaces, free groups, ideal completion of
partial orders, ideal completion of free partial algebras, ...

Makes precise these and other similar examples

Indicate unit morphisms!
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Free equational models'

e Recall: for any algebraic signature 3 = (S5, Q), term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X &€ |SetS|, there exist a model
Fgs(X) € Mod(®) that is free over X w.r.t. the carrier functor
_|: Mod((2, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg(X) given by the models of ®.

e For any algebraic signature morphism o: ¥ — Y/, for any X-algebra
A € |Alg(X)|, there exist a X'-algebra F,(A) € |Alg(X’)| that is free over A

w.r.t. the reduct functor _|, : Alg(¥') — Alg(®).

e For any equational specification morphism o: (3, ®) — (', ®'), for any model
A € Mod(®), there exist a model F,(A) € Mod(®') that is free over A w.r.t.
the reduct functor _|,: Mod((X', ®')) — Mod((%, ®)).

Prove the above.
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A’ € |K'| free
over A w.r.t. G with unit na: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L)7: K(A4,G(B’)) — K/'(A’, B') is bijective for each B’ € |K'|.
e For any morphisms g1,92: A" — B' in K, g1 = g2 iff n4;G(g91) = 14;G(g2).

Colimits as free objects'

Fact: In a category K, given a diagram D of shape G(D), the colimit of D in K is

a free object over D w.r.t. the diagonal functor AE(D) K — Diagg(D).

Spell this out for initial objects, coproducts, coequalisers, and pushouts

Andrzej Tarlecki: Category Theory, 2018 - 121 -



Left adjoints'

Consider a functor G: K/ — K.

Fact: Assume that for each object A € |K| there is a free object over A w.r.t. G,
say F(A) € |K'| is free over A with unit na: A — G(F(A)). Then the mapping:
— (Ae[K])— (F(4) € [K'|)
— (f+ A= B) = ((fmp)*: F(A) — F(B))

form a functor F: K — K'. Moreover, n: Idx — F;( is a natural transformation.

K - & K’
A A, G(F(A)) F(A)
F(f) =
/ GED

B 5, G(F(B)) F(B)
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Proof'

F preserves identities: A A, G(F(A)) F(A)

F(ida) = (idasna)® = idp(a) z'dAl l fgéilzgi))) idp(a)
A—"4— G(F(4)) F(A)
F preserves composition:

F(f;9) = (f;9inc)® = F(f);F(g)
A—" G(F(4)) F(A) ~
fl l@(F(f)) F(f)
p—— GE®)  |GR)GEE B [FOFE
ng lG(F(g)) lF(g)
¢ —"L— G(F(C)) 4/ F(C)<’
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Left adjoints'

Definition: A functor F: K — K/’ is left adjoint to (a functor) G: K’ — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I

e The term-algebra functor T : Set® — Alg(X) is left adjoint to the carrier
functor |_|: Alg(X) — Set”, for any algebraic signature ¥ = (S, Q).

e The ceiling [ _|: Real — Int is left adjoint to the inclusion i: Int <— Real of
integers into reals.

e [he path-category functor Path: Graph — Cat is left adjoint to the graph
functor G: Cat — Graph.

e ... other examples given by the examples of free objects above . ..
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Uniqueness of left adjoints'

Fact: A left adjoint to any functor G: K’ — K, if exists, is determined uniquely up
to a natural isomorphism: if F: K — K’ and F': K — K’ are left adjoint to G with
units n: Idg — F;G and n’: Idx — F’;G, respectively, then there exists a natural
isomorphism 7: ¥ — F’ such that n;(7-G) =17’

Proof: For each A € |K|, 74 = (7/4)*.
Put also 7,1 = (na)%* .
G(7ra) = Then show:

G
%
A TA
\ (T'G)A — TA;Tgl — ZdF(A) and 7'21;7'14 = ZdF’(A)
Uy G

— 7: F — F’ is indeed a natural transfor-

(F(4)) F(A)

(F'(A)) F'(A)

mation

— For f: A— B, F(f) = (fims)".
— For g1,92: F(A) — o, if n4;G(g1) = 14;G(g2) then g1 = ga.
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Left adjoints and colimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Fact: F is cocontinuous (preserves colimits).

Proof:
K K’
x—3h , G(Y) F(X)—h" |y
A A A A
1 EANEE AN 1 AN AN
D \ %DR;G}&Q) \ %n \ F(D)
Dn. >0 Dn). >0
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Left adjoints and Iimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.
Fact: G is continuous (preserves limits).

Proof:
K/

/I
‘h
o-<
)
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Existence of left adjoints'

Fact: Let K’ be a locally small complete category. Then a functor G: K’ — K has
a left adjoint iff

1. G is continuous, and

2. for each A € |K]| there exists a set {f;: A — G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), i € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, 1 € Z, we have h = f;;f.

Proof:

“=": Let F: K — K/’ be left adjoint to G with unit n: Idx — F;G. Then
follows by the previous fact, and for just put Z = {x}, Xx =F(A), and
fe=na: A— G((F(A))

<"1 It is enough to show that for each A € |K| the comma category (C 4, G) has
an initial object. Under our assumptions, (C4, G) is complete. The rest follows
by the next fact.
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On the existence of initial objects'

Fact: A locally small complete category K has an initial object if there exists a set
of objects T C |K| such that for all B € |K]|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € Z. Let
e: £ — P be an “equaliser” (limit) of all morphisms in K(P, P). Then F is initial in
K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given ¢g1,92: E — B, take their equaliser ¢': E' — E. As in the previous item,
we have h: P — E’. Then h;e;e’: P — P, and by the construction of
e: B — P, eh;e’;:e = eidp = idg;e. Now, since e is mono, e;h;e’ = idg, and so

e’ is a mono retraction, hence an isomorphism, which proves g; = g».
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Cofree objectsI

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A’ w.r.t. F is a
K-object A € |K]| together with a K-morphism €4/ : F(A) — A’ (called counit
morphism) such that given any K-object B € |K| with K'-morphism g: F(B) — A’,
for a unique K-morphism g : B — A we have

F(g%)iea =g
K K - K’
A F(A) A - A/
Paradigmatic example:
Function spaces, coming soon Ho# TF(g#
g (97) 7
B F(B)
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. .

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € |Set|, Fx(4) =Ax X

— for any function f: A— B, Fx(f): A x X — B x X is a function given by
Fx(f){a,z)) = (f(a),z).

Then for any set A € |Set|, the powerset A* € |Set| (i.e., the set of all functions

from X to A) is a cofree objects under A w.r.t. Fx. The counit morphism

ea: Fx(A%) = AX x X — A is the evaluation function: ez ({f,z)) = f(x).

A generalisation to deal with exponential objects will (not) be discussed later
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |[K’|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) — A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.

e A cofree object under A" w.r.t. F, if exists, is unique up to isomorphism.
e The function (L)#: K'(F(B),A’) — K(B, A) is bijective for each B € |K].
e For any morphisms g1,92: B — A in K, g1 = g2 iff F(g1);e4 = F(g2);c".

Limits as cofree objects'

Fact: /n a category K, given a diagram D of shape G(D), the limit of D in K is a
cofree object under D w.r.t. the diagonal functor Ag(D) K — Diagg(D).

Spell this out for terminal objects, products, equalisers, and pullbacks
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Right adjoints'

Consider a functor F: K — K’.

Fact: Assume that for each object A’ € |K'| there is a cofree object under A" w.r.t.
F, say G(A’) € |[K'| is cofree under A" with counit € or: F(G(A’")) — A’. Then the
mapping:

- (A e[K')) = (G(A) € [K])

— (9: B' = A') = ((ep39)": G(B') = G(4"))

form a functor G: K’ — K. Moreover, ¢: G;F — Idk- is a natural transformation.

K~ K’
GA)  FGMA) —A
G(g) =
i I 7
G(B)  FG(B) —E e p
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Right adjoints'

Definition: A functor G: K’ — K is right adjoint to (a functor) F: K — K’ with
counit (natural transformation) €: G;¥ — Idy if for all objects A" € |K'|,
G(A") € |K| is cofree under A" with counit morphism €4/ : F(G(A")) — A’

Fact: A right adjoint to any functor F: K — K’, if exists, is determined uniquely up
to a natural isomorphism: if G: K' — K and G’': K' — K are right adjoint to F
with counits e: G;F and £': G';F, respectively, then there exists a natural
isomorphism 7: G — G’ such that (7-F);e’ = ¢.

Fact: Let G: K' — K be right adjoint to F: K — K’ with counit ¢: G;F — Idk-.
Then G is continuous (preserves limits) and F is cocontinuous (preserves colimits).
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From left adjoints to adjunctions'

Fact: Let F: K — K’ be left adjoint to G: K/ — K with unit n: Idx — F;G.
Then there is a natural transformation €: G;F — Idk: such that:

e (Gn):i(eG) = ide GA) — S, GR(GA)  F(G(A)
1dG (A7) Glea) A
G(A") A’
o (0 F):(F-c) = idg G(F(4)  F(G(F(A)—2  F(a)
n F(na) Z-
Proof (idea): ’ " Ir(a)
Put e4 = (idg(A/))#. A F(A)
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From right adjoints to adjunctions'

Fact: Let G: K' — K be right adjoint to F: K — K’ with counit e: G;F — Idk-.
Then there is a natural transformation n: Idk — F;( such that:

e (Gn):(eG) = ide G4 — S, GR(G(A)  F(G(A)
id(;(A/) G(gA’) CA
G(A") A’
o (0 F):(F-c) = idg G(F(4)  F(G(F(A)—2  F(a)
T F :
Proof (idea): ’ i Vi ()
Put na = (ZdF(A))# A F(A)
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From adjunctions to left and right adjoints'

Fact: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idgx — F;G and €: G;F — Idk- such that:

o (G1)i(e-G) =idg
o (nF);(F-e)=idp
Then:
o F is left adjoint to G with unit n.
e G s right adjoint to F with counit €.

Proof: For A € |[K|, B’ € |K’'| and f: A — G(B’), define f# = F(f);ep:. Then
f#: F(A) — B’ satisfies n4;G(f?) = f and is the only such morphism in
K'(F(A),B’). This proves that F(A) is free over A with unit n4, and so indeed, F is
left adjoint to G with unit 7.

The proof that G is right adjoint to F with counit ¢ is similar.
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Adjunctions I

Definition: An adjunction between categories K and K’ is

(F,G,n,¢)

where F: K — K’ and G: K’ — K are functors, and n: Idx — F;G and
e: G;F — Idk natural transformations such that:

e (Gn);(eG) =ida
o (nF);(F-e) = idp
Equivalently, such an adjunction may be given by:
e Functor G: K’ — K and all A € |K|, a free object over A w.r.t. G.
e Functor G: K’ — K and its left adjoint.
e Functor F: K — K’ and all A’ € |K'|, a cofree object under A" w.r.t. F.

e Functor F: K — K’ and its right adjoint.
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