Adjunctions

Recall:

Term algebras

Fact: For any S-sorted set X of variables, Σ -algebra A and valuation $v\colon X\to |A|$, there is a unique Σ -homomorphism $v^\#\colon T_\Sigma(X)\to A$ that extends v, so that

$$id_{X \hookrightarrow |T_{\Sigma}(X)|}; v^{\#} = v$$

Free objects

Consider any functor $G \colon K' \to K$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G} is a \mathbf{K}' -object $A' \in |\mathbf{K}'|$ together with a \mathbf{K} -morphism $\eta_A \colon A \to \mathbf{G}(A')$ (called unit morphism) such that given any \mathbf{K}' -object $B' \in |\mathbf{K}'|$ with \mathbf{K} -morphism $f \colon A \to \mathbf{G}(B')$, for a unique \mathbf{K}' -morphism $f^\# \colon A' \to B'$ we have

$$\eta_A; \mathbf{G}(f^\#) = f$$

Paradigmatic example:

Term algebra $T_{\Sigma}(X)$ with unit $id_{X \hookrightarrow |T_{\Sigma}(X)|} \colon X \to |T_{\Sigma}(X)|$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$

Examples

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $G \colon \mathbf{Cat} \to \mathbf{Graph}$.
- Discrete topologies, completion of metric spaces, free groups, ideal completion of partial orders, ideal completion of free partial algebras, . . .

Makes precise these and other similar examples Indicate unit morphisms!

Free equational models

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $T_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}_{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .
- For any algebraic signature morphism $\sigma \colon \Sigma \to \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.
- For any equational specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$, for any model $A \in Mod(\Phi)$, there exist a model $\mathbf{F}_{\sigma}(A) \in Mod(\Phi')$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Mod}(\langle \Sigma', \Phi' \rangle) \to \mathbf{Mod}(\langle \Sigma, \Phi \rangle)$.

Prove the above.

Facts

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.

Colimits as free objects

Fact: In a category \mathbf{K} , given a diagram D of shape G(D), the colimit of D in \mathbf{K} is a free object over D w.r.t. the diagonal functor $\Delta^{G(D)}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{Diag}^{G(D)}_{\mathbf{K}}$.

Spell this out for initial objects, coproducts, coequalisers, and pushouts

Left adjoints

Consider a functor $G \colon K' \to K$.

Fact: Assume that for each object $A \in |\mathbf{K}|$ there is a free object over A w.r.t. \mathbf{G} , say $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$. Then the mapping:

- $(A \in |\mathbf{K}|) \mapsto (\mathbf{F}(A) \in |\mathbf{K}'|)$
- $(f: A \to B) \mapsto ((f; \eta_B)^{\#} \colon \mathbf{F}(A) \to \mathbf{F}(B))$

form a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$. Moreover, $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ is a natural transformation.

Proof

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves composition:

$$\mathbf{F}(f;g) = (f;g;\eta_C)^{\#} = \mathbf{F}(f);\mathbf{F}(g)$$

Left adjoints

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

Examples

- The term-algebra functor $T_{\Sigma} \colon \mathbf{Set}^{S} \to \mathbf{Alg}(\Sigma)$ is left adjoint to the carrier functor $|\underline{\ }| \colon \mathbf{Alg}(\Sigma) \to \mathbf{Set}^{S}$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$.
- The ceiling [_]: Real → Int is left adjoint to the inclusion i: Int → Real of integers into reals.
- The path-category functor $Path: Graph \rightarrow Cat$ is left adjoint to the graph functor $G: Cat \rightarrow Graph$.
- ... other examples given by the examples of free objects above ...

Uniqueness of left adjoints

Fact: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to \mathbf{G} with units $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$ and $\eta' \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A')^{\#}$.

- mation
- For $f: A \to B$, $\mathbf{F}(f) = (f; \eta_B)^\#$. For $g_1, g_2: \mathbf{F}(A) \to \bullet$, if $\eta_A; \mathbf{G}(g_1) = \eta_A; \mathbf{G}(g_2)$ then $g_1 = g_2$.

Left adjoints and colimits

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Fact: F *is cocontinuous (preserves colimits).*

Proof:

Left adjoints and limits

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Fact: G *is continuous (preserves limits).*

Proof:

Existence of left adjoints

Fact: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h : A \to \mathbf{G}(B)$, for some $f : X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i ; f$.

Proof:

- " \Rightarrow ": Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to \mathbf{G} with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$. Then 1 follows by the previous fact, and for 2 just put $\mathcal{I} = \{*\}$, $X_* = \mathbf{F}(A)$, and $f_* = \eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$
- " \Leftarrow ": It is enough to show that for each $A \in |\mathbf{K}|$ the comma category $(\mathbf{C}_A, \mathbf{G})$ has an initial object. Under our assumptions, $(\mathbf{C}_A, \mathbf{G})$ is complete. The rest follows by the next fact.

On the existence of initial objects

Fact: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$. Let $e \colon E \to P$ be an "equaliser" (limit) of all morphisms in $\mathbf{K}(P,P)$. Then E is initial in \mathbf{K} , since for any $B \in |\mathbf{K}|$:

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$, take their equaliser $e' \colon E' \to E$. As in the previous item, we have $h \colon P \to E'$. Then $h; e; e' \colon P \to P$, and by the construction of $e \colon E \to P$, $e; h; e'; e = e; id_P = id_E; e$. Now, since e is mono, $e; h; e' = id_E$, and so e' is a mono retraction, hence an isomorphism, which proves $g_1 = g_2$.

Cofree objects

Consider any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is a \mathbf{K} -object $A \in |\mathbf{K}|$ together with a \mathbf{K} -morphism $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$ (called counit morphism) such that given any \mathbf{K} -object $B \in |\mathbf{K}|$ with \mathbf{K}' -morphism $g \colon \mathbf{F}(B) \to A'$, for a unique \mathbf{K} -morphism $g^{\#} \colon B \to A$ we have

$$\mathbf{F}(g^{\#}); \varepsilon_{A'} = g$$

Paradigmatic example:

Function spaces, coming soon

Examples

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$
 - for any function $f: A \to B$, $\mathbf{F}_X(f): A \times X \to B \times X$ is a function given by $\mathbf{F}_X(f)(\langle a, x \rangle) = \langle f(a), x \rangle$.

Then for any set $A \in |\mathbf{Set}|$, the powerset $A^X \in |\mathbf{Set}|$ (i.e., the set of all functions from X to A) is a cofree objects under A w.r.t. \mathbf{F}_X . The counit morphism $\varepsilon_A \colon \mathbf{F}_X(A^X) = A^X \times X \to A$ is the evaluation function: $\varepsilon_A(\langle f, x \rangle) = f(x)$.

A generalisation to deal with exponential objects will (not) be discussed later

Facts

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.
- For any morphisms $g_1, g_2 \colon B \to A$ in \mathbf{K} , $g_1 = g_2$ iff $\mathbf{F}(g_1); \varepsilon_{A'} = \mathbf{F}(g_2); \varepsilon_{A'}$.

Limits as cofree objects

Fact: In a category \mathbf{K} , given a diagram D of shape G(D), the limit of D in \mathbf{K} is a cofree object under D w.r.t. the diagonal functor $\Delta_{\mathbf{K}}^{G(D)} \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^{G(D)}$.

Spell this out for terminal objects, products, equalisers, and pullbacks

Right adjoints

Consider a functor $F \colon K \to K'$.

Fact: Assume that for each object $A' \in |\mathbf{K}'|$ there is a cofree object under A' w.r.t. \mathbf{F} , say $\mathbf{G}(A') \in |\mathbf{K}'|$ is cofree under A' with counit $\varepsilon_{A'} \colon \mathbf{F}(\mathbf{G}(A')) \to A'$. Then the mapping:

- $(A' \in |\mathbf{K}'|) \mapsto (\mathbf{G}(A') \in |\mathbf{K}|)$
- $(g: B' \to A') \mapsto ((\varepsilon_{B'}; g)^{\#}: \mathbf{G}(B') \to \mathbf{G}(A'))$

form a functor $G \colon K' \to K$. Moreover, $\varepsilon \colon G \colon F \to Id_{K'}$ is a natural transformation.

Right adjoints

Definition: A functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ is right adjoint to (a functor) $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ with counit (natural transformation) $\varepsilon \colon \mathbf{G} \colon \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ if for all objects $A' \in |\mathbf{K}'|$, $\mathbf{G}(A') \in |\mathbf{K}|$ is cofree under A' with counit morphism $\varepsilon_{A'} \colon \mathbf{F}(\mathbf{G}(A')) \to A'$.

Fact: A right adjoint to any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}$ are right adjoint to \mathbf{F} with counits $\varepsilon \colon \mathbf{G} \colon \mathbf{F}$ and $\varepsilon' \colon \mathbf{G}' \colon \mathbf{F}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{G} \to \mathbf{G}'$ such that $(\tau \cdot \mathbf{F}) \colon \varepsilon' = \varepsilon$.

Fact: Let $G: K' \to K$ be right adjoint to $F: K \to K'$ with counit $\varepsilon: G; F \to Id_{K'}$. Then G is continuous (preserves limits) and F is cocontinuous (preserves colimits).

From left adjoints to adjunctions

Fact: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

From right adjoints to adjunctions

Fact: Let $G: \mathbf{K}' \to \mathbf{K}$ be right adjoint to $F: \mathbf{K} \to \mathbf{K}'$ with counit $\varepsilon: \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$. Then there is a natural transformation $\eta: \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$ such that:

•
$$(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$$

•
$$(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$$

Proof (idea):

Put $\eta_A = (id_{\mathbf{F}(A)})^\#$.

From adjunctions to left and right adjoints

Fact: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^\# = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^\# \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^\#) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$. This proves that $\mathbf{F}(A)$ is free over A with unit η_A , and so indeed, \mathbf{F} is left adjoint to \mathbf{G} with unit η .

The proof that G is right adjoint to F with counit ε is similar.

Adjunctions

Definition: An adjunction between categories K and K' is

$$\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Equivalently, such an adjunction may be given by:

- Functor $G: \mathbf{K}' \to \mathbf{K}$ and all $A \in |\mathbf{K}|$, a free object over A w.r.t. G.
- Functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and its left adjoint.
- Functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and all $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} .
- Functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and its right adjoint.