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Given two parallel functors F, G: K — K’, a natural transformation from F to G

7 F -G

is a family 7 = (r4: F(A4) = G(A)) 4¢ | of K'-morphisms such that for all

f: A— Bin K (with A, B € |[K|),

T4;G(f) = F(f)i7B
K: K’
A F(A)
fl F(f)
B F(B)
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Natural transformations'

Given two parallel functors F, G: K — K’, a natural transformation from F to G

7 F -G

is a family 7 = (r4: F(A4) = G(A)) 4¢ | of K'-morphisms such that for all
f: A— Bin K (with A, B € |[K|), |74;G(f) =F(f);7B

K K’
A F(4) —4 » G(A)
. . — f F(f) G(f)
Then, 7 is a natural isomorphism if for
all A € |K|, 74 is an isomorphism. B F(B) B, G(B)
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Examples I

e identity transformations: idg: F — F, where F: K — K’ | for all objects
Ae ‘K|, (idF)A = idy: F(A) — F(A)
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e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
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|List| = List;| |: Set(— Monoid) — Set, and for all X € |Set]|,
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identity transformations: idg: F — F, where F: K — K’ | for all objects

A e ‘K|, (idF)A = idy: F(A) — F(A)

singleton functions: sing: Idset — P (: Set — Set), where for all X € |Set]|,
singx : X — P(X) is a function defined by singy(x) = {x} for x € X.
singleton-list functions: sing™s*: Idges — |List| (: Set — Set), where

|List| = List;| |: Set(— Monoid) — Set, and for all X € |Set]|,

singt: X — X* is a function defined by sing%st(z) = (z) for x € X
append functions: append: |List|;CP — |List| (: Set — Set), where for all
X € |Set|, append  : (X* x X*) — X™ is the usual append function (list

concatenation) polymorphic functions between algebraic types

X X* x X* appendX»X*
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vagq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set"™ — Set

C[ant] (X, X)) = {0, —2,—1,0,1,2,...}
: T1 X TQ]](Xl,...,Xn) = [[Tl]](Xl,,Xn) X [[TQ]](X]_,,Xn)
T+ T (X, X)) = [T( X, X)) + [T (X, -0, X))

- ...recursive type definitions work as well. ..
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Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vagq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set"™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Voaq...q, - T — T’ its semantics is a natural transformation
[E]: |T] — [T7]

- by induction on the structure of well-typed expressions

Andrzej Tarlecki: Category Theory, 2021

- 08 -



Polymorphic functions'
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Work out the following generalisation of the last two examples:

— for each algebraic type scheme Va; ..., - T, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Voaq ...a, - T — T’ its semantics is a natural transformation
[E]: [T] — [T7]

— Then for f1: X9 =Yy, ..., fn: X, > Y,

[N frs s fa )il B v vy = B oxy, o xo sl N (fas oo s fn)

For instance, for rev: a list — « list,
even: int — bool and [: int list:

rev(even™ (1)) = even™ (rev(l))
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Va; ..., - T, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Voaq ...a, - T — T’ its semantics is a natural transformation
[E]: [T] — [T7]

— Then for f1: X9 =Yy, ..., fn: X, > Y,

[N frs s fa )il B v vy = B oxy, o xo sl N (fas oo s fn)

For instance, for rev: a list — « list,
Theorems for freel

even: int — bool and [: int list:
(see Wadler 89)

rev(even™ (1)) = even™ (rev(l))
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Yoneda lemma '

Given a locally small category K, functor F: K — Set and object A € |K]|:
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Yoneda lemma '

Given a locally small category K, functor F: K — Set and object A € |K]|:

Nat(Homgk (A, ), F) 2 F(A)

natural transformations from Homg (A, _) to F, between functors
from K to Set, are given exactly by the elements of the set F(A)

EXERCISES:
e Dualise: for G: K°? — Set,

Nat(Homgk( ,A),G) =2 G(A)

e Characterise all natural transformations from Homgk (A, ) to Homgk (B, ), for

all objects A, B € |K|.
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Proof'

e Fora € F(A), define 7*: Homg (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |[K|,
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Proof'

e Fora e F(A), define 7*: Homgk (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
Note: F(f): F(A) — F(B) in Set, so F(f)(a) € F(B).
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Proof'

e Fora e F(A), define 7*: Homgk (A, ) — F, as the family of functions

7%: K(A, B) = F(B), B € |[K|, given by 7%(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C

K: Set: .
B K(A, B) B > F(B)
gl (L);9 —lﬂomK(A, g) J’F(g)
C K(A,C)—C » F(C)
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Proof'

e Fora € F(A), define 7*: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 74(f) = F(f)(a) for f: A— B in K.
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Proof'
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Proof'

e Fora € F(A), define 7*: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 74(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(r4(f))= F(g)(F(f)(a)) K: Set: ”
= F(f0)(a) = 8(f0) B KB - FE)
= 7¢(Homx (4, 9)(/)) gl ()i —lHome,g) lwg)
Then 74(ida) = a, a
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Proof'

e Fora € F(A), define 7*: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 74(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(r5(f))=F(9)(F(f)(a)) K Set: ra

= F(fi9)(a) = 78(f39) B K(4,B) - F(B)

= 7é&(Homgk (4, g)(f)) gl (1):g —lﬂomK (4, 9) lF(g)
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7% and 7% differ. C K(A,C) “—F(C)
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |K|, given by 7&4(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(m5(f))= F(g)(F(f)(a)) K Set. ra

= F(f:9)(a) = 78(f:0) B KAL) - F)

= 76 (Homk (A, g)(f)) gl (1);g :lHomK(A, qg) lF(g)
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7 and 79 differ. C K(A,C) < F(C)

e If 7: Homk (A, ) — F is a natural

transformation
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e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |K|, given by 7&4(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(m5(f))= F(g)(F(f)(a)) K Set. ra

= F(f:9)(a) = 78(f:0) B KAL) - F)

= 76 (Homk (A, g)(f)) gl (1);g :lHomK(A, qg) lF(g)
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7 and 79 differ. C K(A,C) < F(C)

e If 7: Homk (A, ) — F is a natural

transformation then 7 = 7%, where we

puta = TA(idA),
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e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |K|, given by 7&4(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(m5(f))= F(g)(F(f)(a)) K Set. ra

= F(f:9)(a) = 78(f:0) B KAL) - F)

= 76 (Homk (A, g)(f)) gl (1);g :lHomK(A, qg) lF(g)
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7 and 79 differ. C K(A,C) < F(C)

e If 7: Homk (A, ) — F is a natural
transformation then 7 = 7%, where we
puta = T4(ida), since for B € |K| and
f+ A = B, m(f) = F(f)(1a(ida))
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Proof'

e Fora € F(A), define 7*: Homg (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |[K|, given by 7&(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(75(f))= F(9)(F(f)(a)) K: Set: ra

= F(f:9)(a) = 7&(/:9) B K&E =)

= 7¢(Homk (4, g)(f)) gl (L) lHomK(A, 9) lF(g)
Then 74(ida) = a, and so for distinct a
a,a’ € F(A), 7 and 79 differ. C K(A4,C) < F(C)

e If 7: Homk (A, ) — F is a natural
-

transformation then 7 = 7%, where we A K(A, A) 4 F(A)
puta = 74(idy), since for B € |K| and fl

f+ A —= B 15(f) = F(f)(7a(ida))
by naturality of 7: B K (A, B) TB -~ F(B)
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Compositions I

vertical composition:
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vertical composition:

From: F
K( 7§ F’}K,
i

Compositions I
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vertical composition:
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vertical composition:

From: F
( T F/ \
K > K’
N
F//
to F
4 N
K T,0 K’
N /‘
F//

Compositions I

horizontal composition:
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vertical composition:

From: F
K( ¢ F’}K,
i
K[ 70 \VK’
N i S

Compositions I

horizontal composition:

&

K

F/

G

\,//
AN

O

~

K//

Y

G_/
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vertical composition:

From: F
K( ¢ F’}K,
i
K( 70 \VK’
N i J

Compositions I

horizontal composition:

From: F G
N
Té K’
VAN
| G’
to: F;G

~

K//

Y
N

O

K

)

K//

S

T-O

)

F/;G’

Andrzej Tarlecki: Category Theory, 2021

- 101 -



Vertical composition I

Andrzej Tarlecki: Category Theory, 2021 - 102 -



F

¢ F’\'

Vertical composition' K[

- K/’

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F' F": K — K’
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F

¢ F’\'

Vertical composition' K[

- K/’

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”
between parallel functors F,F' F": K — K’

7.0: F - F”
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F

Vertical composition' K[ 2 }K’
N\

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F' F": K — K’

7.0: F - F”

is a natural transformation given by | (7;0)4 = Ta;04

for all A € |K].
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F

Vertical composition I [ ¢ F’\v
K > K’
%
F//
The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F' F": K — K’

7.0: F - F”

is a natural transformation given by | (7;0)4 = Ta;04 | for all A € |K]|.

K: K’

A F(4) — 4 » F/(4A) —Z4 » F(A)
fl F(f) J’F’(f) J’F”(f)
B F(B) —£ » F/(B) —25—» F"(B)
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Horizontal composition I
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Horizontal composition I K( - \VK,( o \VK//
F’ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’

between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”
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Horizontal composition I

-

K T

N

N
VAN

F/

N

K//

Y

G_/

The horizontal composition of natural transformations 7: F — F and 0: G — G’

between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G
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F G

Horizontal com iti I ( é \v (
position K - K’ o K
N\ AN /‘
F/ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

N

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 for all
A e K|
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F G

Horizontal com iti I ( é \v (
position K - K’ o K
N\ AN /‘
F/ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

N

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 for all
A c [K]. K
o
G(F(4)) —— = G/(F(4))
(T0)a
G'(F'(A))
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F G

Horizontal com iti I ( é \v (
position K - K’ o K
N\ AN /‘
F/ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

N

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 for all
Ae ‘K| K/ K-
OF(A) /
F(A) G(F(4)) > G'(F(A))
| (7o)
F'(A) G'(F'(A))
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F G

Horizontal com iti I ( é \v (
position K - K’ o K
N\ AN /‘
F/ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

N

70: F.G —- F ;G

is a natural transformation given by | (7:0) 4 = op(4);G'(Ta) | for all
Ae ‘K| K/ K-
OF(A) /
F(A) G(F(A)) - G'(F(A))
TAl (7o) lG/(TA)
F'(A) G'(F'(A4))
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F G

Horizontal com iti I ( é \v (
position K T K’ o K
N\ AN /‘
F/ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

N

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 = G(74);0%/(a) = or(4);G'(74) | for all
A e K|

IF(4)

F(A) G(F(4)) - G'(F(4))

ml Gm)l 7o) l@’m)
F(4)  GF(4) —

~ G'(F'(4))
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Horizontal composition I

F G

K

4 é N
N VAN

N

K//

Y

F’ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 = G(74);08/(4) = or(4);G'(Ta)

A e K|

OF(A)

F(A) G(F(4))

TAl G(TA)l

Fl(4)  G(F'(A) —

Show that indeed, 7.0 is a natural transformation

for all

> G'(F(A))
(T-O‘)A lG/(TA)

> G'(F/(A))
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Show that indeed, 7.0 is a natural transformation
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Show that indeed, 7.0 is a natural transformation
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Show that indeed, 7.0 is a natural transformation

K K-
A G(F(4) AL )
B G(F(B)) s, qw(s)
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Show that indeed, 7.0 is a natural transformation

K K-
A G(F(4) AL )

; G(F()) G'(F())
Y Y (r-0) 5 Y
B G(F(B)) - G/(F'(B))

Andrzej Tarlecki: Category Theory, 2021 - 103 -



Show that indeed, 7.0 is a natural transformation

K K-
A G(F(4) oA L g
X}‘(Tfﬂ /
OF/(A)
G(F'(4)]
; G(F()) G(F(f)
Y Y (r-0) 5 Y
B G(F(B)) - G/(F'(B))
G(TA %’
G(F'(B))
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Show that indeed, 7.0 is a natural transformation

K K-
A G(F(4) oA L g
X}‘(Tfﬂ /
OF/(A)
G(F'(4)]
; G(F()) G(F(f)
G(F'(f)
Y Y (r-0) 5 Y
B G(F(B)) - G/(F'(B))
G(7B) \ %’
G(F'(B))
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Horizontal composition I

F G

K

4 é N
N VAN

N

K//

Y

F’ G’

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 = G(74);08/(4) = or(4);G'(Ta)

A e K|

OF(A)

F(A) G(F(4))

TAl G(TA)l

Fl(4)  G(F'(A) —

Show that indeed, 7.0 is a natural transformation

for all

> G'(F(A))
(T-O‘)A lG/(TA)

> G'(F/(A))
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Horizontal composition I

F G

K

4 é N
N VAN

N

K//

Y

F/ G_/

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given by | (7-0) 4 = G(74);08/(4) = or(4);G'(Ta)

A e K|
Multiplication by functor:

for all
K’ K’
F(4)  G(F(4) — A+ @/(F(4))
ml Gm)l o) lG'm)
F'(4)  G(F(4) — 2o G/(F/(4))

Show that indeed, 7.0 is a natural transformation
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Horizontal composition I

N

K//

Y

N S N |

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given
A e K|
Multiplication by functor:

— 7G =71idg: F:G — F':G,

by | (7:0)a = G(T4);08/(4) = 0F(4);G'(T4) |for all
K’: K’
F(4)  G(F(4) — 2+ G/(F(A))
ml Gm)l 7o) l@’m)
F'(4)  G(F'(A) — Ay G/(F/(4))

Show that indeed, 7.0 is a natural transformation
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Horizontal composition I

N

K//

Y

N S N |

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given
A e K|
Multiplication by functor:
— 7G =71idg: F:G — F':G,
i.e., (T-G)A = G(TA)

by | (7:0)a = G(T4);08/(4) = 0F(4);G'(T4) |for all
K’: K’
F(4)  G(F(4) — 2+ G/(F(A))
ml Gm)l 7o) l@’m)
F'(4)  G(F'(A) — Ay G/(F/(4))

Show that indeed, 7.0 is a natural transformation
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Horizontal composition I

N

K//

Y

N S N |

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given
A e K|
Multiplication by functor:
— 7G =T1idg: F;:G — F';G,
i.e., (T-G)A = G(TA)
— F.o=idpo: F;G - F;G’,

by | (7:0)a = G(T4);08/(4) = 0F(4);G'(T4) |for all
K’: K’
F(4)  G(F(4) — 2+ G/(F(A))
ml Gm)l 7o) l@’m)
F'(4)  G(F'(A) — Ay G/(F/(4))

Show that indeed, 7.0 is a natural transformation
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Horizontal composition I

N

K//

Y

N S N |

The horizontal composition of natural transformations 7: F — F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G': K' — K”

70: F.G —- F ;G

is a natural transformation given
A e K|
Multiplication by functor:
— 7G =T1idg: F;:G — F';G,
i.e., (T-G)A = G(TA)
— F.o=idpo: F;G - F;G’,
l.e., (F-O‘)A — OF(A)

by | (7:0)a = G(T4);08/(4) = 0F(4);G'(T4) |for all
K’: K’
F(4)  G(F(4) — 2+ G/(F(A))
ml Gm)l 7o) l@’m)
F'(4)  G(F'(A) — Ay G/(F/(4))

Show that indeed, 7.0 is a natural transformation
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as

follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:

e View the category of S-sorted sets, Set”, as a functor category.
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.

e Check whether KX’ is (finitely) (co)complete whenever K is so.

Andrzej Tarlecki: Category Theory, 2021 - 104 -



Theorem: [f K is finitely complete then KK s finitely complete as well.
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Theorem: [f K is finitely complete then KK s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in KK
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
— for f: A — B/,
(F x G)(f) = (mra);F(f), maan;G(f)): (F x G)(4) = (F x G)(B')
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), mran:G(f)): (F x G)(4") = (F x G)(B')

F(A") LLCD I 757
TF(A") TF(B’)

/ /
F(A") x G(4') ~ F(B') x G(B)
T‘-G(Ax 7"'G(Bx

G(A") G » G(B')
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), mran:G(f)): (F x G)(4") = (F x G)(B')

F(A") F(f) ~ F(B') To be checked:
T (A TR (B) (F x G)(idar) = idFx)(ar), and
(FxG)(fig9) = (FxG)(f);(FxG)(g)
F(A") x G(A") » F(B') x G(B)
WG(A& Wg(Bx
G(A") G » G(B')
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), mran:G(f)): (F x G)(4") = (F x G)(B')

F(A) F(f) ~ F(B) To be checked:

7TF(A’) 7TF(B’) (F X G)(ZdA/) = id(FxG)(A’)1 and

(FxG)(f;9) = (FxG)(f);(FxG)(g)
F(A") x G(A") » F(B') x G(B)

This yields natural transformations:

it e (e ) (FxG)—>F
TRr — (70 / / /1.

G(f) TG = <7TG(A’)>A/€|K/|. (FxG)—
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
with product projections 7p: (F x G) = F and ng: (F x G) — G.
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers:
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0:F > Gisd: H—F, where:
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0:F > Gisd: H—F, where:

— for A" € |[K'|, 64 : H(A") — F(A") is equaliser of 747,04 : F(A") - G(A)
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K
with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0:F > Gisd: H—F, where:

— for A" € |[K'|, 64 : H(A") — F(A") is equaliser of 747,04 : F(A") - G(A)
— for f: A" - B', H(f): H(A") - H(B') is s. t. 4 ;H(f) = G(f);05".
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Theorem: [f K is finitely complete then KK s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in KK’

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK is F x G: K’ - K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F —>Gisd: H—F, where:

ok
F(A) s )

5A/T (53/

H(A) g HO)
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Theorem: [f K is finitely complete then KK s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in KK’

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK is F x G: K’ - K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F —>Gisd: H—F, where:

G(4') GU) - G(B') To be checked:
TA/T TOA/ TB/T TJB/ H(ida') = Z'dH(A/), and
H(f;9) = H(f);H
F(A i F(B) (f:9) = H(f);H(g)
5,4 i
H(A") H(7) » H(B')
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Theorem: [f K is finitely complete then KK s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in KK’

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK is F x G: K’ - K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F —>Gisd: H—F, where:

ok
F(A) s )

5A/T (53/

H(A) g HO)

To be checked:
H(ZdA/) = idH(A/), and
H(f;9) = H(f);H(g)

This yields a natural transformation:
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Theorem: [f K is complete then KK s complete as well.
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Theorem: [f K is complete then KK s complete as well.

Proof (idea): Define (arbitrary) products and equalisers in KX, as for the finite case.
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Theorem: [f K is complete then KK s complete as well.

Proof (idea): Or proceed with limit construction for an arbitrary diagram:
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:
e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")

and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:
e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by
e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows: /
— for A’ € [K/|, let a® : X(A’) — D(A’) be the limit of D(A’) in K
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows: /
— for A’ € [K/|, let a® : X(A’) — D(A’) be the limit of D(A’) in K

— for f: A” - B in K/, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of aB")
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows: /
— for A’ € [K/|, let a® : X(A’) — D(A’) be the limit of D(A’) in K

— for f: A” - B in K/, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of aB")
— define a: X — Dy, by () ar = (o), for A’ € |K/|
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:

— for A’ € |[K/|, let a®: X(A") — D(A’) be the limit of D(A4’) in K

— for f: A” - B in K/, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of aB")

— define oy : X = Dy, by () = (a?),, for A’ € |K/|

— check that X: K’ — K is a functor, and a,,: X — D,, are natural

transformations
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Theorem: [f K is complete then KK s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € .
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A"). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A") — D(B’) by

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:

— for A’ € |[K/|, let a®: X(A") — D(A’) be the limit of D(A4’) in K

— for f: A” - B in K/, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of aB")

— define oy : X = Dy, by () = (a?),, for A’ € |K/|

— check that X: K’ — K is a functor, and a,,: X — D,, are natural

transformations

e Prove that a: X — D is a limit of D in KX .
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KK — KK
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KK — KK
where for G: K’ — K, (F; )(G) =F;:G: K" — K,
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KK — KX"
where for G: K’ —» K, (F; )(G) = F;G: K" — K, and for
7 G—-G(: K —-K), (F, )(r)=F7: F;G - F;G".
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, K¥', as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KK — KX"
where for G: K’ —» K, (F; )(G) = F;G: K" — K, and for
7 G—-G(: K —-K), (F, )(r)=F7: F;G - F;G".

o Check if (F;_): KK — KKX" is (finitely) (co)continuous, for any F: K" — K.
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Yoneda embedding'

Given a locally small category K, define

V: K — SetkK”
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Yoneda embedding'

Given a locally small category K, define

V: K — SetkK”

e V(A) =Homgk(_,A): K — Set, for A € |K|

Andrzej Tarlecki: Category Theory, 2021 - 105 -



Yoneda embedding'

Given a locally small category K, define

V: K — SetkK”

o V(A) = Homgk( , A): K — Set, for A € |K|
— for X € |[K|, Y(A)(X) = Homk (X, A)

Andrzej Tarlecki: Category Theory, 2021 - 105 -



Yoneda embedding'

Given a locally small category K, define X  Y(A)(X)
A
=
VKo Set<” | M| =
>)
Y
Y Y(A)(Y)
e V(A) =Homgk( ,A): K? — Set, for A € |K|
— for X € |[K|, Y(A)(X) = Homk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)
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Yoneda embedding'

Given a locally small category K, define X  Y(A)(X)
A
=
VK SetK”| 0=
>)
Y
Yy o Y(A)Y)

e V(A) =Homgk( ,A): K? — Set, for A € |K|
— for X € |[K|, Y(A)(X) = Homk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (5f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € K|
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Yoneda embedding' A ! > B3

Given a locally small category K, define X y(AA)(X) y(BA)(X)
- -
V:K s SetX” | " = )
! > )

y  J(AY) Y(B)(Y)

e V(A) =Homgk( ,A): K°? — Set, for A € K]
— for X € |K|, Y(A)(X) = Homk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (;f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € |[Ke°P|.
— for f: A—= B, Y(f): Y(A) = YV(B)(: K°? — Set)
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Yoneda embedding' A ! > B3

Given a locally small category K, define X y(AA)(X)—"y(BA)(X)
= S
V:K s SetX” | " N 8
Y > )
Yy Y(A)Y) ) Y(B)(Y)
o V(A) = Homg (_, A): K — Set, for A € |K| Py

— for X € |K|, Y(A)(X) = Homk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (5f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € |[KP|.
— for f: A— B, Y(f): Y(A) = Y(B)(: K°? — Set)
— for X € |[K°?|, Y(f)x: Y(A)(X) — Y(B)(X)
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Yoneda embedding' A ! > B3

Y(f)x
Given a locally small category K, define X y(AA)(X) y(BA)(X)
= S
V:K s SetX” | " N 8
! > )
Yy YA Y(B)(Y
(A)( )y(f)y (B)(Y)

e V(A) =Homgk( ,A): K°? — Set, for A € K]
— for X € |K|, Y(A)(X) = Homk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (5f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € |[Ke°P|.
— for f: A= B, Y(f): Y(A) = Y(B)(: K°? — Set)
— for X € [K?], Y(f)x: Y(A)(X) = V(B)(X)
— naturality of Y(f): Y(A) = Y(B): for h: X =Y in K,
Y(A)(h):V(f)x = (hi)i(sf) = hisf = (5)i(hsn) = Y(f)y:Y(B)(h)
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Yoneda embedding'

Given a locally small category K, define

V: K — Setk”

e V(A) =Homxk( ,A): K? — Set, for A € K]

e V(f)x = (1;f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € K|

Theorem: The category of presheaves Set¥” /s complete and cocomplete.
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Yoneda embedding'

Given a locally small category K, define

V: K — Setk”

e V(A) =Homgk( ,A): K? — Set, for A € |K|

e V(f)x = (5f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € K|

Theorem: The category of presheaves Set¥” /s complete and cocomplete.

Theorem: V: K — Set®” is full and faithful.
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Yoneda embedding'

Given a locally small category K, define

V: K — Setk”

e V(A) =Homgk( ,A): K? — Set, for A € |K|

e V(f)x = (5f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € K|

Theorem: The category of presheaves Set¥” /s complete and cocomplete.

Theorem: V: K — Set®” is full and faithful.

F: K — K’ is full and faithfull
if for all A, B € |K],
F: K(A,B) — K'(F(A),F(B)) is a bijection
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Diagrams as functors'
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:
— Fp(n) = D, for all nodes n € |G|nodes
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:
— Fp(n) = D, for all nodes n € |G|nodes
— Fp(ngeiny ...ng_1exng) = De,;...;De, , for paths ngeiny ... ng_1exng in G
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:

— for distinct diagrams D and D’ of shape GG, Fp and Fp. are different
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:

— for distinct diagrams D and D’ of shape GG, Fp and Fp. are different

— all functors from Path(G) to K are given by diagrams over G
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp. are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape G are exactly
natural transformations u: Fp — Fp.
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K
given by:

— Fp(n) = D,, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp. are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape G are exactly

natural transformations u: Fp — Fp.
~ KPath(G)

Diag%
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K
given by:

— Fp(n) = D,, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp. are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape G are exactly

natural transformations u: Fp — Fp.
~ KPath(G)

Diag%

Diagrams are functors from small (shape) categories
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Double law '
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Double law '

Given: " G
K( ¢ F’}K,( 7§ G’}K,,
N Fi VAN (j by

Andrzej Tarlecki: Category Theory, 2021

- 107 -



Double law '

Given: " G
K( T F’}K,K i G’}K,,
N T B
F// G_//
then:
F:G
4 Ny
K K//
K F//;G// )
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Double law '

K//

>

Given: " G
5 T
A
S A NS
F// G_//
then:
F:G
(
K (7-0);(7"-0") §(737)-(0307)
_
F//;G//
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Double law '

N
K (roi(ro)imr)oe) K/
J

/_

F//;G//
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Double law '

This holds in Cat, which is a

Given:
F G paradigmatic example of a two-
LN g,
N S N B
F// G_//
then:

(r-0);(1"-0") = (1;7")-(050)

F:G

N

K (t-0);(t"-0") s (m;7")-(0;0") K

S

R

F//;G//
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Double law '

This holds in Cat, which is a

Given: : .
F G paradigmatic example of a two-
( T P \V ( o é G ,\y category.
K > K’ > K" A category K is a two-category
/ /
k Té /A k g /A when for all objects A, B &

F” G” K|, K(A,B) is again a cate-

then: gory, with I-morphisms (the usual

(r-0):(7"-0") = (r:7)-(o30") K-morphisms) as objects and 2-

morphisms between them.

F:G

x

N
K (roi(ro)imr)oe) K/
J

/_

F//;G//
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Double law '

then:

(r-0);(1"-0") = (1;7")-(050)

F:G

\

N
K (roi(ro)imr)oe) K/
J

/_

F//;G//

This holds in Cat, which is a
paradigmatic example of a two-
category.

A category K is a two-category
when for all objects A,B €
K|, K(A,B) is again a cate-
gory, with I-morphisms (the usual
K-morphisms) as objects and 2-
morphisms between them.

Those 2-morphisms compose ver-
tically (in the categories K(A, B))
and horizontally, subject to the
double law as stated here.
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Double law '

then:

(r-0);(1"-0") = (1;7")-(050)

F:G

\

N
K (roi(ro)imr)oe) K/
J

/_

F//;G//

This holds in Cat, which is a
paradigmatic example of a two-
category.

A category K is a two-category
when for all objects A,B €
K|, K(A,B) is again a cate-
gory, with I-morphisms (the usual
K-morphisms) as objects and 2-
morphisms between them.

Those 2-morphisms compose ver-
tically (in the categories K(A, B))
and horizontally, subject to the
double law as stated here.

In two-category Cat, we have
Cat(K',K) = KXK'
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Equivalence of categories'
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G;F = Idk'.

Andrzej Tarlecki: Category Theory, 2021 - 108 -



Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk.

e A category is skeletal if any two isomorphic objects are identical.
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G: K’ — K such that F;G = Idk and G;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk.

e A category is skeletal if any two isomorphic objects are identical.

e A skeleton of a category is any of its maximal skeletal subcategory.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk.

e A category is skeletal if any two isomorphic objects are identical.

e A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk.

e A category is skeletal if any two isomorphic objects are identical.

e A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

All “categorical” properties are preserved under equivalence of categories
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