Functors

and

natural transformations

Andrzej Tarlecki: Category Theory, 2021

- 83 -

Functors

and

natural transformations

functors ~» category morphisms

natural transformations ~» functor morphisms

Andrzej Tarlecki: Category Theory, 2021

- 83 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:

Andrzej Tarlecki: Category Theory, 2021

-84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:

e a function F: |[K| — |K’|, and

Andrzej Tarlecki: Category Theory, 2021

-84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:
e a function F: |[K| — |K’

e for all A, B € |K|, a function F: K(A,B) —» K'(F(A),F(B))

- and

Andrzej Tarlecki: Category Theory, 2021

-84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:
e a function F: |[K| — |K’

e for all A, B € |K|, a function F: K(A,B) - K'(F(A),F(B))

- and

We really should differentiate between various components of F

Andrzej Tarlecki: Category Theory, 2021

-84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:
e a function F: |[K| — |K’

e for all A, B € |K|, a function F: K(A,B) - K'(F(A),F(B))

- and

such that: Make explicit categories in which we work at various places here

We really should differentiate between various components of F

Andrzej Tarlecki: Category Theory, 2021 -84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:

e a function F: |[K| — |K’

- and

e for all A, B € |K|, a function F: K(A,B) - K'(F(A),F(B))

such that:

Make explicit categories in which we work at various places here

e F preserves identities, i.e.,

F(ida) = idp(a)

for all A € |K]|, and

We really should differentiate between various components of F

Andrzej Tarlecki: Category Theory, 2021 -84 -

Functors '

A functor F: K — K’ from a category K to a category K’ consists of:

e a function F: |[K| — |K’

- and

e for all A, B € |K|, a function F: K(A,B) - K'(F(A),F(B))

such that:

Make explicit categories in which we work at various places here

e F preserves identities, i.e.,

F(’idA) — ’idF(A)

for all A € |K]|, and

e F preserves composition, I.e.,

F(f;9) =F(f);F(g)

forall f: A— Band g: B— C in K.

We really should differentiate between various components of F

Andrzej Tarlecki: Category Theory, 2021 -84 -

Examples

Andrzej Tarlecki: Category Theory, 2021

-85 -

Examples I

e identity functors: Idk: K — K, for any category K

Andrzej Tarlecki: Category Theory, 2021

-85 -

Examples I

e identity functors: Idk: K — K, for any category K

e inclusions: Ik k' : K — K’ for any subcategory K of K’

Andrzej Tarlecki: Category Theory, 2021

-85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik .,k : K — K’ for any subcategory K of K’

e constant functors: C4: K — K/, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

Andrzej Tarlecki: Category Theory, 2021

-85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik, k' : K — K’ for any subcategory K of K’

e constant functors: C,: K — K’, for any categories K, K’ and A € |K’|, with
CA(f) = ida for all morphisms f in K

P
e powerset functor: P: Set — Set given by Set — Set

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik, k' : K — K’ for any subcategory K of K’

e constant functors: C,: K — K’, for any categories K, K’ and A € |K’|, with
CA(f) = ida for all morphisms f in K

P
e powerset functor: P: Set — Set given by Set — Set

— P(X)={Y | Y C X}, for all X € |Set)| X —— 9X

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik, k' : K — K’ for any subcategory K of K’

e constant functors: C,: K — K’, for any categories K, K’ and A € |K’|, with
CA(f) = ida for all morphisms f in K

P
e powerset functor: P: Set — Set given by Set — Set

— P(X)={Y | Y C X}, for all X € |Set)| X —— 9X

X' — 9X’

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik, k' : K — K’ for any subcategory K of K’

e constant functors: C,: K — K’, for any categories K, K’ and A € |K’|, with
CA(f) = ida for all morphisms f in K

P
e powerset functor: P: Set — Set given by Set — Set

— P(X)={Y | Y C X}, for all X € |Set)| X —— 9X
— P(f): P(X) > P(X') for all f: X — X' in Set, fl

X' — 9X’

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ik, k' : K — K’ for any subcategory K of K’

e constant functors: Cy: K — K/, for any categories K, K’ and A € |K’|, with
CA(f) = ida for all morphisms f in K

P
e powerset functor: P: Set — Set given by Set — Set

— P(X)={Y | Y C X}, for all X € |Set)| X —— 9X
— P(f): P(X) = P(X’) forall f: X — X’ in Set, B
P(f)(Y)={f(y) |lyeY}foral Y C X nN—1V

X' — 9X’

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
_ : / : ~ P_
P(f): P(X)—P(X’) forall f: X — X"in Set, St oP Ly Set
P(AIY)={f(y)|yeY}forallY C X

e contravariant powerset functor: P_1: Set°® — Set given by

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
_ : / : ~ P_
P(f): P(X)—P(X’) forall f: X — X"in Set, St oP Ly Set
P(AIY)={f(y)|yeY}forallY C X

: . —» X
e contravariant powerset functor: P_1: Set°® — Set given by X 2

— P 1(X)={Y |Y C X} forall X € |Set]

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
_ : / : ~ P_
P(f): P(X)—P(X’) forall f: X — X"in Set, St oP Ly Set
P(AIY)={f(y)|yeY}forallY C X

: . —» X
e contravariant powerset functor: P_1: Set°® — Set given by X 2

— P 1(X)={Y |Y C X} forall X € |Set]

X —— 9X'

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
— P(f): P(X) — P(X’) forall f: X - X’ in Set, P_,
P(HY)={f(y)|yeY}forallY C X

e contravariant powerset functor: P_1: Set°® — Set given by .
~P_(X)={Y|Y C X}, for all X € |Set] %lf

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K/, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K

e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
_ : / : ~ P_
P(f): P(X)—P(X’) forall f: X — X"in Set, St oP Ly Set
P(AIY)={f(y)|yeY}forallY C X

X — 9X

I

X —— 9X'

e contravariant powerset functor: P_1: Set°® — Set given by
— P 1(X)={Y |Y C X} forall X € |Set]
— P_1(f): P(X) = P(X') for all f: X' — X in Set,

in Set

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K
e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
— P(f): P(X) — P(X’) forall f: X - X’ in Set, P_,
P(HY)={fy) |lyeY}forallY C X

e contravariant powerset functor: P_1: Set°® — Set given by

— P 1(X)={Y |Y C X} forall X € |Set] ET 7
— P_1(f): P(X) > P(X’) for all f: X’ — X in Set, =
P ()Y)={a'eX'| f(&)eY}forallY C X X/ —— 9X'

Andrzej Tarlecki: Category Theory, 2021 -85 -

Examples I

e identity functors: Idk: K — K, for any category K
e inclusions: Ix .,k : K — K’, for any subcategory K of K’

e constant functors: C4: K — K’, for any categories K, K’ and A € |K’|, with
Ca(f) = ida for all morphisms f in K
e powerset functor: P: Set — Set given by
— P(X)={Y | Y C X}, for all X € |Set)|
— P(f): P(X) = P(X') forall f: X — X’ in Set,
P(HY)={fy) |lyeY}forallY C X
e contravariant powerset functor: P_1: Set°® — Set given by
— P 1(X)={Y |Y C X} forall X € |Set]
— P_i(f): P(X) = P(X) for all f: X' — X in Set,
P.(f)\Y)={2d'eX"|f(z/)eY}forall Y C X

Andrzej Tarlecki: Category Theory, 2021

-85 -

Examples, cont’d. I

e projection functors: m: K XK' - K, m: K x K' — K’

Andrzej Tarlecki: Category Theory, 2021

- 86 -

Examples, cont’d. I

e projection functors: m: K X K' - K, m: K x K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

Set ﬂP— Monoid

Andrzej Tarlecki: Category Theory, 2021

- 86 -

Examples, cont’d. I

e projection functors: m: K X K' - K, m: K x K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X*, 7, ¢), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

Set ﬂP— Monoid

X — (X%, "¢

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m: K X K' - K, m: K x K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X*, 7€), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

Set ﬂP— Monoid

X — (X%, "¢

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m: K X K' - K, m: K x K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X*, 7€), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,

Set ﬂP— Monoid

X — (X%, "¢
f

X' '—><(X/)*7A76>

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m: K X K' - K, m: K x K' — K’
e /ist functor: List: Set — Monoid, where Monoid is the category of monoids

(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X*, 7€), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,
List(f)({(z1,...,2n)) = (f(x1),..., f(x,)) forall x1,..., 2, € X

Set ﬂP— Monoid

X — (X%, "¢

7| - |7

X' '—><(X/)*7A76>

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m1: KXK' - K, m: Kx K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X™, 7, ¢), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,
List(f)((x1,...,xn)) = (f(x1),..., f(xy)) forall zq,... 2, € X

e totalisation functor: Tot: Pfn — Setx, where Setx is the subcategory of Set
of sets with a distinguished element * and *-preserving functions

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m1: KXK' - K, m: Kx K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X™, 7, ¢), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,
List(f)((x1,...,xn)) = (f(x1),..., f(xy)) forall zq,... 2, € X

e totalisation functor: Tot: Pfn — Setx, where Setx is the subcategory of Set
of sets with a distinguished element * and *-preserving functions

Define Setx« as the category of algebras

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m1: KXK' - K, m: Kx K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X™, 7, ¢), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,
List(f)((z1,...,2n)) = (f(x1),..., f(z,)) forall x1,..., 2, € X

e totalisation functor: Tot: Pfn — Setx, where Setx is the subcategory of Set
of sets with a distinguished element * and *-preserving functions

— Tot(X) = X & {*} Define Setx« as the category of algebras

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

e projection functors: m1: KXK' - K, m: Kx K' — K’

e /ist functor: List: Set — Monoid, where Monoid is the category of monoids
(as objects) with monoid homomorphisms as morphisms:

— List(X) = (X™, 7, ¢), for all X € |Set|, where X™ is the set of all finite lists
of elements from X, ~ is the list concatenation, and € is the empty list.

— List(f): List(X) — List(X’) for f: X — X’ in Set,
List(f)((x1,...,xn)) = (f(x1),..., f(xy)) forall zq,... 2, € X

e totalisation functor: Tot: Pfn — Setx, where Setx is the subcategory of Set
of sets with a distinguished element * and *-preserving functions

— Tot(X) = X & {*} Define Setx as the category of algebras

_ Tot(f)(z) = f(x) ifitis defined

* otherwise

Andrzej Tarlecki: Category Theory, 2021 - 86 -

Examples, cont’d. I

Andrzej Tarlecki: Category Theory, 2021

- 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic
signatures . € |AlgSig|

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic
signatures . € |AlgSig|

— TZ(X) — TE(X) for all X &]Set|

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic
signatures . € |AlgSig|
— Tx(X) =Tx(X) for all X € |Set)|
— Tx(f) = f7: Tg(X) — Ts(X') for all functions f: X — X’

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic
signatures . € |AlgSig| Generalise to many-sorted signatures

— TZ(X) — TE(X) for all X & ’SGt|
— Tx(f) = f7: Tg(X) — Ts(X') for all functions f: X — X’

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic

signatures . € |AlgSig| Generalise to many-sorted signatures
— TZ(X) — TE(X) for all X & ’SGt|
— Tx(f) = f7: Tg(X) — Ts(X') for all functions f: X — X’

e diagonal functors: A% : K — Diagﬁ for any graph G with nodes N = |G|nodes
and edges E = |G|edges, and category K

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic

signatures . € |AlgSig| Generalise to many-sorted signatures
— TZ(X) — TE(X) for all X & ’SGt|
— Tx(f) = f7: Tg(X) — Ts(X') for all functions f: X — X’

e diagonal functors: A% : K — Diagﬁ for any graph G with nodes N = |G|nodes
and edges E = |G|edges, and category K
— A% (A) = DA, where D4 is the “constant” diagram, with D2 = A for all
n € N and DA = idy foralle € E

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Examples, cont’d. I

e carrier set functors: |_|: Alg(X) — Set®, for any algebraic signature ¥ = (S, Q),
yielding the algebra carriers and homomorphisms as functions between them

e reduct functors: _|,: Alg(¥') — Alg(X), for any signature morphism
o: Y — Y/ as defined earlier

e term algebra functors: Tyx: Set — Alg(X) for all (single-sorted) algebraic

signatures . € |AlgSig| Generalise to many-sorted signatures
— TZ(X) — TE(X) for all X & ’SGt|
— Tx(f) = f7: Tg(X) — Ts(X') for all functions f: X — X’

e diagonal functors: A% : K — Diagﬁ for any graph G with nodes N = |G|nodes
and edges E = |G|edges, and category K
— A% (A) = DA, where D4 is the “constant” diagram, with D2 = A for all
n € N and DA = idy foralle € E
— ASZ(f) =pl: DA — DB forall f: A— B, where uf = f forallme N

Andrzej Tarlecki: Category Theory, 2021 - 87 -

Hom-functors '

Andrzej Tarlecki: Category Theory, 2021

- 88 -

Hom-functors '

Given a locally small category K, define

a binary hom-functor, contravariant on the first argument and covariant on the

second argument, as follows:

Homygk: K x K — Set

Andrzej Tarlecki: Category Theory, 2021

- 88 -

Hom-functors '

Given a locally small category K, define

Homygk: K x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

(4
K(A, B) l
D,

Andrzej Tarlecki: Category Theory, 2021 - 88 -

Hom-functors '

Given a locally small category K, define

Homygk: K x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

(4 m
K(A, B) l l K(A', B
D,

Andrzej Tarlecki: Category Theory, 2021 - 88 -

Hom-functors '

Given a locally small category K, define

Homyg : K°? x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homy ((A, BY) = K(A, B), for all (A, B) € |[K° x K|, ie., A,B ¢ |K|
o Homk ((f,¢)): K(A, B) — K(A", B'), for (f,g): (A, B) — (A", B') in

K°? x K,
() Car
K(A, B) l l K(A', B
L
\ Homxk(f,g) 4

Andrzej Tarlecki: Category Theory, 2021 - 88 -

Hom-functors '

Given a locally small category K, define

Homyg : K°? x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

o Homi ((f,¢)): K(A, B) — K(A", B'), for (f,g): (A, B) — (A, B} in
K xK, ie, f: A= Aand g: B— B' in K,

(y—L—L
K(A, B) l l K(A', B
g /
2 G
K HomK f7)

Andrzej Tarlecki: Category Theory, 2021 - 88 -

Hom-functors '

Given a locally small category K, define

Homyg : K°? x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

e Homk ({f,9)): K(A,B) = K(A',B’), for {(f,g): (A,B) — (A", B’) in
K? xK, ie., f: AA— Aand g: B— B’ in K, as a function given by

Homg ((f,g))(h) = fhig. (a1 00
K(A, B) lh l K(A', B')

g ,

3 ’

K HomK(fag))

h > [:hig

Andrzej Tarlecki: Category Theory, 2021 - 88 -

Hom-functors '

Given a locally small category K, define

Homgk: K x K —

Set

a binary hom-functor, contravariant on the first argument and covariant on the

second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

o Homx((f,q)): K(A, B) — K (A, B'), for (f,

g): (A, B) = (A", B') in

K? xK, ie., f: AA— Aand g: B— B’ in K, as a function given by

Homx ((f, 9))(h) = fihg. (AT D
K(A, B) j,h l K(A', B)
g
B /
Also: Homgk (A,): K — Set — u
Homxk(, B): K? — Set \h Homy (/. g} h)
' >]9

Andrzej Tarlecki: Category Theory, 2021

- 88 -

Functors preserve. .. I

e Check whether functors preserve:

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms

F: K— K

If f: A— B is mono in K then
F(f): F(A) — F(B) is mono in K’ 77

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms

— epimorphisms

F: K— K

If f: A— B isepi in K then
F(f): F(A) — F(B) isepi in K" 77

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms

— (co)retractions

F: K— K

If f: A— B is a retraction in K then
F(f): F(A) — F(B) is a retraction in K" 77

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions

— isomorphisms

F: K— K

If f: A— B isiso in K then
F(f): F(A) — F(B) isiso in K" 77

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms

— (co)cones

F: K— K

If «: X — D is a cone on diagram D in K
then F(a): F(X) — F(D) is a cone on dia-
gram F(D) in K’ 77
BTW:
e F(D) has the same shape as D,

le. G(F(D)) =G(D)

(with nodes N and edges F)

— (F(D)), =F(D,) forn e N

— (F(D))e =F(D,) forec E

o F(a) = (F(a): F(X) = (F(D)n)yen

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

F: K— K

Ifa: X — Disalimit of diagram D in K then
F(a): F(X) — F(D) is a limit of diagram
F(D) in K 77

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

F: K— K

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is

continuous if it preserves all existing

limits.

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.
Which of the above functors are (finitely) continuous?

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.
Which of the above functors are (finitely) continuous?

Dualise!

Andrzej Tarlecki: Category Theory, 2021

-89 -

Functors compose. .. I

Andrzej Tarlecki: Category Theory, 2021

- 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K"
is defined as expected:

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F:G)(A) =G(F(A)) for all A € K|

o (F:G)(f)=G(F(f)) forall f: A— BinK

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”

is defined as expected:

e (F:G)(A) =G(F(A)) for all A € K|
o (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

Andrzej Tarlecki: Category Theory, 2021

-90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals

Andrzej Tarlecki: Category Theory, 2021 - 90 -

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

Andrzej Tarlecki: Category Theory, 2021

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (A1, f: F(A1) — G(As2), As), where A1 € |K1|, A, € |[K2|, and
fi F(Al) — G(AQ) in K

K1: K: ¥ K2:
P-G(AQ) A2

Andrzej Tarlecki: Category Theory, 2021 -91 -

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (A1, f: F(A1) — G(As2), As), where A1 € |K1|, A, € |[K2|, and
fi F(Al) — G(AQ) in K

— morphisms: a morphism in (F, G) is

K1 K: ¥ K2:
Ay F(A;) > G(A2) Ao
B, F(B))—L G(B,) Bs

Andrzej Tarlecki: Category Theory, 2021 -91 -

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy1: A1 — B in K1, ho: Ay — By in K2,

K1: K: ¥ K2:
Al F(Al) P-G(AQ) A2
hll lhg
B, F(B))—L G(B,) Bs

Andrzej Tarlecki: Category Theory, 2021 -91 -

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy: A1 — By in K1, ho: Ay — By in K2, and F(hy);9 = f;G(h2) in K.

K1: K: ¥ K2:
Al F(Al) P-G(AQ) A2
hll F(hl)l lG(hg) lhg
B, F(B))—L» G(B,) Bs

Andrzej Tarlecki: Category Theory, 2021 -91 -

— composition:

Comma categories I

K2:

A

Andrzej Tarlecki: Category Theory, 2021

- 91 -

— composition:

K1:

Comma categories I

f P-G(AQ)

I Gy

K2:

A

A

Andrzej Tarlecki: Category Theory, 2021

- 91 -

— composition:

Comma categories I

K: K2:
F(A)——>G(4) 4
F(hl)l l(;(hg) lhg
PO —L >cy) 4

Andrzej Tarlecki: Category Theory, 2021

- 91 -

— composition:

Comma categories I

K: K2:
F(A)— +G(Ay) A
F(hl)l l(;(hg) lhg
FA)— >G4y A
FAN—L waay) A

Andrzej Tarlecki: Category Theory, 2021

- 91 -

— composition:

Comma categories I

K:
F(A)—L—G(4,)
F(hl)l l@(
F(A)—L - G(ay)
F<ha>l G(
F(A))—L > G(ap)

Andrzej Tarlecki: Category Theory, 2021

- 91 -

K1:

— A

y

A

hfll

Nl

hi;hi

Comma categories I

— composition: component-wise

K: K2:
F(A)—L +G(4y) Ay —
B
FiA)—L—~cry) 4
F(h)l G(h3) l ;
F(A)—L v (A A <

<h17 h2> <h17 h: >

<h1;h/17 h27hl2>

ho;hg

Andrzej Tarlecki: Category Theory, 2021

Comma categories I

— composition: component-wise

K1: K: K2:

—A —F(4) / G (Ax)— Ax—

hll AF(hl)l lG(hg - lhg
el A P — e a4 hew
1514 1 & (A7) > G(A3) ‘:; 2 25112

hal = F(h@l G (hy)|— lg

/!
-4l e FA)—L s« Ay

(h1, h2);(h7, hy) = (hy;hy, hashy)

F(hi;h))f" = F(h);F(R)); f" = F(ha);f5G(hy) = f;G(ha);G(hy) = f;G(ha;hs)

Andrzej Tarlecki: Category Theory, 2021 -91 -

Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy: A1 — By in K1, ho: Ay — By in K2, and F(hy);9 = f;G(h2) in K.

K1: K: ¥ K2:
— composition: component-wise A1 F(Ay) G (Az) Ay
hll F(hl)l lG(hQ) ihQ
B F(B))—L + G(B,) B,

Andrzej Tarlecki: Category Theory, 2021 -91 -

Examples

Andrzej Tarlecki: Category Theory, 2021

- 92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X
and CP(f)((z,2")) = (f(z), f(z)).

Andrzej Tarlecki: Category Theory, 2021

- 92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X
and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

Andrzej Tarlecki: Category Theory, 2021 -92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all
non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).

Andrzej Tarlecki: Category Theory, 2021 -92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).

Andrzej Tarlecki: Category Theory, 2021 -92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).

Define K™, K| A as comma categories.

Andrzej Tarlecki: Category Theory, 2021 -92 -

Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).

Define K™, K| A as comma categories. The same for Alg(X).

Andrzej Tarlecki: Category Theory, 2021 -92 -

Cocompleteness of comma categories'

Andrzej Tarlecki: Category Theory, 2021

- 03 -

Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Andrzej Tarlecki: Category Theory, 2021

-03 -

Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.

Andrzej Tarlecki: Category Theory, 2021 -93 -

Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.

State and prove the dual fact,

concerning completeness of comma categories

Andrzej Tarlecki: Category Theory, 2021

-03 -

Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.

State and prove the dual fact,

concerning completeness of comma categories

Theorem: [fK1 and K2 are (finitely) complete categories, F: K1 — K is a
functor, and G: K2 — K is a (finitely) continuous functor then the comma category
(F, G) is (finitely) complete.

Andrzej Tarlecki: Category Theory, 2021 -93 -

Coproducts:

Ay

F(A)

> G(AQ)

> G(BQ)

A

Bs

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

F(A)

> G(AQ)

> G(BQ)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

A, F(A,) L, G4y A,

A Y NI
Ay + By F(Ai +B1) G(As+ By) Ay + By
L% F(bBly‘ \G(LBQ) /BQ
B F(B) J ~ G(B,) By

Andrzej Tarlecki: Category Theory, 2021 -04 -

Coproducts:

F(A,) L, G4y
F(Al + Bl) —>-G(A2 + BQ)

F(B) g ~ G(B>)

A

Bs

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

A F(A,) L, G4y A
A Y
A+ By F(A; + B1) — G(A3 + By) As + By
A
B F(B) I > G(B) B,

Fact: <A1 + Bl, [f;G(LAQ),g;G(LBQ)]i F(Al + Bl) — G’(A2 + BQ), A2 + B2>
with injections {ta,,ta,) and {tp,,tB,) is a coproduct of
<A1,f2 F(Al) — G(AQ),A2> and <Bl,gl F(Bl) — G(BQ),B2> n (F,G)

Andrzej Tarlecki: Category Theory, 2021 -04 -

Coproducts:

A, F(A,) L, G4y A,
Yo e
A1 + By F(A; + By) = G(A4; + By) Ay + By
N N b
B F(B) J ~ G(B,) By
C F(C)) f -G (Cy) Cs

where r = [f:G(t4,),9;:G(tB,)],

Andrzej Tarlecki: Category Theory, 2021 -04 -

Coproducts:

Y \ A Y M

Cl F(Cl) P-G(CQ) 02
where 7 = [f;G(ca,), :G(t5,)], F(j1)ih = [:G(j2),
Andrzej Tarlecki: Category Theory, 2021 -04 -

Coproducts:

where 7 = [f;G(LA2)7g;G(LB2)]' F(]1)7h = ;G

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),
ryT = [jlakl]' r2 = [j27k2]'

Andrzej Tarlecki: Category Theory, 2021 -04 -

Coproducts:

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),

T = [jl, kl], To = [jg,k‘g]. We need

F(r1);h = r;G(rs)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),

T = [jl, kl], To = [jg,k‘g]. We need

F(r1);h = r;G(rs)

This follows from

F(ta,);F(r1);h =F(ta,);r;G(re) and F(ip,);F(r1);h = F(up,);r;G(ra).

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

where r = [f;G(ta,), 9:G(tn,)], F(j1);sh = £;G(j2), F(k1);h = 9;G(k2),

T = [jl,]431], To = [jg,k’g]. We need

F(r1);h =r;G(rz)

This follows from

F(ta,);F(r1);h =F(ta,);r;G(re) and F(ip,);F(r1);h = F(up,);r;G(rs).

— F(ta,);F(r1)sh =F(G1):h = £;G(j2) = [:G(ta,);G(r2) = F(ra,)ir;G(rs2)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

F(Al) f > G(AQ)
F(Al + Bl) —>-G(A2 + BQ)

F(B) g ~ G(B>)

Ay

Bs

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

By

F(A,) L, G4y

F(Al + Bl) —>-G(A2 + BQ)

F(‘/Bly‘ \G(LBQ)

F(B) g ~ G(B>)
F(Al) f > G(AQ)
F(B) g ~ G(B>)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

> G(AQ)

F(Al + Bl) —>-G(A2 + BQ)

\G(es)

> G(BQ)

— G(Ay)
G(lm)l

> G(BQ)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

i

~ G(Ay)
G(’”)l lG(hé)

> G(BQ)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

i

~ G(Ay)
G(’”)l lG(hé)

> G(BQ)

Andrzej Tarlecki: Category Theory, 2021

- 04 -

Coproducts:

A, F(A,) L, G4y
af F(ia,) /Glun)
A+ B F(A, + B)) —> G(As + Bo)
N\ Flus,)/ g \G(es)
By F(B;) - G(B>)
Coequalisers:
A, F(A,) L, G4y
'“l lha F () lFWl) G(’”)l lG(hé)

1) g ~ G(B)

(B
cll F(cl)l lG(CQ)
(Cy) G(C2)

Andrzej Tarlecki: Category Theory, 2021

Coproducts:

A, F(A,) L, G4y
af F(ia,) /Glun)
A+ B F(A, + B)) —> G(As + Bo)
N\ Flus,)/ g \G(es)
By F(B;) - G(B>)
Coequalisers:
A, F(A,) L, G4y
'“l lha F () lFWl) G(’”)l lG(hé)

1) g ~ G(B)

(B
cll F(cl)l lG(CQ)
(C1) >~ G(C2)

Andrzej Tarlecki: Category Theory, 2021

Indexed categories I

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Indexed categories I

Standard example: Alg: AlgSig®” — Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

C: Ind°? — Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Ind °

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Cat

~
N~

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Cat

/I

\

Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

C: Ind°? — Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € [Ind|, A € |C(i)]

C: Ind°? — Cat

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € [Ind|, A € |C(i)]

C: Ind°? — Cat

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — 7 in Ind and a morphism f: A — C(o)(A’) in C(4)

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Andrzej Tarlecki: Category Theory, 2021

- 05 -

Andrzej Tarlecki: Category Theory, 2021 -95 -

@) C

//)

\ /
N\ /

\\ /I
Ind (° g
7

where X' = C(d")(A")

Andrzej Tarlecki: Category Theory, 2021

- 05 -

//)

\\ /I \
Ind (° g >
7

where X' = C(0”)(A”) and X =C(0)(X

") = C(o)(C(a")(A")).

Andrzej Tarlecki: Category Theory, 2021

- 05 -

//)

Imd(\'/ - N7 ~ >\./>
7 Z'/ ,1://

where X' = C(0’)(A”) and X =C(0)(X') =C(o)(C(c")(A")).
This works fine, since C(o;0") = C(0”");C(0), and so:
X =C(0)(C(a")(A")) = C(a;0")(A”), and so f;C(a)(f"): A = C(o30")(A").

Andrzej Tarlecki: Category Theory, 2021 -95 -

Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — j in Ind and a morphism f: A — C(og)(A") in C(7)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))

Andrzej Tarlecki: Category Theory, 2021 -95 -

Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — j in Ind and a morphism f: A — C(og)(A") in C(7)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))

Theorem: [fInd is complete, C(i) are complete for all i € |Ind|, and C(o) are
continuous for all o: i — j in Ind, then Flat(C) is complete.

Andrzej Tarlecki: Category Theory, 2021 -95 -

Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — 7 in Ind and a morphism f: A — C(o)(A’) in C(4)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))

Theorem: [fInd is complete, C(i) are complete for all i € |Ind|, and C(o) are
continuous for all o: i — j in Ind, then Flat(C) is complete.

Try to formulate and prove a theorem concerning cocompleteness of Flat(C)

Andrzej Tarlecki: Category Theory, 2021 -95 -

