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a binary hom-functor, contravariant on the first argument and covariant on the
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Homygk: K x K — Set
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second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

o Homi ((f,¢)): K(A, B) — K(A", B'), for (f,g): (A, B) — (A, B} in
K xK, ie, f: A= Aand g: B— B' in K,

(y—L—L
K(A, B) l l K(A', B
g /
2 G
K HomK f7 )
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Hom-functors '

Given a locally small category K, define

Homyg : K°? x K — Set

a binary hom-functor, contravariant on the first argument and covariant on the
second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

e Homk ({f,9)): K(A,B) = K(A',B’), for {(f,g): (A,B) — (A", B’) in
K? xK, ie., f: AA— Aand g: B— B’ in K, as a function given by

Homg ((f,g))(h) = fhig. (a1 00
K(A, B) lh l K(A', B')

g ,

3 ’

K HomK(fag) )

h > [:hig
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Hom-functors '

Given a locally small category K, define

Homgk: K x K —

Set

a binary hom-functor, contravariant on the first argument and covariant on the

second argument, as follows:

o Homk ({4, B)) = K(A4, B), for all (A, B) € [K? x K|, i.e., A, B € |K|

o Homx((f,q)): K(A, B) — K (A, B'), for (f,

g): (A, B) = (A", B') in

K? xK, ie., f: AA— Aand g: B— B’ in K, as a function given by

Homx ((f, 9))(h) = fihg. (AT D
K(A, B) j,h l K(A', B)
g
B /
Also: Homgk (A, ): K — Set — u
Homxk( , B): K? — Set \h Homy (/. g} h)
' > ]9
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Functors preserve. .. I

e Check whether functors preserve:
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms

F: K— K

If f: A— B is mono in K then
F(f): F(A) — F(B) is mono in K’ 77
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms

— epimorphisms

F: K— K

If f: A— B isepi in K then
F(f): F(A) — F(B) isepi in K" 77
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms

— (co)retractions

F: K— K

If f: A— B is a retraction in K then
F(f): F(A) — F(B) is a retraction in K" 77
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions

— isomorphisms

F: K— K

If f: A— B isiso in K then
F(f): F(A) — F(B) isiso in K" 77
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms

— (co)cones

F: K— K

If «: X — D is a cone on diagram D in K
then F(a): F(X) — F(D) is a cone on dia-
gram F(D) in K’ 77
BTW:
e F(D) has the same shape as D,

le. G(F(D)) =G(D)

(with nodes N and edges F)

— (F(D)), =F(D,) forn e N

— (F(D))e =F(D,) forec E

o F(a) = (F(a): F(X) = (F(D)n)yen
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

F: K— K

Ifa: X — Disalimit of diagram D in K then
F(a): F(X) — F(D) is a limit of diagram
F(D) in K 77
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

F: K— K
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is

continuous if it preserves all existing

limits.
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.
Which of the above functors are (finitely) continuous?
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Functors preserve. .. I

e Check whether functors preserve:

— monomorphisms
— epimorphisms
— (co)retractions
— isomorphisms
— (co)cones

— (co)limits

e A functor is (finitely) continuous if it preserves all existing (finite) limits.
Which of the above functors are (finitely) continuous?

Dualise!
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Functors compose. .. I
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K"
is defined as expected:
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F:G)(A) =G(F(A)) for all A € K|

o (F:G)(f)=G(F(f)) forall f: A— BinK
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”

is defined as expected:

e (F:G)(A) =G(F(A)) for all A € K|
o (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat
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Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Andrzej Tarlecki: Category Theory, 2021 - 90 -



Functors compose... I

Given two functors F: K — K’ and G: K’ — K", their composition F;G: K — K”
is defined as expected:

e (F;G)(A) =G(F(A)) for all A € |K|

e (F:G)(f)=G(F(f)) forall f: A— BinK

Cat, the category of (sm)all categories

— objects: (sm)all categories

— morphisms: functors between them

— composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (A1, f: F(A1) — G(As2), As), where A1 € |K1|, A, € |[K2|, and
fi F(Al) — G(AQ) in K

K1: K: ¥ K2:
P-G(AQ) A2
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (A1, f: F(A1) — G(As2), As), where A1 € |K1|, A, € |[K2|, and
fi F(Al) — G(AQ) in K

— morphisms: a morphism in (F, G) is

K1 K: ¥ K2:
Ay F(A;) > G(A2) Ao
B, F(B))—L G(B,) Bs
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy1: A1 — B in K1, ho: Ay — By in K2,

K1: K: ¥ K2:
Al F(Al) P-G(AQ) A2
hll lhg
B, F(B))—L G(B,) Bs
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy: A1 — By in K1, ho: Ay — By in K2, and F(hy);9 = f;G(h2) in K.

K1: K: ¥ K2:
Al F(Al) P-G(AQ) A2
hll F(hl)l lG(hg) lhg
B, F(B))—L» G(B,) Bs
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— composition:

Comma categories I

K2:

A
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— composition:

K1:

Comma categories I

f P-G(AQ)

I Gy

K2:

A

A
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— composition:

Comma categories I

K: K2:
F(A)——>G(4) 4
F(hl)l l(;(hg) lhg
PO —L >cy) 4
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— composition:

Comma categories I

K: K2:
F(A)— +G(Ay) A
F(hl)l l(;(hg) lhg
FA)— >G4y A
FAN—L waay) A
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— composition:

Comma categories I

K:
F(A)—L—G(4,)
F(hl)l l@(
F(A)—L - G(ay)
F<ha>l G(
F(A))—L > G(ap)
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K1:

— A

y

A

hfll

Nl

hi;hi

Comma categories I

— composition: component-wise

K: K2:
F(A)—L +G(4y) Ay —
B
FiA)—L—~cry) 4
F(h )l G(h3) l ;
F(A)—L v (A A <

<h17 h2> <h17 h: >

<h1;h/17 h27hl2>

ho;hg
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Comma categories I

— composition: component-wise

K1: K: K2:

—A  —F(4) / G (Ax)—  Ax—

hll AF(hl)l lG(hg - lhg
el A P — e a4 hew
1514 1 & (A7) > G(A3) ‘:; 2 25112

hal = F(h@l G (hy)|— lg

/!
-4l e FA)—L s« Ay

(h1, h2);(h7, hy) = (hy;hy, hashy)

F(hi;h))f" = F(h);F(R)); f" = F(ha);f5G(hy) = f;G(ha);G(hy) = f;G(ha;hs)
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Comma categories I

Given two functors with a common target, F: K1 — K and G: K2 — K, define
their comma category

(F,G)

— objects: triples (Aq, f: F(A1) = G(Az), A2), where A4; € |K1|, Ay € |[K2|, and
f:F(A;) - G(42) in K

— morphisms: a morphism in (F, G) is any pair
(hi,ho): (A1, f: F(A1) —» G(As), As) — (B1,g9: F(B1) — G(B>), Bs),
where hy: A1 — By in K1, ho: Ay — By in K2, and F(hy);9 = f;G(h2) in K.

K1: K: ¥ K2:
— composition: component-wise A1 F(Ay) G (Az) Ay
hll F(hl)l lG(hQ) ihQ
B F(B))—L + G(B,) B,
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Examples
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X
and CP(f)((z,2")) = (f(z), f(z)).
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X
and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all
non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).

Define K™, K| A as comma categories.
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Examples I

e The category of graphs as a comma category:

Graph = (Idget, CP)

where CP: Set — Set is the (Cartesian) product functor, i.e. CP(X) =X x X

and CP(f)((z,z")) = (f(x), f(z)). Hint: write objects of this category as
(E, (source, target): E — N x N, N).

e The category of algebraic signatures as a comma category:

AlgSig = (Idget, (_)™)

where ()7 : Set — Set is the non-empty list functor, i.e. (X)T is the set of all

non-empty lists of elements from X, (/)T ((x1,...,2n)) = (f(z1),..., [(2,)).
Hint: write objects of this category as (£, {arity, sort): Q — ST, .5).

Define K™, K| A as comma categories. The same for Alg(X).
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Cocompleteness of comma categories'
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Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.
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Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.
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Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.

State and prove the dual fact,

concerning completeness of comma categories
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Cocompleteness of comma categories'

Theorem: [fK1 and K2 are (finitely) cocomplete categories, F: K1 — K is a
(finitely) cocontinuous functor, and G: K2 — K is a functor then the comma
category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F, G), using the corresponding
constructions in K1 and K2, and cocontinuity of F.

State and prove the dual fact,

concerning completeness of comma categories

Theorem: [fK1 and K2 are (finitely) complete categories, F: K1 — K is a
functor, and G: K2 — K is a (finitely) continuous functor then the comma category
(F, G) is (finitely) complete.
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Coproducts:

Ay

F(A)

> G(AQ)

> G(BQ)

A

Bs
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Coproducts:

F(A)

> G(AQ)

> G(BQ)
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Coproducts:

A, F(A,) L, G4y A,

A Y NI
Ay + By F(Ai +B1)  G(As+ By) Ay + By
L% F(bBly‘ \G(LBQ) /BQ
B F(B) J ~ G(B,) By
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Coproducts:

F(A,) L, G4y
F(Al + Bl) —>-G(A2 + BQ)

F(B) g ~ G(B>)

A

Bs
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Coproducts:

A F(A,) L, G4y A
A Y
A+ By F(A; + B1) — G(A3 + By) As + By
A
B F(B) I > G(B) B,

Fact: <A1 + Bl, [f;G(LAQ),g;G(LBQ)]i F(Al + Bl) — G’(A2 + BQ), A2 + B2>
with injections {ta,,ta,) and {tp,,tB,) is a coproduct of
<A1,f2 F(Al) — G(AQ),A2> and <Bl,gl F(Bl) — G(BQ),B2> n (F,G)
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Coproducts:

A, F(A,) L, G4y A,
Yo e
A1 + By F(A; + By) = G(A4; + By) Ay + By
N N b
B F(B) J ~ G(B,) By
C F(C)) f -G (Cy) Cs

where r = [f:G(t4,),9;:G(tB,)],
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Coproducts:

Y \ A Y M

Cl F(Cl) P-G(CQ) 02
where 7 = [f;G(ca,), :G(t5,)], F(j1)ih = [:G(j2),
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Coproducts:

where 7 = [f;G(LA2)7g;G(LB2)]' F(]1)7h = ;G
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Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),
ryT = [jlakl]' r2 = [j27k2]'
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Coproducts:
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Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),

T = [jl, kl], To = [jg,k‘g]. We need

F(r1);h = r;G(rs)
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Coproducts:

where r = [f:G(ta,),9:G(tB,)], F(j1);h = [;G(j2), F(k1);h = ¢;G(k2),

T = [jl, kl], To = [jg,k‘g]. We need

F(r1);h = r;G(rs)

This follows from

F(ta,);F(r1);h =F(ta,);r;G(re) and F(ip, );F(r1);h = F(up, );r;G(ra).
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Coproducts:

where r = [f;G(ta,), 9:G(tn,)], F(j1);sh = £;G(j2), F(k1);h = 9;G(k2),

T = [jl, ]431], To = [jg,k’g]. We need

F(r1);h =r;G(rz)

This follows from

F(ta,);F(r1);h =F(ta,);r;G(re) and F(ip, );F(r1);h = F(up, );r;G(rs).

— F(ta,);F(r1)sh =F(G1):h = £;G(j2) = [:G(ta,);G(r2) = F(ra, )ir;G(rs2)
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Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

F(Al) f > G(AQ)
F(Al + Bl) —>-G(A2 + BQ)

F(B) g ~ G(B>)

Ay

Bs
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Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

By

F(A,) L, G4y

F(Al + Bl) —>-G(A2 + BQ)

F(‘/Bly‘ \G(LBQ)

F(B) g ~ G(B>)
F(Al) f > G(AQ)
F(B) g ~ G(B>)
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Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

> G(AQ)

F(Al + Bl) —>-G(A2 + BQ)

\G(es)

> G(BQ)

— G(Ay)
G(lm)l

> G(BQ)
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Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

i

~ G(Ay)
G(’”)l lG(hé)

> G(BQ)
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Coproducts:

Ay

LA/

A+ By

LBX

By

Coequalisers:

Ay

i

~ G(Ay)
G(’”)l lG(hé)

> G(BQ)
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Coproducts:

A, F(A,) L, G4y
af F(ia,) /Glun)
A+ B F(A, + B)) —> G(As + Bo)
N\ Flus,)/ g \G(es)
By F(B;) - G(B>)
Coequalisers:
A, F(A,) L, G4y
'“l lha F () lFWl) G(’”)l lG(hé)

1) g ~ G(B)

(B
cll F(cl)l lG(CQ)
(Cy) G(C2)
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Coproducts:

A, F(A,) L, G4y
af F(ia,) /Glun)
A+ B F(A, + B)) —> G(As + Bo)
N\ Flus,)/ g \G(es)
By F(B;) - G(B>)
Coequalisers:
A, F(A,) L, G4y
'“l lha F () lFWl) G(’”)l lG(hé)

1) g ~ G(B)

(B
cll F(cl)l lG(CQ)
(C1) >~ G(C2)
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Indexed categories I

Standard example: Alg: AlgSig®” — Cat
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Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

C: Ind°? — Cat
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Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

C: Ind°? — Cat
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Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € [Ind|, A € |C(i)]

C: Ind°? — Cat
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Indexed categories I

An indexed category is a functor

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € [Ind|, A € |C(i)]

C: Ind°? — Cat

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — 7 in Ind and a morphism f: A — C(o)(A’) in C(4)
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@) C

//)

\ /
N\ /

\\ /I
Ind ( ° g
7

where X' = C(d")(A")
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//)

\\ /I \
Ind ( ° g >
7

where X' = C(0”)(A”) and X =C(0)(X

") = C(o)(C(a")(A")).
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//)

Imd(\'/ - N7 ~ >\./>
7 Z'/ ,1://

where X' = C(0’)(A”) and X =C(0)(X') =C(o)(C(c")(A")).
This works fine, since C(o;0") = C(0”");C(0), and so:
X =C(0)(C(a")(A")) = C(a;0")(A”), and so f;C(a)(f"): A = C(o30")(A").
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Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — j in Ind and a morphism f: A — C(og)(A") in C(7)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))
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Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — j in Ind and a morphism f: A — C(og)(A") in C(7)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))

Theorem: [fInd is complete, C(i) are complete for all i € |Ind|, and C(o) are
continuous for all o: i — j in Ind, then Flat(C) is complete.
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Indexed categories I

An indexed category is a functor | (C: Ind°? — Cat

Standard example: Alg: AlgSig®” — Cat

The Grothendieck construction: Given C: Ind®? — Cat, define a category Flat(C):

— objects: (i, A) for all i € |Ind|, A € |C(7)|

— morphisms: a morphism from (i, A) to (i’, A"), (o, f): (i, A) — (i’, A"}, consists
of a morphism ¢: ¢ — 7 in Ind and a morphism f: A — C(o)(A’) in C(4)

— composition: given (o, f): (i, A) — (', A") and (o', f'): (i/, A") — (i", A"),
their composition in Flat(C), (o, f);{c’, f'): (i, A) — ("', A”), is given by

(o, [);(0", [') = (o307, f:C(0)(f"))

Theorem: [fInd is complete, C(i) are complete for all i € |Ind|, and C(o) are
continuous for all o: i — j in Ind, then Flat(C) is complete.

Try to formulate and prove a theorem concerning cocompleteness of Flat(C)
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