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(Cartesian) product

• Cartesian product of two sets A and B, is the set

A×B = {〈a, b〉 | a ∈ A, b ∈ B} with projections π1 : A×B → A and

π2 : A×B → B given by π1(〈a, b〉) = a and π2(〈a, b〉) = b.

• A product of two sets A and B, is any set P with projections π1 : P → A and

π2 : P → B such that for any set C with functions f1 : C → A and f2 : C → B

there exists a unique function h : C → P such that h;π1 = f1 and h;π2 = f2.
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Theorem: Cartesian product (of sets A and B)

is a product (of A and B).

Recall the definition of (Cartesian) product of Σ-algebras.

Define product of Σ-algebras as above. What have you changed?
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Pitfalls of generalization

the same concrete definition ; distinct abstract generalizations

Given a function f : A→ B, the following conditions are equivalent:

• f is a surjection: ∀b ∈ B·∃a ∈ A·f(a) = b.

• f is an epimorphism: for all h1, h2 : B → C, if f ;h1 = f ;h2 then h1 = h2.

• f is a retraction: there exists g : B → A such that g;f = idB .

BUT: Given a Σ-homomorphism f : A→ B for A,B ∈ Alg(Σ):

f is retraction =⇒ f is surjection ⇐⇒ f is epimorphism

BUT: Given a (weak) Σ-homomorphism f : A→ B for A,B ∈ PAlg(Σ):

f is retraction =⇒ f is surjection =⇒ f is epimorphism
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Categories

Definition: Category K consists of:

• a collection of objects: |K|

• mutually disjoint collections of morphisms: K(A,B), for all A,B ∈ |K|;
m : A→ B stands for m ∈ K(A,B)

• morphism composition: for m : A→ B and m′ : B → C, we have

m;m′ : A→ C;

− the composition is associative: for m1 : A0 → A1, m2 : A1 → A2 and

m3 : A2 → A3, (m1;m2);m3 = m1;(m2;m3)

− the composition has identities: for A ∈ |K|, there is idA : A→ A such that

for all m1 : A1 → A, m1;idA = m1, and m2 : A→ A2, idA;m2 = m2.

BTW: “collection” means “set”, “class”, etc, as appropriate.
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BTW: “collection” means “set”, “class”, etc, as appropriate.

K is locally small if for all A,B ∈ |K|, K(A,B) is a set.

K is small if in addition |K| is a set.
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Presenting finite categories
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Generic examples

Discrete categories: A category K is discrete if all K(A,B) are empty, for distinct

A,B ∈ |K|, and K(A,A) = {idA} for all A ∈ |K|.

Preorders: A category K is thin if for all A,B ∈ |K|, K(A,B) contains at most one

element.

Every preorder ≤ ⊆ X ×X
Every (small) category K determines a preorder ≤K ⊆ |K| × |K|, where for

A,B ∈ |K|, A ≤K B iff K(A,B) is nonempty.

Monoids: A category K is a monoid if |K| is a singleton.

Every monoid X = 〈X, ;, id〉, where ; : X ×X → X and id ∈ X,
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for x, y ∈ |K≤|, K≤(x, y) is nonempty iff x ≤ y.

Every (small) category K determines a preorder ≤K ⊆ |K| × |K|, where for

A,B ∈ |K|, A ≤K B iff K(A,B) is nonempty.

Monoids: A category K is a monoid if |K| is a singleton.

Every monoid X = 〈X, ;, id〉, where ; : X ×X → X and id ∈ X,

− associativity: x;(y;z) = (x;y);z

− identitity: id;x = x;id = x
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Generic examples

Discrete categories: A category K is discrete if all K(A,B) are empty, for distinct

A,B ∈ |K|, and K(A,A) = {idA} for all A ∈ |K|.

Preorders: A category K is thin if for all A,B ∈ |K|, K(A,B) contains at most one

element.

Every preorder ≤ ⊆ X ×X determines a thin category K≤ with |K≤| = X and

for x, y ∈ |K≤|, K≤(x, y) is nonempty iff x ≤ y.

Every (small) category K determines a preorder ≤K ⊆ |K| × |K|, where for

A,B ∈ |K|, A ≤K B iff K(A,B) is nonempty.

Monoids: A category K is a monoid if |K| is a singleton.

Every monoid X = 〈X, ;, id〉, where ; : X ×X → X and id ∈ X, determines a

(monoid) category KX with |KX | = {∗}, K(∗, ∗) = X and the composition

given by the monoid operation.
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Examples

• Sets (as objects) and functions between them (as morphisms) with the usual

composition form the category Set.

Functions have to be considered with their sources and targets

• For any set S, S-sorted sets (as objects) and S-functions between them (as

morphisms) with the usual composition form the category SetS .

• For any signature Σ, Σ-algebras (as objects) and their homomorphisms (as

morphisms) form the category Alg(Σ).

• For any signature Σ, partial Σ-algebras (as objects) and their weak

homomorphisms (as morphisms) form the category PAlg(Σ).

• For any signature Σ, partial Σ-algebras (as objects) and their strong

homomorphisms (as morphisms) form the category PAlgs(Σ).

• Algebraic signatures (as objects) and their morphisms (as morphisms) with the

composition defined in the obvious way form the category AlgSig.
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Substitutions

For any signature Σ = (S,Ω), the category of Σ-substitutions SubstΣ is defined as

follows:

− objects of SubstΣ are S-sorted sets (of variables);

− morphisms in SubstΣ(X,Y ) are substitutions θ : X → |TΣ(Y )|,

− composition is defined in the obvious way:

for θ1 : X → Y and θ2 : Y → Z, that is functions θ1 : X → |TΣ(Y )| and

θ2 : Y → |TΣ(Z)|, their composition θ1;θ2 : X → Z in SubstΣ is a function

θ1;θ2 : X → |TΣ(Z)| such that for each x ∈ X, (θ1;θ2)(x) = θ#
2 (θ1(x)).
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θ1;θ2 : X → |TΣ(Z)| . . . such that for each x ∈ X, (θ1;θ2)(x) = θ#
2 (θ1(x)).

− the composition θ1;θ2 : X → Z, which is a function θ1;θ2 : X → |TΣ(Z)|, is

not the function composition of θ1 : X → |TΣ(Y )| and θ2 : Y → |TΣ(Z)|
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Subcategories

Given a category K, a subcategory of K is any category K′ such that

• |K′| ⊆ |K|,

• K′(A,B) ⊆ K(A,B), for all A,B ∈ |K′|,

• composition in K′ coincides with the composition in K on morphisms in K′, and

• identities in K′ coincide with identities in K on objects in |K′|.

A subcategory K′ of K is full if K′(A,B) = K(A,B) for all A,B ∈ |K′|.

Any collection X ⊆ |K| gives the full subcategory K X of K by |K X | = X.

• The category FinSet of finite sets is a full subcategory of Set.

• The discrete category of sets is a subcategory of the category of sets with

inclusions as morphisms, which is a subcategory of the category of sets with

injective functions as morphisms, which is a subcategory of Set.

• The category of single-sorted signatures is a full subcategory of AlgSig.
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Reversing arrows

Given a category K, its opposite category Kop is defined as follows:

− objects: |Kop | = |K|

− morphisms: Kop(A,B) = K(B,A) for all A,B ∈ |Kop | = |K|

− composition: given m1 : A→ B and m2 : B → C in Kop , that is, m1 : B → A

and m2 : C → B in K, their composition in Kop , m1;m2 : A→ C, is set to be

their composition m2;m1 : C → A in K.

Theorem: The identities in Kop coincide with the identities in K.

Theorem: Every category is opposite to some category:

(Kop)op = K
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Duality principle

If W is a categorical concept (notion, property, statement, . . . )

then its dual , co-W , is obtained by reversing all the morphisms in W .

Example:

P (X): “for any object Y there exists a morphism f : X → Y ”

co-P (X): “for any object Y there exists a morphism f : Y → X”

NOTE: co-P (X) in K coincides with P (X) in Kop .

Theorem: If a property W holds for all categories

then co-W holds for all categories as well.
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Product categories

Given categories K and K′, their product K×K′ is the category defined as follows:

− objects: |K×K′| = |K| × |K′|

− morphisms: (K×K′)(〈A,A′〉, 〈B,B′〉) = K(A,B)×K′(A′, B′) for all

A,B ∈ |K| and A′, B′ ∈ |K′|

− composition: for 〈m1,m
′
1〉 : 〈A,A′〉 → 〈B,B′〉 and 〈m2,m

′
2〉 : 〈B,B′〉 → 〈C,C ′〉

in K×K′, their composition in K×K′ is

〈m1,m
′
1〉;〈m2,m

′
2〉 = 〈m1;m2,m

′
1;m′2〉

.
A

A′

�
�
�
�

B

B′

�
�
�
� C ′

C

�
�
�
�

-m1

-m′1

-m2

-m′2� �6m′1;m′2

� �
?

m1;m2

Define Kn, where K is a category and n ≥ 1.

Extend this definition to n = 0.
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Morphism categories

Given a category K, its morphism category K→ is the category defined as follows:

− objects: |K→| is the collection of all morphisms in K

− morphisms: for f : A→ A′ and g : B → B′ in K, K→(f, g) consists of all

〈k, k′〉, where k : A→ B and k′ : A′ → B′ are such that k;g = f ;k′ in K

− composition: for 〈k, k′〉 : (f : A→ A′)→ (g : B → B′) and

〈j, j′〉 : (g : B → B′)→ (h : C → C ′) in K→, their composition in K→ is

〈k, k′〉;〈j, j′〉 = 〈k;j, k′;j′〉.
A

A′
?

f

B

B′
?

g

-k

-k′

C

C ′
?

h

-j

-j′

� �6k′;j′

� �
?

k;j

Check that the composition is well-defined.
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Slice categories

Given a category K and an object A ∈ |K|, the category of K-objects over A, K↓A,

is the category defined as follows:

− objects: K↓A is the collection of all morphisms into A in K

− morphisms: for f : B → A and g : B′ → A in K, (K↓A)(f, g) consists of all

morphisms k : B → B′ such that k;g = f in K

− composition: the composition in K↓A is the same as in K

A

B
Z
Z
Z
Z
ZZ~

f

B′

?

g

-k
B′′

�
�

�
�
��=

h

-j

� �
?

k;j

Check that the composition is well-defined.

View K↓A as a subcategory of K→.

Define K↑A, the category of K-objects under A.
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Fix a category K for a while.

In Set, a function is epi iff it is surjective

In Set, a function is mono iff it is injective

Simple categorical definitions

• f : A→ B is an epimorphism (is epi):

for all g, h : B → C, f ;g = f ;h implies g = h

A B-
f

C
-g
-

h

� �
?

f ;g

� �6
f ;h

• f : A→ B is a monomorphism (is mono):

for all g, h : C → A, g;f = h;f implies g = h

A B-
f

C
-g
-

h

� �
?

g;f

� �6
h;f
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Simple facts

• If f : A→ B and g : B → C are mono then f ;g : A→ C is mono as well.

• If f ;g : A→ C is mono then f : A→ B is mono as well.

Prove, and then dualise the above facts.
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Simple facts

• If f : A→ B and g : B → C are mono then f ;g : A→ C is mono as well.

• If f ;g : A→ C is mono then f : A→ B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in Kop .

mono = co-epi
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Simple facts

• If f : A→ B and g : B → C are mono then f ;g : A→ C is mono as well.

• If f ;g : A→ C is mono then f : A→ B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in Kop .

mono = co-epi

• If f : A→ B and g : B → C are epi then f ;g : A→ C is epi as well.

• If f ;g : A→ C is epi then g : B → C is epi as well.
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Simple facts

• If f : A→ B and g : B → C are mono then f ;g : A→ C is mono as well.

• If f ;g : A→ C is mono then f : A→ B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in Kop .

mono = co-epi

Give “natural” examples of categories where epis need not be “surjective”.

Give “natural” examples of categories where monos need not be “injective”.
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Isomorphisms

f : A→ B is an isomorphism (is iso)

if there is g : B → A such that f ;g = idA and g;f = idB . Then g is the (unique)

inverse of f , g = f−1.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.
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if there is g : B → A such that f ;g = idA and g;f = idB . Then g is the (unique)

inverse of f , g = f−1.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Proof: If h1, h2 : B → C are such that f ;h1 = f ;h2 then f−1;f ;h1 = f−1;f ;h2,

hence idB ;h1 = idB ;h2, which yields h1 = h2. Thus f is epi. By a similar (dual!)

argument, f is mono.
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• f is a coretraction, i.e., there is g2 : B → A such that f ;g2 = idA.

Proof: g1 = g1;(f ;g2) = (g1;f);g2 = g2
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Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f : A→ B is iso iff

• f is a retraction, i.e., there is g1 : B → A such that g1;f = idB , and

• f is a coretraction, i.e., there is g2 : B → A such that f ;g2 = idA.

Theorem: A morphism is iso iff it is an epi coretraction.

Theorem: Composition of isomorphisms is an isomorphism.

Proof: (i1;i2)−1 = (i2)−1;(i1)−1

Dualise!
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