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Overall idea

look at all objects exclusively through relationships between them

capture relationships between objects as appropriate morphisms between them
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(Cartesian) product I

e (Cartesian product of two sets A and B, is the set
A x B={{a,b)|a€ A,be B} with projections m;: A x B — A and
mo: A X B — B given by 71 ({a,b)) = a and m3({a, b)) = b.
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e (Cartesian product of two sets A and B, is the set
A x B={{a,b)|a€ A,be B} with projections m;: A x B — A and
mo: A X B — B given by 71 ({a,b)) = a and m3({a, b)) = b.
e A product of two sets A and B, is any set P with projections 71: P — A and

mo: P — B such that for any set C' with functions f1: C' — A and fo: C — B
there exists a unique function h: C' — P such that h;m; = f1 and h;my = fo.

A<t p_T2 . p

Theorem: Cartesian product (of sets A and B)
is a product (of A and B). 1 3l A £

Recall the definition of (Cartesian) product of Y-algebras.
Define product of -algebras as above. What have you changed?
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Pitfalls of generalization'
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e f is an epimorphism: for all hy,hy: B — C, it f;h1 = f;hy then Ay = ho.
e f is a retraction: there exists g: B — A such that ¢;f = idp.

BUT: Given a ¥-homomorphism f: A — B for A, B € Alg(X):

f is retraction = f is surjection <= f is epimorphism

BUT: Given a (weak) ¥-homomorphism f: A — B for A, B € PAlg(X):
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Definition: Category K consists of:
e a collection of objects: |K|

e mutually disjoint collections of morphisms: K(A, B), for all A, B € |K
m: A — B stands form € K(A, B)

7

e morphism composition: form: A — B andm': B — C, we havem;m': A — C;
— the composition is associative: for my: Ag — A1, mo: A1 — Ay and
mg: Ay — Az, (m1;ma);ma = my;(ma;ms)
, there is idq: A — A such that
for allmy: A1 — A, my;idg = mq, and mo: A — As, idg;mo = mo.

— the composition has identities: for A € |K

BTW: “collection” means ‘“set”, “class”, etc, as appropriate.

K is locally small if for all A, B € |K|, K(A, B) is a set.
K is small if in addition |K]| is a set.
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A,B € |K]|, and K(A, A) ={ida} for all A € |[K]|.

Preorders: A category K is thin if for all A, B € |K|, K(A, B) contains at most one

element.

Every preorder < C X x X

— reflexivity: x < x
— transitivity: if x <y and y < z then x < z
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Discrete categories: A category K is discrete if all K(A, B) are empty, for distinct
A, B € |K]|, and K(A, A) = {ida} for all A € |K]|.

Preorders: A category K is thin if for all A, B € |K|, K(A, B) contains at most one
element.
Every preorder < C X x X determines a thin category K< with |K<| = X and
for x,y € |[K<|, K<(z,y) is nonempty iff z < y.
Every (small) category K determines a preorder <k C |K| x |K
A, B € |[K|, A <k B iff K(A, B) is nonempty.

- where for

Monoids: A category K is a monoid if |K]| is a singleton.
Every monoid X = (X, ;, id), where ; : X x X — X and id € X,

— associativity: z;(y;2) = (z;y);2z
— identitity: id;x = zid = x
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Generic examples'

Discrete categories: A category K is discrete if all K(A, B) are empty, for distinct
A,B € |K]|, and K(A, A) ={ida} for all A € |[K]|.

Preorders: A category K is thin if for all A, B € |K|, K(A, B) contains at most one
element.

Every preorder < C X x X determines a thin category K< with |K<| = X and
for x,y € |[K<|, K<(z,y) is nonempty iff z < y.

Every (small) category K determines a preorder <k C |K| x |K|, where for

A, B € |[K|, A <k B iff K(A, B) is nonempty.

Monoids: A category K is a monoid if |K]| is a singleton.

Every monoid X = (X ;,id), where ;_ : X x X — X and id € X, determines a
(monoid) category Ky with |[Kx| = {*}, K(x,%) = X and the composition
given by the monoid operation.
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Examples I

e Sets (as objects) and functions between them (as morphisms) with the usual
composition form the category Set.

Functions have to be considered with their sources and targets

e For any set S, S-sorted sets (as objects) and S-functions between them (as
morphisms) with the usual composition form the category Set”.

e For any signature ¥, 3-algebras (as objects) and their homomorphisms (as
morphisms) form the category Alg(>).

e For any signature X, partial Y-algebras (as objects) and their weak
homomorphisms (as morphisms) form the category PAlg(3).

e For any signature X, partial X-algebras (as objects) and their strong
homomorphisms (as morphisms) form the category PAlgs(3).

e Algebraic signatures (as objects) and their morphisms (as morphisms) with the
composition defined in the obvious way form the category AlgSig.
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Substitutions '

For any signature 3 = (5, 2), the category of X-substitutions Substsy, is defined as
follows:

— objects of Substy; are S-sorted sets (of variables);

— morphisms in Substx(X,Y) are substitutions 8: X — |Tx(Y)],

— composition is defined in the obvious way:
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Substitutions '

For any signature 3 = (5, 2), the category of X-substitutions Substsy, is defined as
follows:

— objects of Substy; are S-sorted sets (of variables);

— morphisms in Substx(X,Y) are substitutions 8: X — |Tx(Y)],

— composition is defined in the obvious way:
for 01: X — Y and 65: Y — Z, that is functions ;: X — |Tx(Y)| and
0>: Y — |Tx(Z)|, their composition 01;02: X — Z in Substy, is a function
01502 X — [Tx(2)| ...
— the composition #1;05: X — Z, which is a function 01;02: X — |Tx(Z)], is
not the function composition of 6;: X — |Tx(Y)| and 05: Y — |Tx(Z)]
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Substitutions '

For any signature 3 = (5, 2), the category of X-substitutions Substsy, is defined as
follows:

— objects of Substy; are S-sorted sets (of variables);

— morphisms in Substx(X,Y) are substitutions 8: X — |Tx(Y)],

— composition is defined in the obvious way:
for01: X =Y and 65: Y — Z, that is functions 61: X — |Tx(Y)| and
0>: Y — |Tx(Z)|, their composition 01;02: X — Z in Substy, is a function
01:02: X — |T5(Z)| such that for each € X, (01;02)(z) = 0 (61 (z)).
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Subcategories I

Given a category K, a subcategory of K is any category K’ such that
e  K'| C K]
e K'(A,B) CK(A, B), forall A, B € |K'|,

e composition in K’ coincides with the composition in K on morphisms in K’, and

e identities in K’ coincide with identities in K on objects in |K/|.
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Subcategories I

Given a category K, a subcategory of K is any category K’ such that
e  K'| C K]
e K'(A,B) CK(A, B), forall A, B € |K'|,

e composition in K’ coincides with the composition in K on morphisms in K’, and

e identities in K’ coincide with identities in K on objects in |K/|.
A subcategory K’ of K is full if K'(A, B) = K(A, B) for all A, B € |K'|.
Any collection X C |K]| gives the full subcategory K‘X of K by \K‘X| = X.
e The category FinSet of finite sets is a full subcategory of Set.

e The discrete category of sets is a subcategory of the category of sets with
inclusions as morphisms, which is a subcategory of the category of sets with
injective functions as morphisms, which is a subcategory of Set.

e The category of single-sorted signatures is a full subcategory of AlgSig.
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Given a category K, its opposite category K°P is defined as follows:

— objects: |K°P| = |K]|

— morphisms: K°?(A, B) = K(B, A) for all A, B € |[K°?| = |K|

— composition: given mp: A — B and mo: B — C in K°?, thatis, mi: B— A

and mo: C — B in K, their composition in K°?, mi;ms: A — C, is set to be
their composition mg;my: C — A in K.

Theorem: The identities in K°P coincide with the identities in K.

Theorem: Every category is opposite to some category:

(K7)7 =K
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Duality principle I

If W is a categorical concept (notion, property, statement, ...)

then its dual, co-W, is obtained by reversing all the morphisms in .
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P(X): "for any object Y there exists a morphism f: X — Y
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P(X): "for any object Y there exists a morphism f: X — Y
co-P(X): "for any object Y there exists a morphism f: Y — X"
NOTE: co-P(X) in K coincides with P(X) in K°P.

Andrzej Tarlecki: Category Theory, 2021

- 54 -



Duality principle I

If W is a categorical concept (notion, property, statement, ...)

then its dual, co-W, is obtained by reversing all the morphisms in .

Example:

P(X): "for any object Y there exists a morphism f: X — Y
co-P(X): "for any object Y there exists a morphism f: Y — X"
NOTE: co-P(X) in K coincides with P(X) in K°P.

Theorem: [If a property W holds for all categories
then co-W holds for all categories as well.
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Product categories'

Given categories K and K’, their product K x K’ is the category defined as follows:
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Product categories'

Given categories K and K’, their product K x K’ is the category defined as follows:

— objects: |[K x K'| = |K| x |K|

— morphisms: (K x K')((A,A"),(B,B")) =K(A,B) x K'(A’, B") for all
A,B e |K|and A, B’ € |K/|
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Product categories'

Given categories K and K’, their product K x K’ is the category defined as follows:

— objects: |[K x K'| = |K| x |K|

— morphisms: (K x K')((A,A"),(B,B")) =K(A,B) x K'(A’, B") for all
A,B e |K|and A, B’ € |K/|

— composition: for {my,m}): (A, A") — (B, B’) and (mo,m}): (B, B’ — (C,C")

in K x K’,
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Product categories'

Given categories K and K’, their product K x K’ is the category defined as follows:

— objects: |[K x K'| = |K| x |K|

— morphisms: (K x K')((A,A"),(B,B")) =K(A,B) x K'(A’, B") for all

A,B e |K|and A, B’ € |K/|

— composition: for {my,m}): (A, A") — (B, B’) and (mo,m}): (B, B’ — (C,C")
in K x K’, their composition in K x K’ is

YD

(my, m7);{me, my) = (Mmq3ma, mi;msy)

ma

moy

Al B’
\‘{ 13mb

C

C/
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Product categories'

Given categories K and K’, their product K x K’ is the category defined as follows:

— objects: |[K x K'| = |K| x |K|

— morphisms: (K x K')((A,A"),(B,B")) =K(A,B) x K'(A’, B") for all
A,B e |K|and A, B’ € |K/|

— composition: for {my,m}): (A, A") — (B, B’) and (mo,m}): (B, B’ — (C,C")
in K x K’, their composition in K x K’ is

(my, m7);{me, my) = (Mmq3ma, mi;msy)

11,12
/}5 —1 {p+—"2 {C
Define K", where K is a category and n > 1.
/ /
A L v UL B e Extend this definition to n = 0.
1/ 151
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:

— objects: |K™| is the collection of all morphisms in K

— morphisms: for f: A — A" and g: B — B’ in K,

A B
/ g
A’ B’
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:

— objects: |K™| is the collection of all morphisms in K

— morphisms: for f: A— A" and g: B— B’ in K, K7 (f,g) consists of all
(k,k"Y, where k: A — B and k’: A’ — B’ are such that k;g = f;k' in K

A k > B
f g
A—r
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:

— objects: |K™| is the collection of all morphisms in K

— morphisms: for f: A— A" and g: B— B’ in K, K7 (f,g) consists of all
(k,k"Y, where k: A — B and k’: A’ — B’ are such that k;g = f;k' in K

— composition: for (k,k"): (f: A— A") — (¢9: B — B’) and
(j,7V: (9: B— B'") = (h: C = C") in K7,
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:

— objects: |K™| is the collection of all morphisms in K

— morphisms: for f: A— A" and g: B— B’ in K, K7 (f,g) consists of all
(k,k"Y, where k: A — B and k’: A’ — B’ are such that k;g = f;k' in K

— composition: for (k,k"): (f: A— A") — (¢9: B — B’) and
(7,iY:(9g: B—=B') = (h: C — C") in K7, their composition in K™ is

(b, K")i(g,5") = (ksg, K'557). 4 ki .
k ’“7 J

A > B > (

f g 1
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Morphism categories I

Given a category K, its morphism category K™ is the category defined as follows:

— objects: |K™| is the collection of all morphisms in K

— morphisms: for f: A— A" and g: B— B’ in K, K7 (f,g) consists of all
(k,k"Y, where k: A — B and k’: A’ — B’ are such that k;g = f;k' in K

— composition: for (k,k"): (f: A— A") — (¢9: B — B’) and
(7,iY:(9g: B—=B') = (h: C — C") in K7, their composition in K™ is

AN AN . /. 3/ -
<k7k >7<]7] > T <k7]7k 5J > ( k k;] .
A > B J >
Check that the composition is well-defined.
f g
-/
A—r g I,

k k/;j/
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,

is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B’ -+ A in K,

-7 -

Andrzej Tarlecki: Category Theory, 2021



Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B' — Ain K, (KJA)(f,g) consists of all
morphisms k: B — B’ such that k;g = f in K

B k__, p
3 g
A
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B' — Ain K, (KJA)(f,g) consists of all
morphisms k: B — B’ such that k;g = f in K

— composition: the composition in K| A is the same as in K
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K
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Given a category K and an object A € |K|, the category of K-objects over A, K| A,
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— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B' — Ain K, (KJA)(f,g) consists of all
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— composition: the composition in K| A is the same as in K
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B' — Ain K, (KJA)(f,g) consists of all
morphisms k: B — B’ such that k;g = f in K

— composition: the composition in K| A is the same as in K

k
Check that the composition is well-defined. b B

. f 9 h
View K| A as a subcategory of K.
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Slice categories'

Given a category K and an object A € |K|, the category of K-objects over A, K| A,
is the category defined as follows:

— objects: K| A is the collection of all morphisms into A in K

— morphisms: for f: B— Aand g: B' — Ain K, (KJA)(f,g) consists of all
morphisms k: B — B’ such that k;g = f in K

— composition: the composition in K| A is the same as in K

k
Check that the composition is well-defined. b B

. f 9 h
View K| A as a subcategory of K.

Define K1 A, the category of K-objects under A.
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Fix a category K for a while.

Simple categorical definitions'
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forall g,h: B — C,
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

/39
4 J g 5
A > B > C
N h )
fih
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

139

e . A /
In Set, a function is epi iff it is surjective L h

fih
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h
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In Set, a function is epi iff it is surjective 4 : - B A :/AC
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

- /9
PP L A / > B
In Set, a function is epi iff it is surjective \
fih
e f: A— B isa monomorphism (is mono):
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

o

/39
4 S
In Set, a function is epi iff it is surjective 4 - B A :/AC
’ N
fih
e f: A— B isa monomorphism (is mono):
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

In Set, a function is epi iff it is surjective

e f: A— B isa monomorphism (is mono):
forall g,h: C'— A, g;f = h;f implies g = h

139
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Fix a category K for a while.

Simple categorical definitions'

e f: A— B is an epimorphism (is epi):
forall g,h: B— C, f;g= f;h implies g =h

In Set, a function is epi iff it is surjective

e f: A— B isa monomorphism (is mono):
forall g,h: C'— A, g;f = h;f implies g = h

In Set, a function is mono iff it is injective

139

-

A

\

>=
Yy
\»Q

-

C

\

o
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.

Prove, and then dualise the above facts.

— If hy,ha: D — A are such that hy;(f;9) = ho;(f;9) then (hi;f);g = (ha;f);g,
and so hy;f = ho;f, which yields h1 = ho

— If hy,ho: D — A are such that hy;f = ho;f then hy;(f;9) = hoi(f;9),
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.

Prove, and then dualise the above facts.

— If hy,ha: D — A are such that hy;(f;9) = ho;(f;9) then (hi;f);g = (ha;f);g,
and so hy;f = ho;f, which yields h1 = ho

— If hy,ho: D — A are such that hy;f = ha;f then hy;(f;9) = ha;(f;9), which
yields hl = hg
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in K°P.

mono = co-epl
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in K°P.

mono = co-epl

e If f: A— B and g: B — C are epi then f;g: A — C'is epi as well.
o If fi:g: A — C isepithen g: B— C'is epi as well.
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Simple facts'

o If f: A— B and g: B — C are mono then f;g: A — C' is mono as well.

e If f;9: A— C' is mono then f: A — B is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in K iff f is epi in K°P.

mono = co-epl

Give “natural” examples of categories where epis need not be “surjective”.

Give “natural” examples of categories where monos need not be “injective”.
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Isomorphisms I

f: A — B is an isomorphism (is iso)
if there is g: B — A such that f;g = id4 and g;f = idp.
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if there is g: B — A such that f;g = id4 and g;f = idp.

Then g is the (unique)
inverse of f, g = f 1.
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f: A — B is an isomorphism (is iso)
if there is g: B — A such that f;g = id4 and g;f = idp.
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Theorem: If f is iso then it is both epi and mono.

Then g is the (unique)
inverse of f, g = f 1.
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Isomorphisms I

f: A — B is an isomorphism (is iso)

if thereis g: B — A such that f;g = id4 and g;f = idp. Then g is the (unique)

inverse of f, g = f 1.

In Set, a function is iso iff it is both epi and mono

Theorem: [If f is iso then it is both epi and mono.

Proof: If hi, hy: B — C are such that f;hy = f;hg then f=1f:hy = f=1: f;ha,
hence idg;h; = idg;ho, which yields hy = ho. Thus f is epi. By a similar (dual!)
argument, f is mono.
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Theorem: f: A — B isiso iff
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if thereis g: B — A such that f;g = id4 and g;f = idp. Then g is the (unique)
inverse of f, g = f 1.

In Set, a function is iso iff it is both epi and mono

Theorem: [If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff

e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Proof: g1 = g1;(f;92) = (91;f);92 = g2
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f: A — B is an isomorphism (is iso)

if thereis g: B — A such that f;g = id4 and g;f = idp. Then g is the (unique)
inverse of f, g = f 1.

In Set, a function is iso iff it is both epi and mono

Theorem: [If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff
e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and f;go = id4.
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Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff
e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and figs = ida. Then fiidp = f = (f392):f = f3(ga:f).
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Theorem: [If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff
e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and figs = ids. Then fiids = f = (f;02):f = f3(g:f).
This yields go;f = tdp, and so g is the inverse of f.
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In Set, a function is iso iff it is both epi and mono

Theorem: [f f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff
e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Theorem: A morphism is iso iff it is an epi coretraction.

Theorem: Composition of isomorphisms is an isomorphism.

Proof: (i1;i2) ™! = (i2) " 1;(i1) 1
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f: A — B is an isomorphism (is iso)

if thereis g: B — A such that f;g = id4 and g;f = idp. Then g is the (unique)
inverse of f, g = f!.

In Set, a function is iso iff it is both epi and mono

Theorem: [f f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: f: A — B isiso iff
e f is a retraction, i.e., there is g1: B — A such that g1;f = tdg, and
e f is a coretraction, i.e., there is go: B — A such that f;go = id4.

Theorem: A morphism is iso iff it is an epi coretraction.
Dualise!

Theorem: Composition of isomorphisms is an isomorphism.
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