Signatures I

Algebraic signature:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: €2 — S* and sort: Q@ — S.
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Signatures I

Y = (S,0Q)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy, s)wes+ ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: €2 — S* and sort: Q@ — S.

o f:rs51 X...xX 58, — sstands for s1,...,5,,s € S and f € Qg, 5 s
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Signatures I

Y = (S,0Q)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy, s)wes+ ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: €2 — S* and sort: Q@ — S.

o f:rs51 X...xX 58, — sstands for s1,...,5,,s € S and f € Qg, 5 s

Compare the two notions
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Signatures I

Y = (S,0Q)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy, s)wes+ ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: €2 — S* and sort: Q@ — S.

o f:rs51 X...xX 58, — sstands for s1,...,5,,s € S and f € Qg, 5 s

e fis1X...X8, —>sand f:8] x...xs — s — overloading allowed

Compare the two notions
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: = (Qy s)wes* ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: 2 — S* and sort: {1 — S.

o f:rs1 X...xX 5, — sstands for s1,...,5,,s € S and f € Qg, 5 s
e fis1X...Xx8,—>sand f:8] x...xs — s — overloading allowed

e n =20 yields f: — s, often written f: s — constants allowed

Andrzej Tarlecki: Category Theory, 2021



Fix a signature X = (5, €2) for a while.
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Fix a signature X = (5, €2) for a while.

Algebras I

A= (4], {fa) req)

e ) -algebra:

e carrier sets: |A| = {|Als)ses

e operations: fa: |Als, X ... X |Als, — |Als, for f:s1 X ... X8, = s
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Fix a signature X = (5, €2) for a while.

Algebras I

A= (4], {fa) req)

e Y.-algebra:

o carrier sets: |A| = (|Als)ses
e operations: fa: |Als, X ... X |Als, — |Als, for frs1 X ... X8, =5
BTW: constants: fa: {()} — |Als, i.e. fa € |Als, for f: s

Andrzej Tarlecki: Category Theory, 2021



Fix a signature X = (5, €2) for a while.

Algebras I

A= (4], {fa) req)

e > -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)
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Fix a signature X = (5, €2) for a while.

Algebras I

A= (4], {fa) req)

e > -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)

Can Alg(>) be empty? Finite?
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Fix a signature X = (5, €2) for a while.

Algebras I

A= (4], {fa) req)

e > -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)

Can Alg(>) be empty? Finite?

Can A € Alg(X) have empty carriers?

Andrzej Tarlecki: Category Theory, 2021



Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (X;)scs is a family of sets X, s € S.
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Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (X;)scs is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.
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Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (Xg)secg is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.
For instance, given X = (Xs)ses, Y = (Ys)ses, Z = (Zs)ses:

e XNY =(X;NY5)ses, X XY = (X, x Yy)seg, etc

o X CY Iiff X, CY,, forse S

e RC X XY means R=(Rs; C X5 X Ys)ses

o f:X =Y means f = (fs: Xy = Yi)ses
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Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (Xs)ses is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.
For instance, given X = (Xs)secs, Y = (Ys)ses, Z = (Zs)ses:
e XNY =(XsNYs)ses, X XY = (X, X Ys)seg, etc
o X CY Iiff X, CY,, forse S
e RC X xY means R=(Rs C X5 X Ys)ses
o f:X Y means f = (f,: X, = YVi)ses
o for f: X =Y, g:Y > Z, fi19={fs;9s: Xs > Zs)scs: X = Z
BTW: (f;g9)(x) = g(f(x)), where by abuse of notation for x € X5, f(x) = fs(x)
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Subalgebras I

Definition: For A, Asup € Alg(X), Asup is a X-subalgebra of A, written Agy,, C A,
if
— ‘Asub| g |A

. and

— for f:s1 X ... X 8, — S, and a1 € |Asuplsyy---s0n € |Asubls,

fAsub(a]-?"‘ 7an) — fA(al,...,CLn)
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations:

— for fis1 X ... X8, > sand a1 € |Asublsys--->an € |Asubls,
fA(aly---aan) S ‘Asub|
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.

Proof: Let Xg = X, and for 7 > 0,
Xz'—l—l :XiU{fA(Zbl,...,ZIZn) ‘ f: S1 X ...X 8, —S§T1 € (X,L‘)Sl,...,ilfn < (Xz)sn}
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.

Proof: Let Xg = X, and for 7 > 0,

Xir1 =X U{fa(xy,...;xn) | frs1 X ... Xsp = 5,21 € (Xi)sys---yTn € (Xy)s, }-
Then [(A) x| = U,>q Xi contains X (clearly) and is closed under the operations.
Moreover, if a subset of | A| contains X and is closed under the operations then it
contains each X;, ¢ > 0, and hence so defined |[{A) x| as well.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.
Proof:

Lemma: The intersection of any family of subsets of |A| closed under the
operations is closed under the operations as well.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.

Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.
Proof:

Lemma: The intersection of any family of subsets of |A| closed under the
operations is closed under the operations as well.

Then [(A) x| = ({|Asus| | X C |Asup|, Asup € A} is closed under the operations and
contains X. Moreover, it is contained in every subalgebra of A that contains X.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyp, C A is given by subset |Agys| € |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A genereted by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if {A)y coincides with A.
Theorem: For any A € Alg(¥) and X C |A|, (A)x exists.
Proof (idea):
e generate the generated subalgebra from X by closing it under operations in A; or

e the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(fA(afla R 7an)) — fB(hsl (a1)7' . '7h8n(afn))

Als, X ... % Al fa__, Al
hs, X ... X hg, hg
|Bls, X ...x |Bl|s > |B|,

1 n fB

Andrzej Tarlecki: Category Theory, 2021 -8-



Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(fA(afla R 7an)) — fB(hsl (&1),. . '7h8n(a'n))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(falar,...,an)) = fe(hs,(a1),...,hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,

of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Proof: Check that:

— h™Y(|Bsus|) is closed under the operations (in A) — easy!

— h(|Asyup|) is closed under the operations (in B) — just a tiny bit more difficult. ..
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(fA(afla R 7an)) — fB(hsl (&1),. . '7h8n(a'n))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-
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Homomorphisms I

o for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for frs1 X ...x s, > sanday € |Als,...,an €|A]s,
hs(falar,...,an)) = fe(hs,(a1),...,hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,y

of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({(4)x) = (B)nx)-
Proof:
— h({A)x) 2 (B)nx). since h((A)x) is a subalgebra of B and contains h(X);

— (A)x Ch7'((B)nx)), since h='({B)p(x)) is a subalgebra of A and contains X.
Hence A({A)x) € h(h(BYucx)) € (Blacx)
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(fA(afla R 7an)) — fB(hsl (&1),. . '7h8n(a'n))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-

Theorem: [If two homomorphisms hi,ha: A — B coincide on X C |A|, then they
coincide on (A) x.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X ... X8, > sand aj € |Alsy,...,an € |Als,,
hs(fA(afla R 7an)) — fB(hsl (&1),. . '7h8n(a'n))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-

Theorem: [If two homomorphisms hi,ha: A — B coincide on X C |A|, then they
coincide on (A) x.

Proof: Check that {a € |A| | h1(a) = ha(a)} is closed under the operations in A.
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Homomorphisms I

e for A, B € Alg(>), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for f:s1 X ...x 8, > sanday € |Als,...,an €|A]s,
hs(falat,...,an)) = fB(hs (a1),. .., hs,(an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and By
of B, the image of Ay under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyuy), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)nx)-

Theorem: If two homomorphisms hi,hs: A — B coincide on X C |A|, then they
coincide on (A) x.

Theorem: Identity function on the carrier of A € Alg(X) is a homomorphism
ida: A — A. Composition of homomorphisms h: A — B and g: B — C'is a
homomorphism h;g: A — C.
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that z’;i_l = 1d4 and

’i_l;i = 1dp.

A > B
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that z’;i_l = 1d4 and

’i_l;i = 1dp.

A > B

N J

Andrzej Tarlecki: Category Theory, 2021



Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that i;i_l — 1d4 and

ida Cﬁa\ i »JBOMB

[/ ;i — idB.
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that z’;i_l = 1d4 and

ida Cﬁi\ i »JBQ?JCZB

[/ ;i — idB.
—1

(4

e Y.-algebras are isomorphic if there exists an isomorphism between them.
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that z’;i_l = 1d4 and

ida Cﬁi\ i »JBQ?JCZB

[/ ;i — idB.
—1

(4

e Y.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and

“onto” ).
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that i;i_l — 1d4 and

ida Cﬁa\ i »JBOMB

[/ ;i — idB.
—1

(4

e Y.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and

“onto” ).

Proof ("«<="): For f: sy X ... x s, - sand by € |B|s,...,b, € |B|s,,
i (fB (b1, b)) =i M (fB(E(E7 (b)), -, (P71 (bn)))) =
i (i(fali™ (br), 507 (b)) = fa@™ (b)), - .71 (bn))
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Isomorphisms I

o for A, B € Alg(>), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i~1: B — A such that z’;i_l = 1d4 and

ida Cﬁ\ i »JBQz'dB

[/ ;i — idB.
—1

(4

e Y.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and

“onto” ).

Theorem: Identities are isomorphisms, and any composition of isomorphisms is an
iIsomorphism.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for f: 81 X ... X8, = sand ay,a] € |Als,,...,an,al, € |Als,

ifay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a

/
n

).
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,
ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).
BTW:
equivalence
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for frs1 X ... X8, = sand ay,a] € |Als,,-..,an,a, € |Als,,
if ay =5, al,...,an =5, a, then fa(ay,...,a,) =5 falay,...,a).
BTW:
equivalence
~CX xX

— reflexivity: z = x
— symmetry: if z =~y theny~x
— transitivity: if x & y and y = z then z = 2

Then:
— equivalence class: [z

— quotient set: X/~ = {|x]|~ |
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for f: 81 X ... X8, = sand ay,a] € |Als,,...,an,al, € |Als,

ifay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a

/
n

).
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is

closed under the operations:

— for f:s1 X ... X8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a
(CLl, ) a’n)

/
n

).
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is

closed under the operations:

— for f:s1 X ... X8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, al,...,a, =5, a, then fa(ar,...,an) =5 falal,...,a,
fa
(a1, «.., Gyp) >fa(ar,...,an)

).
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is

closed under the operations:

— for f:s1 X ... X8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a
fa
(a1, «.., Gyp) >fa(ar,...,an)

/
n

).
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,
ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that conatins R.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for f: 81 X ... X8, = sand ay,a] € |Als,,...,an,al, € |Als,

ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that conatins R.

Proof (idea):

e generate the least congruence from R by closing it under reflexivity, symmetry,
transitivity and the operations in A; or

e the intersection of any family of congruences on A is a congruence on A.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for f: 81 X ... X8, = sand ay,a] € |Als,,...,an,al, € |Als,

ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that conatins R.

Theorem: For any YX-homomorphism h: A — B, the kernel of h, K(h) C |A| x |A
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for f:s1 X ... X8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that conatins R.

Theorem: For any Y¥-homomorphism h: A — B, the kernel of h, K(h) C |A| x |4],
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.

Proof: For f:s1 X ... X s, = sand ai,a] € |Als,,-..,an,a, €|As,
ifar K(h),, ay,...,a, K(h), aj, then fa(a1,...,a,) K(h), falai,... a;,), since
hs(falar,...,an)) = fe(hs,(a1),..., hs, (an)) = fB(hs, (1), - 7h8n( )) -
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for f: 81 X ... X8, = sand ay,a] € |Als,,...,an,al, € |Als,

ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that conatins R.

Theorem: For any YX-homomorphism h: A — B, the kernel of h, K(h) C |A| x |A
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.

7
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |A/=|s ={la]l= | a € |A|s}, with [a]l= = {d’ € |A|s |a=sd"}

— for fis1 X ... x 8, > sand aj € |Als,...,an € |Als,,

fA/E([al]Ev JUIC) [a”n]E) — [fA(ala I 7an)]
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev JUIC) [a”n]E) — [fA(ala I 7an)]

Theorem: The above is well-defined.
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev seey [a”n]E) — [fA(ala I 7an)]E

Theorem: The above is well-defined.

Proof: Given a} € |Als,, ..., al, € |A|s, such that a} =, a1, ..., a,, =5 ay,
— so that a; is another representant of the equivalence class [a;|=, i =1,...,n —
falai,...,an) =5 falal,...,ay). Hence fu,=(lai]=,...a,]=) =

[falar, ... an)l= = [falal, ... a,)]= = fay=(lat]=, - lay]=)
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev JUIC) [a’n]E) — [fA(ala I 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms [ |=: A — A/=.
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev JUIC) [a’n]E) — [fA(ala I 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms [ |=: A — A/=.

Theorem: Given two Y-congruences = and =' on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=' such that [_|=;h = [ ]=".
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Quotients I

o for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse S, |A/=|s ={lal= | a € |A|s}, with [a]l= = {d’ € |A|s |a=sd"}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev R [an]E) — [fA(ala IO 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Theorem: Given two Y-congruences = and =' on A, = C =’ iff there exists a
Y.-homomorphism h: A/= — A/=' such that [ |=;h = |_]

Proof (idea): Define h(lalz) = |a]

/
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ev JUIC) [a’n]E) — [fA(ala I 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms [ |=: A — A/=.

Theorem: Given two Y-congruences = and =' on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=' such that [_|=;h = [ ]=".

Theorem: For any YX-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse S, |A/=|s ={la]l= | a € |A|s}, with [a]l= = {d’ € |Als |a=sd"}

— for fis1 X ... X8, > sand a; € |Als,,...,a, € |A]s,,
fA/E([al]E7 sy [an]E) — [fA(a’la SR 7an)]5

Theorem: The above is well-defined. Moreover, the natural map that assigns to
every element its equivalence class is a X-homomorphisms [ |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=' such that [ |=;h = [ ]=".

Theorem: For any Y-homomorphism h: A — B, A/K(h) is isomorphic with h(A).

Proof (idea): Check that i: A/K(h) — B defined by i(|a]kn)) = h(a) is injective
and is “onto” h(A).
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— forse€ S, |A/=|s = {la]= | a € |A|s}, with [a]=z ={ad’ € |A|s | a =5 a'}
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Products '

o for A; € Alg(X), i € Z, the product of (A;),.7. [1,c7 Aq is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:

BTW:

Cartesian product of sets X;, 1 € 1
HieI X

- HieIXi — {p: 1 — Uieri |p(Z) € X;,1 € I}
X; = X, m(p) = p(k).

— projections g : [],c7
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:

BTW:
Cartesian product of sets X;, 1 € 1
HieI X
— HiEI Xz = {p 7 — Uz’EZ X@ | p(@) - XZ,Z - I} (fOF 1= (Z), UiGI Xz — (Z))

— projections 7 [[.o7 Xi = Xk, mk(p) = p(k).

1€
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:
— fors €S, |];ez Ails = [1;ez [Ails
— for fisy x...xs, = sanday € |[],c7 Ailsis---san €1 Lcr Ails,, for
1 €1, inEIAi(al, ooy an) (i) = fa.(a1(2),...,a,(7))
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:
— fors €S, |];ez Ails = [1;ez [Ails
— for fisy x...xs, = sanday € |[],c7 Ailsis---san €1 Lcr Ails,, for
1 €1, inEIAi(al, ooy an) (i) = fa.(a1(2),...,a,(7))

Theorem: For any family (A;),.; of 3-algebras, projections m;(a) = a(i), where
i €T anda€]],.7|A

, are X-homomorphisms 7;: |],.7 Ai — As.
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:
— fors €S, |];ez Ails = [1;ez [Ails
— for fisy x...xs, = sanday € |[],c7 Ailsis---san €1 Lcr Ails,, for
1 €1, inEIAi(al, ooy an) (i) = fa.(a1(2),...,a,(7))

Theorem: For any family (A;),.; of 3-algebras, projections m;(a) = a(i), where
i €T anda€]],.7|A

, are X-homomorphisms 7;: |],.7 Ai — As.

Define the product of the empty family of X-algebras.
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:
— forse S, |H7;eIAi|s — HieI | Ails
— for frsy x...xs, =+ sanday € |][,cr Ailsis---san € []];e7 Ails,. for
1 €1, ingIAi(al’ ooy an) (i) = fa.(a1(2),...,a,(7))

Theorem: For any family (A;),.; of 3-algebras, projections m;(a) = a(i), where
i €T anda€]],.7|A

, are X-homomorphisms 7;: |],.7 Ai — As.

Define the product of the empty family of X-algebras.

When the projection ; is an isomorphism?
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Terms '

Consider an S-sorted set X of variables.

o terms t € |I(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

- X C[Tx(X)]

— for fis1 X ... x 8, > sand t; € [T (X)|syy---,tn € |T2(X)]s,,
f(tla'“atn) S |TE(X)‘S
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X C|Ts(X)|
— for frsy x...x 8, = sand t; € |[T5(X)|sys.--stn € [T2(X)]s, .
ft1, ... tn) € [Tn(X)]s
BTW:

_ f(tlj P 7tn) rea”y iS “f” ~ “(” AtlA “’” o “7” ’\tn/\ u)n
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X C|Ts(X)
— for frsy x...x 8, = sand t; € |[T5(X)|sys.--stn € [T2(X)]s, .
f(t1, ... tn) € |Tx(X)]s
BTW:
— f(t1, ... ty) really is “f" 2 (" "t " ) T,
— constants: for f: s (i.e. f: — s), the term f() is simply written as f
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

— X C [Tx(X)

— for frsy x...x 8, = sand t; € |[T5(X)|sys.--stn € [T2(X)]s, .
f(t1, ..., tn) € [Tu(X)|s

BTW:

— f(t1,...,ty) reallyis “f" 70" "ty 7 0 T )

— constants: for f: s (i.e. f: — s), the term f() is simply written as f

— overloading may cause probles with “parsing”:

S
consider for instance a: s1, f: s1 — s,a: So, f: S9 — S; ]74 ‘\f
a:.Si a:S9

then there are “two” terms “f(a)” of sort s
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X C|Ts(X)
— for frsy x...x 8, = sand t; € |[T5(X)|sys.--stn € [T2(X)]s, .
f(t1, ... tn) € |Tx(X)]s
BTW:
— f(t1, ... ty) really is “f" 2 (" "t " ) T,
— constants: for f: s (i.e. f: — s), the term f() is simply written as f

— overloading may cause probles with “parsing”:

S
consider for instance a: s1, f: s1 — s,a: So, f: S9 — S; ]74 ‘\f
a:.Si a:S9

then there are “two” terms “f(a)” of sort s

— better write terms for instance as f(a:s1):s and f(a:s3):s.
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Terms '

Consider an S-sorted set X of variables.

o terms t € |I(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

— X C[Tx(X)]

— for fis1 X ... x 8, > sand t; € [T (X)|syy---,tn € |T2(X)]s,,
f(tla'“atn) S |TE(X)‘S

Above and in the following: assuming unambiguous “parsing” of terms!
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Terms '

Consider an S-sorted set X of variables.

o terms t € |I(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X C[Tx(X)]
— for fi sy x...x 8, > sand t; € [Tx(X)|syy---,tn € |T2(X)]s,,
f(tla s 7tn) < |TE(X)‘S
e for any Y-algebra A and valuation v: X — |A|, the value t o[v] € |Al|s of a term
t € |Ts(X)|s in A under v is determined inductively:

— xalv] =vg(x), forx € X5, s €S

— (f(t1,. ., tn))alv] = fa((t1)alv], ..., (tn)alv]), for f:s1 X ... X s, — S
and 11 € |TE(X)|517---7tn - |T§3(X)‘Sn
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Terms '

Consider an S-sorted set X of variables.

o terms t € |I(X)| are built using variables X, constants and operations from {2

in the usual way: |Tx(X)| is the least set such that

- X C[Tx(X)]

— for fis1 x ... x s, = sand t; € |Txn(X)|sys---stn € |T5(X)]s,,,
fltr,. .o stn) € [To(X)]s

e for any Y-algebra A and valuation v: X — |A|, the value t o[v] € |Al|s of a term

t € |Ts(X)|s in A under v is determined inductively:

— xalv] =vg(x), forx € X5, s €S

— (f(t1,.. - tn))alv] = fa((tr)alv], ..., (tn)alv]), for f:s1 X ... X8, — s
and t1 € |[T9(X)|sys---tn € [T2(X)]s,,

BTW: There are three kinds of parenthesis here!
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Terms '

Consider an S-sorted set X of variables.

e terms t € |[Tx(X)| are built using variables X, constants and operations from (2
in the usual way: |Tx(X)| is the least set such that
X CTu(X)
— for frs1 x...x 8, = sand t; € |[Tx(X)|sys---stn € [T2(X)]|s, .

f(tla s atn) = |TZ(X)‘3

e for any X-algebra A and valuation v: X — |A|, the value t o[v] € |A|s of a term
t € |Tw(X)|s in A under v is determined inductively:
— xalv] =vs(x), forx e X, s €8

— (f(t1,.. . tn))alv] = fa((t1)alv], ..., (tn)alv]), for fis1 X ... X8, = s
and t; € |TE(X)|817"°7tn S |TE(X)‘sn

Above and in the following: assuming unambiguous “parsing”’ of terms!
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx;(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frsy x...x 8, = sand t; € |[T5(X)|sys---stn € [T2(X)]|s, .
fTE(X)(th costn) = f(t1, .. tn).
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx;(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for fis1 x ... xs, = sand t; € |Tx(X)|sy,s---stn € |T5(X)]s,,,
ng(X)(t17"°7tn) — f(t177tn)

e Ground terms: terms with no variables.

e Ground term algebra:

Ty, = Tx(0)
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx;(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for fis1 x ... xs, = sand t; € |Tx(X)|sy,s---stn € |T5(X)]s,,,
ng(X)(t17°'°7tn) — f(t177tn)

Fact: Tx(X) is generated by X; T, is reachable.
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx,(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for fis1 X ... xs, = sand t; € |Tx(X)|sy,s---stn € |T5(X)]s,,,
ng(X)(th"'?tn) — f(t177tn)

Theorem: For any S-sorted set X of variables,

d
b6 WX | Ty (X)) .

Set” Alg(X)

T5(X)| Tx(X)
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx,(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for fi sy X ... x 8, = sand t; € [Tx(X)|syy--- tn € |T2(X)]s,,
ng(X)(tla costn) = ft1, .. tn).

Theorem: For any S-sorted set X of variables, Y-algebra A and valuation
v: X — |A],

1dx | T (X
X 2, 1 (X)) Ts(X)

Set” Alg()

Al A
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx,(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for frsy x...x 8, = sand t; € |T5(X)|sys---stn € [T2(X)]s, .
ng(X)(tla'“?tn) — f(t177tn)

Theorem: For any S-sorted set X of variables, Y-algebra A and valuation

v: X — |A|, there is a unique Y-homomorphism v¥ : Ts;(X) — A that extends v.

x| T (X))

X > |T5(X)| T5(X)
Set” > o] g% Alg(Y)
Al A
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx,(X) has the set of terms as the carrier and operations

defined “syntactically”:
— for fi sy X ... x 8, = sand t; € [Tx(X)|syy--- tn € |T2(X)]s,,
ng(X)(th"'?tn) :f(t177tn)

Theorem: For any S-sorted set X of variables, Y-algebra A and valuation

v: X — |A|, there is a unique X-homomorphism v¥ : Ts;(X) — A that extends v.

Moreover, for t € |Ts(X)|, v7(t) = ta[v].

1dx | T (X
X 2T, 7y (X)) T (X)
Set” > o] g% Alg(Y)
| A A
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One simple consequence'
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One simple consequence'

Notation: Givent € |Tx(X)|, x1 € Xs,, t1 € |[T2(X) sy, -, xn € X, ,

tn € [T (X)ls,, x1, ..., ©, mutually distinct:
t with t1, ..., t, simultaneously substituted for x+, ..., x,, respectively:
t[ZCll—Hfl, ce ,ZCnI—>tn]
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One simple consequence'
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One simple consequence'

Notation: Givent € |Tx(X)|, x1 € Xs,, t1 € |[T2(X) sy, -, xn € X, ,

tn € [T (X)ls,, x1, ..., ©, mutually distinct:
t with t1, ..., t, simultaneously substituted for x+, ..., x,, respectively:
t[ZCll—Hfl, ce ,ZCnI—>tn]

Fact: t[iEll—)tl][ﬂizlﬁtQ] = t[:lfll—ﬂfl[ﬂﬁz%tg], $2|—>t2]
Proof: By laborious (double) induction on the structure of ¢ and ¢;.

Alternative:

Generalise!
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One simple consequence'

Notation: Given substitution 8: X — |Tx(X)|:

t with substition 0 carried out: t|0]
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One simple consequence'

Notation: Given substitution 8: X — |Tx(X)|:

t with substition 6 carried out: t|0]

Fact: t[0] =ty (x)[0] = 67 (t)

1dx | Ty (X))

X

Set”

> [T (X)] Tx(X)
> i 31| p#
T5(X)| Tx(X)
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One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

Alg(X)
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One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

ot 6t = (0::0F)

o)

Alg(%)
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One simple consequence'

Theorem: For any S-sorted set X, Y.-algebras A, B € Alg(>), valuation

v: X — |A| and ¥-homomorphism h: A — B,

v#:h = (v;h)?

In other words, for any term t € |Tx(X)|s, hs(talv]) =

x| Ty (X))

X - ‘TE(X”\
Set”

Thia

Al (v3h)*

Alg(%)

(v;h)#
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Consequences for reachability'
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Consequences for reachability'

Set”

| 0% 3| 0#
idps| A
Al A

Alg(X)
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Consequences for reachability'

idges| T
@ ‘_>| E| |TE‘ TE
Set® T 07| Jlp#  Alg(®)
—
Al A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: Ts, — A.
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Consequences for reachability'

idges| T
(Z) <_>| 2| |TE‘ TE
Set” T 07| J[p#  Alg(Y)
—
Al A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique X-homomorphism ! 4: T, — A.
e Y-algebra A € Alg(X) is reachable iff the unique homomorphism !4: Ty, — A is
surjective.
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Consequences for reachability'

id
Set” T 07| J[p#  Alg(Y)
—
A A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique X-homomorphism ! 4: T, — A.

e Y-algebra A € Alg(X) is reachable iff the unique homomorphism ! 4: Ts, — A is

surjective.
e Each reachable X-algebra is isomorphic to a quotient of Tx;.

Andrzej Tarlecki: Category Theory, 2021 - 16 -



Consequences for reachability'

idges| T
(Z) <_>| 2| |TE‘ TE
Set” T 07| J[p#  Alg(Y)
—
Al A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique X-homomorphism ! 4: T, — A.
e Y-algebra A € Alg(X) is reachable iff the unique homomorphism ! 4: Ts, — A is
surjective.
e Each reachable X-algebra is isomorphic to a quotient of Tx;.
e for any Y-algebras A, B € Alg(X), if A is reachable then there is at most one
homomorphism h: A — B.
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Consequences for reachability'

idges| T
(Z) <_>| 2| |TE‘ TE
Set” T 07| J[p#  Alg(Y)
—
Al A

Theorem:

e for any Y-algebra A € Alg(X), there is a unique X-homomorphism ! 4: T, — A.

e Y-algebra A € Alg(X) is reachable iff the unique homomorphism ! 4: Ts, — A is

surjective.

e Each reachable X-algebra is isomorphic to a quotient of Tx;.

e for any Y-algebras A, B € Alg(X), if A is reachable then there is at most one
homomorphism h: A — B.

e for any reachable Y-algebra A, each homomorphism h: B — A is surjective.

Andrzej Tarlecki: Category Theory, 2021
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Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Ts(X)|s are terms of a common sort.
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Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Ts(X)|s are terms of a common sort.

e Satisfaction relation: Y.-algebra A satisfies VX.t =t/

AEvYXt=t

when for all v: X — |A|, talv] = t/4]v].
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Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Ts(X)|s are terms of a common sort.

e Satisfaction relation: Y.-algebra A satisfies VX.t =t/

AEvYXt=t

when for all v: X — |A|, talv] = t/4]v].

BTW: A E=VX.t =t holds “trivially” if for some s € S, X, # () and |A|s = 0.
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Semantic entailment'

¢ =5 @

Y.-equation @ Is a semantic consequence of a set of Y.-equations ¢

if ¢ holds in every X:-algebra that satisfies ®.
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¢ =5 @

Y.-equation @ Is a semantic consequence of a set of Y.-equations ¢

if © holds in every Y-algebra that satisfies .

BTW:
e Models of a set of equations: Mod(®) = {A € Alg(X) | A = ¢}
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Semantic entailment'

¢ =5 @

Y.-equation @ Is a semantic consequence of a set of Y.-equations ¢

if © holds in every Y-algebra that satisfies .

BTW:

Models of a set of equations: Mod(®) = {A € Alg(X) | A = &}
Theory of a class of algebras: Th(C) = {¢ | C E ¢}
¢ =p < pe Th(Mod(P))

Mod and Th form a Galois connection: Mod(®) O C ifft ® C Th(C).

— CC Mod(Th(C)), ® C Th(Mod(®P))
— Mod(Th(Mod(®))) = Mod(®), Th(Mod(Th(C))) = Th(C)
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Equational specifications'

(%, ®)

e signature X, to determine the static module interface
e axioms (X-equations), to determine required module properties
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e axioms (X-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”
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Equational specifications'

(%, ®)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of X.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).
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Equational specifications'

(%, ®)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of X.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).

i 7

—": Easy!
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Equational specifications'

(%, ®)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of X.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).

i 7

—": Easy!

'y 77

<=": Not so easy, hints later. . .
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Example

spec NAIVENAT = sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:

NAIVENAT & Vn,m:Nat en+m =m+n

Andrzej Tarlecki: Category Theory, 2021
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles
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— initiality (and freeness): “no junk” & “no confusion”

There has been a population explosion among logical systems. ..

Andrzej Tarlecki: Category Theory, 2021

-21 -



How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. .. ( Institutions! )

e (Constraints:
— reachability (and generation): “no junk”
— initiality (and freeness): “no junk” & “no confusion”

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. ..

Andrzej Tarlecki: Category Theory, 2021 -21 -



Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a
Y.-algebra I € Mod(®) such that for every .-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every .-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every .-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground X-terms by the congruence that glues
together all ground terms ¢, such that ® = V0.t = ¢'.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every .-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground X-terms by the congruence that glues
together all ground terms ¢, such that ® = V0.t = ¢'.

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every Y.-algebra M € Mod(®) and valuation v: X — |M
unique >-homomorphism h: F' — M such that n;h = v.

, I.e. such
, there exists a
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every Y.-algebra M € Mod(®) and valuation v: X — |M
unique >-homomorphism h: F' — M such that n;h = v.

, I.e. such
, there exists a

X 1 -~ |F| F

Set” h J|p,  Mod(®)

| M| M
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F)|, i.e. such
that for every ¥-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique >-homomorphism h: F' — M such that n;h = v.

X d -~ | F|

F
Set® > h gth Mod (D)
M

| M|
Proof:

— Define = C [Tx(X)| x [Tx(X)]: t1 =t iff @ EVX.t1 =15
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F)|, i.e. such
that for every ¥-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique >-homomorphism h: F' — M such that n;h = v.
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F
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Proof:
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— Show that for any M = ® with v: X — |M|, = C K(v": Ts(X) — M)

Andrzej Tarlecki: Category Theory, 2021 -22 -



Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F)|, i.e. such
that for every 3:-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique >-homomorphism h: F' — M such that n;h = v.

X d -~ | F| F
Set” > h 3p Mod(®)
| M| M

Proof:
— Define = C [Tx(X)| x [Tx(X)]: t1 =t iff @ EVX.t; =15
— Show that = is a congruence on Tx(X), and Ix(X)/=EF ®
— Show that for any M | & with v: X — |M|, = C K(v¥: Tx(X) — M)
— Conclude that F' = Tx(X)/= with n = [_|=: X — |F| has the required property.
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C|Te(X)| % |Ts(X)|: t1 = to iff & =YX tq =t
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C|Te(X)| % |Ts(X)|: t1 = to iff & =YX tq =t

e = is a congruence on Tx(X)
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C|Te(X)| % |Ts(X)|: t1 = to iff & =YX tq =t

e = is a congruence on Tx(X)
— reflexivity, transitivity, symmetry: easy!

— congruence property: easy as well!
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C ‘TE(X” X |T2(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)

o TE(X)/E — O
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
[ ) TE(X)/E — ¢

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = wy)l=, yeY.
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
[ ) TE(X)/E — ¢

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.
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C ‘TE(X” X |TE(X)| t1 = 19 iff P ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
o TE(X)/E — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Wy s Ty (V)|

Y > [Tx(Y)|— Ts(Y) —
Set® Alg(Y)

w !

|T2(X)/E|</ To(X)/= L/
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C ‘TE(X” X |TE(X)| t1 = 19 iff P ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
o TE(X)/: — @

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.
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Set® w \ Alg(Y)

Andrzej Tarlecki: Category Theory, 2021 -22 -



C ‘TE(X” X |TE(X)| t1 = 19 iff P ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
o TE(X)/E — O
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

~

w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Wy s Ty (V)|

Y

Set”
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
[ ) TE(X)/E — ¢

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = [w(y)l=, y €Y. Then fort € |Ts(Y)|, tryx)/=lwl = [ty x) [0]]

Let (VY.t; =t3) € @, and consider w: Y — |Tx(X)/=|.
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)

o TE(X)/E — O
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = [w(y)l=, y €Y. Then fort € |Ts(Y)|, tryx)/=lwl = [ty x) [0]]

Let (VY.t; =t3) € @, and consider w: Y — |Tx(X)/=|.
Then @ = VX. (1)1, (x)|w] = (t2) 1y (x) W]
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C ‘TE(X” X |TE(X)| t1 = to iff P ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
o TE(X)/E — O
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

~

w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Let (VY.t; =t3) € @, and consider w: Y — |[Tx(X)/=|.
Then @ = VX. (1)1, (x)|w] = (t2) 1y (x) W]

— for M E® and v: X — [ M|, ((t1)7ex)[@]) m[v] = 0¥
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
o In(X)/=E®
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = [wy)l=, y €Y. Thenfort e |Te(Y)] tryx)/=lw] = [tryx)[w]]=.
Let (VY.t; =t3) € @, and consider w: Y — |Tx(X)/=|.
Then @ = VX. (1)1, (x)|w] = (t2) 1y (x) W]
So, by definition of =, (t1)7y(x)|w] = (t2) 1y (x)|[W].
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = 19

e = is a congruence on Tx(X)

° TE(X)/E — @

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Let (VY.t; =t3) € @, and consider w: Y — |Tx(X)/=|.
Then @ = VX. (1)1, (x)|w] = (t2) 1y (x) W]
So, by definition of =, (t1)7y(x)|w] = (t2) 1y (x)|[W].

~ ~

Hence (t1) 1y (x)/=lw] = [(t1) 1y () [w]l= = [(t2) 1 (x) [0]]=

~

(t2) 7 (x) /=[]
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)

° TE(X)/E — @

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Ix(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Let (VY.t; =t3) € @, and consider w: Y — |Tx(X)/=|.

Then @ = VX. (1)1, (x)|w] = (t2) 1y (x) W]
So, by definition of =, (t1)7y(x)|w] = (t2) 1y (x)|[W].

Hence (t1) 1y (x)/=lw] = [(t1) 1y () [w]l= = [(t2) 1 (x) [0]]=

and so

~

TE(X)/E |: VY.tl = t2

~

(t2) 7 (x) /=[]
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
[ ) TE(X)/E — ¢
o for M = ® withv: X — |M

 =C Kw?: Tx(X) = M)
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
o In(X)/=E®
o for M = ® with v: X — |M|, = C Kv¥: T(X) - M)
— If t; =ty then M =VX.t; = t9; so v7(t1) = (t1) m[v] = (t2)ar[v] = v7(t2)
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
° TE(X)/E:(I)
o for M = ® with v: X — |M|, = C Kv¥: T(X) - M)

o for M = ® with v: X — | M|, there is unique ¥-homomorphism
h: (Ts(X)/=) — M such that hs([z]z) = v(x).
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C ‘TE(X” X |TE(X)| t1 = to Iff ® ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
° TE(X)/E:(I)
o for M = ® with v: X — |M|, = C Kv¥: T(X) - M)

o for M = ® with v: X — | M|, there is unique ¥-homomorphism
h: (Ts(X)/=) — M such that hs([z]z) = v(x).

Tx(X)
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, define
= C |Tx(X)| x |[Tx(X)| so that t1 =ty iff ® =VX.t; = ts.

Then = is a congruence on Tx;(X) and the quotient term algebra Tx(X)/=
unit | J=: X — |ITx(X)/=| is free over X in Mod(®), that is Tx(X)/= € Mod(®P)
and for every ¥.-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique Y-homomorphism h: (Tx(X)/=) — M such that | |=;h = v.

with

X s T

Set” > h 3y Mod(®)

| M| M

Andrzej Tarlecki: Category Theory, 2021 -22 -



Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every .-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground X-terms by the congruence that glues
together all ground terms ¢, such that ® = V0.t = ¢'.

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every ¥.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

!I/

/
!I

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.
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Example

spec NAT = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+_: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:
NAT E=Vn,m:Naten+m =m+n

Andrzej Tarlecki: Category Theory, 2021 - 23 -



Example’

spec NAT' = free type Nat ::= 0 | succ(Nat)
op _+ _: Nat x Nat — Nat

axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NAT = NAT'

Andrzej Tarlecki: Category Theory, 2021
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Another example

spec STRING =
generated { sort String
ops nil: String;
a,...,z: String;
_ 7 _: String x String — String }
axioms Vs:String e s~ nil = s;
Vs:String e nil ~ s = s;

Vs, t,v:Stringe s (t " v)=(s"t) v

Andrzej Tarlecki:

Category Theory, 2021 - 25 -



Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Andrzej Tarlecki: Category Theory, 2021

- 26 -



Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“<="):
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx/|,
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx/|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A|.
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx/|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A|.

o Fort,t € [To(X)|s, if try [nx] = th [1x] then VXt = ' € Th(C).
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx/|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A|.

o Fort,t" € |[Tx(X)ls, if try[nx] = th, [nx] then VXt =" € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h — id|A|.
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A|.

o For t,t' € |Ts(X)ls, if ty [nx] =t [nx] then VX .t = € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h = id|A|. Hence A € C.
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Birkhoff’s Theorem '

Theorem: A class of Y-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A|.

o Fort,t" € |[Tx(X)ls, if try[nx] = th, [nx] then VXt =" € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h = id|A|. Hence A € C.

Conclude:

Mod(Th(C)) = C
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Equational calculus I

VXit=t

VX.t, =t]

VX.t =1+t
VX.t' =t
VX.t, =t

VX f(t1.. . ty) = f(th ... t))

VX.t=t VX.t'=1t"
VX.t=1t"

VXt=t
VY.t[0] = t'[0]

for 0: X — |Tx(Y),
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Equational calculus I

VX.t =1+t

VX.t=t VX.t' =t

VXt =t ... VXit,=t
VX.f(tr...ty) = f(t)...1)

VX.t=t VX.t'=1t"
VX.t=1t"

VX.t=t

for 0: X — |Tx(Y)|
VY.t[0] = t'[0]

Mind the variables!

a = b does not follow from a = f(x) and f(z) =b
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Equational calculus I

VX.t=t VXt=t VXt =t"

VXt =t VXt =1t VXt =1t"
VX.t =t] VX.t, =t VXt =1t
for 0: X — |Tx(Y)]
VX.f(tr...ty) = f(t]...1) VY.t[0] = t'[6]

Mind the variables!

a = b does not follow from a = f(x) and f(z) =b

In general, Va:s.(a:s") = (b:s") = V.(a:s") = (b:s).

For instance, over signature X with sorts s, s’ and constants a,b: s’ and no other

operations, for any algebra A € Alg(3) such that |A|; =0

AEVrs.a=>b,evenifas #ba

Andrzej Tarlecki: Category Theory, 2021
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Equational calculus I

VX.t =1+t VX.t=t VX.t'=1t"
VX.t=t VX.t' =t VX.t=1t"

VXt =t ... VXit,=t VXit=t
VX.f(tr...ty) = f(t)...1) VY.t[0] = t'[6]

for 0: X — |Tx(Y),

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b without a “witness” for x
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Equational calculus I

VXit=t

VX.t, =t]

VX.t =1+t
VX.t' =t
VX.t, =t

VX f(t1.. . ty) = f(th ... t))

VX.t=t VX.t'=1t"
VX.t=1t"

VXt=t
VY.t[0] = t'[0]

for 0: X — |Tx(Y),
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Equational calculus I

VXt=t

VX.t, =t]

VX.t=1+¢
VX.t' =t
VX.t, =t

VX [t tn) = f(t1 - 1y,)

VXt=t VXt =+t
VX.t=1t"
VX.t=1+t

VY.t[6] = t'[0]

for 0: X — |Tx(Y)]

o reflexivity, symmetry, transitivity: clear
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Equational calculus I

VX.t=1+¢ VXt=t VXt =+t
VX.t=t VXt =t VX.t=1t"

VXt =t ... VXit,=t, VXt =1
VX.f(ty...ty) = f(t]...1) VY.t[0] = t'[6]

for 0: X — |Tx(Y)]

o reflexivity, symmetry, transitivity: clear

e congruence: clear as well
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Equational calculus I

VX.t=1+¢ VXt=t VXt =+t"
VX.t=t VXt =t VX.t=t"

VXt =t ... VXit,=t, VXt =1
VX.f(ty...ty) = f(t]...1) VY.t[0] = t'[6]

for 0: X — |Tx(Y)]

o reflexivity, symmetry, transitivity: clear
e congruence: clear as well

e substitution allows one to:
— substitute terms for (some) variables, possibly with different variables
— Increase the set of variables

— remove unused variables, if “witnesses” to substitute for them remain

Andrzej Tarlecki: Category Theory, 2021
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Proof-theoretic entailment '

(I)|—Eg0

Y.-equation @ Is a proof-theoretic consequence of a set of Y.-equations ®

if © can be derived from ® by the rules.

How to justify this?

Semantics!

Andrzej Tarlecki: Category Theory, 2021
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Soundness & completeness'

Theorem: The equational calculus is sound and complete:

Pl=p «— Pl

e soundness: “all that can be proved, is true” (® = ¢ <= @ I )

e completeness: “all that is true, can be proved” (® = = ® F ¢)

Proof (idea):
e soundness: easy!

e completeness: not so easy!
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“Ground” completeness'

P IZV(Z).tl =ty — P |—V®.t1 = 19
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Proof (idea):

“Ground” completeness'

P IZV(Z).tl =ty — P |—V®.t1 = 19
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Proof (idea):

“Ground” completeness'

P IZV(Z).tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t
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Proof (idea):

“Ground” completeness'

P IZV(Z).tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t
— Show that = is a congruence on Ty, and Ty /~ = ®
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Proof (idea):

“Ground” completeness'

P IZ\V/@.tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t
— Show that = is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, ~ C K(!p;: Ty, — M)
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Proof (idea):

“Ground” completeness'

P IZ\V/@.tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t

— Show that = is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, ~ C K(!p;: Ty, — M)

— Conclude that Tx /~ is initial in Mod(®)
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“Ground” completeness'

P IZ\V/@.tl =ty — P FV@.tl = 19

Proof (idea):
— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t
— Show that = is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, ~ C K(!p;: Ty, — M)
— Conclude that Tx /~ is initial in Mod(®)
— Therefore Tx; /= and Tx /= are isomorphic
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Proof (idea):

“Ground” completeness'

P IZ\V/@.tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t

— Show that = is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, ~ C K(!p;: Ty, — M)

— Conclude that Tx /~ is initial in Mod(®)

— Therefore Tx; /= and Tx /= are isomorphic

— Thus ==~
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Proof (idea):

“Ground” completeness'

P IZ\V/@.tl =ty — P FV@.tl = 19

— Define = C |Tx| x |Tx|: t1 & tg iff & - V0.t; =t

— Show that = is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, ~ C K(!p;: Ty, — M)

— Conclude that Tx /~ is initial in Mod(®)

— Therefore Tx; /= and Tx /= are isomorphic

— Thus ==~

d IZ\V/@.tl =ty — P |_\V/(Z).t1 = 19
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Completeness I

() IZ\V/X.tl —ty — O VX.t; =15
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Proof (idea):

Completeness I

() IZ\V/X.tl —ty — O VX.t; =15
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Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

Proof (idea): Generalise the previous proof by building a free algebra Tx(X)/~ in
Mod(®) with unit [ ]~: X — Tx(X)/~, where = C |Tx(X)| x |Tx(X)| is given by
tl ~ t2 Iff @ Vth = tg.
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Proof (idea):

Completeness I

() IZ\V/X.tl —ty — O VX.t; =15
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Proof (idea):

Completeness I

() IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E \V/X.tl = tg Iff o ‘:E(X) \V/@.tl = t2
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E \V/X.tl = tg Iff o ‘:E(X) \V/@.tl = t2

- easy!
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E \V/X.tl = tg Iff o ‘:E(X) \V/@.tl = tg
— Show @ |_E \V/X.tl = t2 Iff o l_ZJ(X) \V/@.tl = tg
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Proof (idea):

Completeness I

P IZ\V/X.tl —ty — O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— 3-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Ajv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E \V/X.tl = tg Iff d ):Z(X) \V/@.tl = t2
— Show @ |_E \V/X.tl = t2 Iff ® l_ZJ(X) \V/@.tl = tg

- Straightforward induction on the structure of derivation does not go through!
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Proof (idea):

Completeness I

d ’:\V/X.tl =ty — O FVX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— X-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y.(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E \V/X.tl = tg Iff ® ‘Zz(x) \V/(Z).tl = t2
— Show & |—2 \V/X.tl = t2 iff P |_E(X) \V/@.tl = t2
- Straightforward induction on the structure of derivation does not go through!
- Induction works for a more general thesis:

S VXUY t1 =t iff |_E(X) VY.t1 = to
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Completeness I

d ’:\V/X.tl =ty — O FVX.t; =15

Proof (idea):

— For each signature ¥ and a set of variables X, define a new signature 3(X) that
extends X by variables from X as constants

— M-algebras A € Alg(X) with valuations v: X — |A| correspond to
Y(X)-algebras Ajv] € Alg(X(X))

— ldentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show ® |=x VXLt =ty iff @ gy Yty = £

— Show @ 5 VX 1) =ty iff @ Fxyx) V0.t =t

— Using ground completeness, conclude: ® =5 VX.t; =ty iff @ =5 x) V0.t1 = to
iff @ byxy V0.t =to iff @ by VXt =t
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Moving between signatures'

Let = (S,Q) and &/ = (5, )

o: Y — Y

e Signature morphism maps:
— sorts to sorts: o: S — S’
— operation names to operation names, preserving their profiles:

g: Qs — forwe S*, s S

o(w),o(s)’

Andrzej Tarlecki: Category Theory, 2021



Moving between signatures'

Let = (S,Q) and &/ = (5, )

o: Y — Y

e Signature morphism maps:
— sorts to sorts: o: S — 5’

— operation names to operation names, preserving their profiles:
g: Qs — forw € §*, s € S, that is:

o(w),o(s)’

if f:s1x...x8, = stheno(f): o(s1) X ... x0(sp) — o(s),

Andrzej Tarlecki: Category Theory, 2021



let 0: 2 — Y/

Translating syntax'

o translation of variables: X — X', where X, =4, _ X
e translation of terms: o: |ITx(X)|s = |T2/(X')|s), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

Andrzej Tarlecki: Category Theory, 2021
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let 0: 2 — Y/

e translation of variables: X — X', where X/, = |4
o translation of terms: o: |Tx(X)|s — [T/ (X")|o(s)

e translation of equations: o(VX.ty = t9) yields VX' .o

Translating syntax'

...and semantics'

o(s)=s’

Xs

fors e S

(t1) = o(t2)

o o-reduct: _|,: Alg(X’) — Alg(X), where for A" € Alg(X')
— |Aols = |A5(s), for s €5

_ fA’a

=o(f)a for f €

Andrzej Tarlecki:

Category Theory, 2021
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let 0: 2 — Y/

Translating syntax'

e translation of variables: X — X', where X, =4, —o X
e translation of terms: o: |ITx(X)|s = |Tx/(X')|s), for s € S

e translation of equations: o(VX.t; = to) yields VX '.o(t1) = o(t2)

...and semantics'

o o-reduct: _|s: Alg(X') — Alg(X), where for A" € Alg(Y')
— |Als = |A5(s), for s €5 (( )
this is We//—defined)

= fa, =0(f)a for feQ

for fisy X X sy =8, fy,

Aoy x o x A6 ls, = [A7]6]s since

o(flar: |A o) X oo X A | 6(s0) = [A |05
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let 0: 2 — Y/

Translating syntax'

e translation of variables: X — X' where X!, =4 X,

o(s)=s’

o translation of terms: o: |T5(X)|s — [Tx/(X')|5(s), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

...and semantics'

o o-reduct: _|o: Alg(X') — Alg(X), where for A" € Alg(X)

— |A"0|8 = \A’|0(3), forse S
f () for f €0 ((this Is We//—defined))
— Jal. — A’

BTW: Given a ¥’-homomorphism h': A’ — B’, ¥-homomoprhism h"az A"U — B"J
is defined by (h'|s)s = Ay, for s €S,
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let 0: 2 — Y/

Translating syntax'

e translation of variables: X — X', where X, =4, _ X

e translation of terms: o: |Tx(X)|s = |Tx/(X')|s(s), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

...and semantics'

o o-reduct: _|,: Alg(X’) — Alg(X), where for A" € Alg(X')

— |A"U|S = |A'|55), for s € S
i ( f) for f e Q ((this Is We//—defined))
p— A’

_fA’

(ea

Note the contravariancy!

Andrzej Tarlecki: Category Theory, 2021
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:

)3 A’
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:
> A

% 7?7
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:

> A s o(p)

b
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and Y-equation ©:

> A s o(p)

.

> A/‘a =

Alle Fo o <= Ay o(p)
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Satisfaction condition '

Theorem: For any signature morphism o: X — Y/, ¥/'-algebra A’ and Y -equation :

> A Ex o(p)

.

by A/‘G =

Alle Fo o <= Ay o(p)

Proof (idea): for ¢ € [Tx(X)| and v: X — [A|o], t ,, [v] = o (t)ar[v], where

v X' — [A'] is given by v (@) = vs(x) for s € S, & € X
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Satisfaction condition '

Theorem: For any signature morphism o: ¥ — Y/, ¥'-algebra A’ and X-equation p:

> A Ex oo(p)

.

> Al‘a =y

Al s = A s o)

TRUTH is preserved (at least) under:
e change of notation

e restriction/extension of irrelevant context

Andrzej Tarlecki: Category Theory, 2021 -32 -



Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

PEsp = 0(®) s o(p)
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

PEsp = 0(®) s o(p)

Proof: If M’ = o(®) then M|, |= ®. Hence M'|s = ¢, and so M" |= o ().
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

PEsp = 0(®) s o(p)

Proof: If M’ = o(®) then M|, |= ®. Hence M'|s = ¢, and so M" |= o ().

@n general, the equivalence does not hoIdD]
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

PEsp = 0(®) s o(p)

Moreover, if |, : Alg(Y) — Alg(X) is surjective then:

s p = d(®) Fx o(p)

@n general, the equivalence does not hoIdDj

Andrzej Tarlecki: Category Theory, 2021 -33-



Specification morphism:

is a signature morphism o: % — ¥’ such that for all M’ € Alg(X'):

Specification morphisms'

o: (3,P) = (3, D)

M' e Mod(®') = M'|, € Mod(®P)

Andrzej Tarlecki: Category Theory, 2021
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Specification morphisms'

Specification morphism:

o: (3,P) = (3, D)

is a signature morphism o: % — ¥’ such that for all M’ € Alg(X'):

M' € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — MOd((I)))
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Specification morphisms'

Specification morphism:

o: (3,P) = (3, D)

is a signature morphism o: % — ¥’ such that for all M’ € Alg(X'):

M' € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — MOd((I)))

Theorem: A signature morphism o: > — Y is a specification morphism
o: (X, ) — (X', @) if and only if D' = o (P) .
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Specification morphisms'

Specification morphism:

o: (3,P) = (X, D)

is a signature morphism o: % — ¥’ such that for all M’ € Alg(X'):

M'" € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — Mod((I))j

Theorem: A signature morphism o: > — Y is a specification morphism
o: (X, ®) — (X, ®") if and only if ' = o (D) .

Proof: " «<=" If M" |= ®' then M’ |= o(®), and so M'|, |= &.
=" If M" = @ then M|, = @, and so M |= o(P).
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A specification morphism:

Conservativity I

o: (3, Py — (X D)

is conservative if for all X-equations ¢: | ®' s () = @ Ex ¢
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A specification morphism:

is conservative if for all X-equations ¢: | ®' s () = @ Ex ¢

Conservativity I

o: (3, Py — (X D)

BTW: for all specification morphisms
s = @ s oa(p)
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Conservativity I

o: (3, Py — (X D)

A specification morphism:

is conservative if for all X-equations ¢: | ®' s () = @ Ex ¢

BTW: for all specification morphisms
s = ' x o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®’) such that M'|, = M

(e, —|o: Mod(®') — Mod(®) is surjective).
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Conservativity I

o: (3, Py — (X D)

A specification morphism:

is conservative if for all X-equations ¢: | ®' s () = @ Ex ¢

BTW: for all specification morphisms
s = ' x o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®’) such that M'|, = M

(e, —|o: Mod(®') — Mod(®) is surjective).

Theorem: Ifo: (X, ®) — (X', ®") admits model expansion then it is conservative.
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Conservativity I

o: (3, Py — (X D)

A specification morphism:

is conservative if for all X-equations ¢: | ®' s () = @ Ex ¢

BTW: for all specification morphisms
s = ' x o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®’) such that M'|, = M

(e, —|o: Mod(®') — Mod(®) is surjective).

Theorem: Ifo: (X, ®) — (X', ®") admits model expansion then it is conservative.

@n general, the equivalence does not hoIdD)
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More general signature morphisms'

Let = (S,Q) and &/ = (5, )

o: 2 =/
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More general signature morphisms'

Let = (S,Q) and &/ = (5, )

o: 2 =/

e Derived signature morphism maps sorts to sorts: 6: S — S, and operation
names to terms, preserving their profiles:
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More general signature morphisms'

Let = (S,Q) and &/ = (5, )

o: 2 =/

e Derived signature morphism maps sorts to sorts: 6: S — S, and operation
names to terms, preserving their profiles: for f: sy X ... x s, — s,

0(f) € [Ter({1:0(s1), -, 2n:0(sn) })s(s)
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More general signature morphisms'

Let = (S,Q) and &/ = (5, )

o: 2 =/

e Derived signature morphism maps sorts to sorts: 6: S — S, and operation

names to terms, preserving their profiles: for f: sy X ... x s, — s,

0(f) € [Ter({1:0(s1), -, 2n:0(sn) })s(s)

e Translation of syntax, reducts of algebras, satisfaction condition, and many other

notions and results: similarly as before. _
(not quite all though. . )
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Partial aIgebrasI

e Algebraic signature X: as before
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Partial aIgebrasI

e Algebraic signature X: as before

e Partial X:-algebra:

as before, but operations f4:

A= (|A],{fa)ren)

Als, X ... x |Als, = |A

f:s81 X...x8, — s, may now be partial functions.

s, for
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Partial aIgebrasI

e Algebraic signature X: as before

e Partial X:-algebra:

as before, but operations f4:

A= (|A],{fa)ren)

Als, X ... x |Als, — |Als, for

f:s81 X...x8, — s, may now be partial functions.

(BTW: Constants may be undefined as well.)
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Partial aIgebrasI

e Algebraic signature X: as before

e Partial X:-algebra:

A= (|A],{fa)ren)

as before, but operations fa: |Als, X ... X |Als, — |A[s, for

f:s81 X...x8, — s, may now be partial functions.

(BTW: Constants may be undefined as well.)

e PAlg(X) stands for the class of all partial 3-algebras.
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Fix a signature X = (5, €2) for a while.

Few further notions'
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agy,| C |A| closed under the operations;
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agy,| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

For f:s1 X ...8, = sand a1 € |Asup|sy -1 On € |Asubls,

— (strong) subalgebra: if fa(ai,...,a,) is defined then f4_,(a1,...,ay) is
defined

— (full) subalgebra: if fa(ay,...,ay) is defined and fa(ai,...,an) € |Asupl|s
then fa_.(a1,...,ay) is defined

— (weak) subalgebra: if fa_,(a1,...,ay) is defined then fa(as,...,a,) is
defined

and fa_,(a1,...,a,) = falay,...,ay).
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations;
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.

e congruence = on A: equivalence = C |A| x |A| closed under the operations
whenever they are defined;

Andrzej Tarlecki: Category Theory, 2021

- 38 -



Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.

e congruence = on A: equivalence = C |A| x |A| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;

BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.

e congruence = on A: equivalence = C |A| x |A| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms

e quotient algebra A/=: built in the natural way on the equivalence classes of =;
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Fix a signature X = (5, €2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,5| C |A| closed under the operations;

BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B]| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.

e congruence = on A: equivalence = C |A| x |A| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms

e quotient algebra A/=: built in the natural way on the equivalence classes of =;
the natural homomorphism from A to A/= is strong if the congruence is strong.
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Formulae '
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Formulae '

(Strong) equation:

VX.t=¢

as before

Satisfaction relation

partial X-algebra A satisfies VX.t = ¢/

AEVXt=t

when for all v: X — |A|, talv] is de-
fined iff t'4 |v] is defined, and then ¢t 4[v] =

ts vl
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Formulae '

(Strong) equation:

VX.t=¢

as before

Definedness formula:

VX.def t

where X is a set of variables, and t &
T5(X)|s is a term

Satisfaction relation

partial X-algebra A satisfies VX.t = ¢/

AEVXt=t

when for all v: X — |A|, talv] is de-
fined iff t'4 |v] is defined, and then ¢t 4[v] =

ts vl

partial X-algebra A satisfies V.X.def t

AEVX.def t

when for all v: X — |A], ta[v] is defined
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An alternative '

VX.t=+¢

e (Existence) equation:

where:
— X is a set of variables, and

— t,t' € |[Tx(X)|s are terms of a common sort.
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An alternative '

VX.t=t

e (Existence) equation:

where:
— X is a set of variables, and

— t,t' € |[Tx(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t = ¢’

AEVYXt=H

when for all v: X — |A|, ta|v] = t/4[v] — both sides are defined and equal.
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An alternative '

e (Existence) equation:

where:

— X is a set of variables, and

VX.t=t

— t,t' € [T (X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t =t/

when for all v: X — |A], ta[v] =

BTW:
o VXt =t iffVX.(t =t/ A def t)

AEVXt=t

t'y|[v] — both sides are defined and equal.

o VX.t =t iff VX.(def t <= deft') A (deft = t=1')

Andrzej Tarlecki: Category Theory, 2021
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Further notions and results'

To introduce and/or check:
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Further notions and results'

To introduce and/or check:

e partial equational specifications (trivial)
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Further notions and results'

To introduce and/or check:
e partial equational specifications (trivial)

e characterization of definable classes of partial algebras (difficult!)
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Further notions and results'

To introduce and/or check:
e partial equational specifications (trivial)
e characterization of definable classes of partial algebras (difficult!)

e existence of initial models for partial equational specifications (non-trivial for
existence equations; difficult for strong equations and definedness formulae)
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Further notions and results'

To introduce and/or check:
e partial equational specifications (trivial)
e characterization of definable classes of partial algebras (difficult!)
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Further notions and results'

To introduce and/or check:

partial equational specifications (trivial)
characterization of definable classes of partial algebras (difficult!)

existence of initial models for partial equational specifications (non-trivial for
existence equations; difficult for strong equations and definedness formulae)

proof systems for partial equational logic (ditto)

signature morphisms, translation of formulae, reducts of partial algebras,
satisfaction condition; specification morphisms, conservativity, etc. (easy)

even more general signature morphisms: §: ¥ — ¥’ maps sort names to sort
names, and operation names f: s; X ...s, — s to sequences {p;,t;),~q, Where
¢; is a X'-formula and ¢; is a X'-term of sort §(s), both with variables among
x1:0(81), ..., Tn:6(sn); syntax does not quite translate, but reducts are well
defined. ..
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Example

spec NATPRED = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat X Nat — Nat
pred: Nat —7 Nat
axioms Vn:Nat en + 0 = n;
Vn, m:Nat e n + succ(m

Vn:Nat e pred(succ(n))

)

= succ(n +m)

Uz
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Example’

spec NATPRED' = free type Nat ::= 0 | succ(pred :? Nat)
op _+ _: Nat x Nat — Nat

axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NATPRED = NATPRED’
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