
Signatures

Algebraic signature:

Σ = (S,Ω)

• sort names: S

• operation names, classified by arities and result sorts: Ω = 〈Ωw,s〉w∈S∗,s∈S
Alternatively:

Σ = (S,Ω, arity , sort)

with sort names S, operation names Ω, and arity and result sort functions

arity : Ω→ S∗ and sort : Ω→ S.

• f : s1 × . . .× sn → s stands for s1, . . . , sn, s ∈ S and f ∈ Ωs1...sn,s

• f : s1 × . . .× sn → s and f : s′1 × . . .× s′m → s′ — overloading allowed

Compare the two notions
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Signatures

Algebraic signature:

Σ = (S,Ω)

• sort names: S

• operation names, classified by arities and result sorts: Ω = 〈Ωw,s〉w∈S∗,s∈S

Alternatively:

Σ = (S,Ω, arity , sort)

with sort names S, operation names Ω, and arity and result sort functions

arity : Ω→ S∗ and sort : Ω→ S.

• f : s1 × . . .× sn → s stands for s1, . . . , sn, s ∈ S and f ∈ Ωs1...sn,s

• f : s1 × . . .× sn → s and f : s′1 × . . .× s′m → s′ — overloading allowed

• n = 0 yields f : → s, often written f : s — constants allowed
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Fix a signature Σ = (S,Ω) for a while.

Algebras

• Σ-algebra:

A = (|A|, 〈fA〉f∈Ω)

• carrier sets: |A| = 〈|A|s〉s∈S
• operations: fA : |A|s1 × . . .× |A|sn → |A|s, for f : s1 × . . .× sn → s

• the class of all Σ-algebras:

Alg(Σ)
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• carrier sets: |A| = 〈|A|s〉s∈S
• operations: fA : |A|s1 × . . .× |A|sn → |A|s, for f : s1 × . . .× sn → s

BTW: constants: fA : {〈〉} → |A|s, i.e. fA ∈ |A|s, for f : s

• the class of all Σ-algebras:

Alg(Σ)
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Can Alg(Σ) be empty? Finite?
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Intermezzo: many-sorted sets

Given a set (of sort names) S,

S-sorted set X = 〈Xs〉s∈S is a family of sets Xs, s ∈ S.

The usual set-theoretic concepts and notations apply component-wise.

For instance, given X = 〈Xs〉s∈S , Y = 〈Ys〉s∈S , Z = 〈Zs〉s∈S :

• X ∩ Y = 〈Xs ∩ Ys〉s∈S , X × Y = 〈Xs × Ys〉s∈S , etc

• X ⊆ Y iff Xs ⊆ Ys, for s ∈ S

• R ⊆ X × Y means R = 〈Rs ⊆ Xs × Ys〉s∈S

• f : X → Y means f = 〈fs : Xs → Ys〉s∈S

• for f : X → Y , g : Y → Z, f ;g = 〈fs;gs : Xs → Zs〉s∈S : X → Z

BTW: (f ;g)(x) = g(f(x)), where by abuse of notation for x ∈ Xs, f(x) = fs(x)
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Subalgebras

Definition: For A,Asub ∈ Alg(Σ), Asub is a Σ-subalgebra of A, written Asub ⊆ A,

if

− |Asub | ⊆ |A|, and

− for f : s1 × . . .× sn → s, and a1 ∈ |Asub |s1 , . . . , an ∈ |Asub |sn ,

fAsub
(a1, . . . , an) = fA(a1, . . . , an)
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Subalgebras

• for A ∈ Alg(Σ), a Σ-subalgebra Asub ⊆ A is given by subset |Asub | ⊆ |A| closed

under the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |Asub |s1 , . . . , an ∈ |Asub |sn ,

fA(a1, . . . , an) ∈ |Asub |
.

• for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A genereted by X, 〈A〉X , is the

least subalgebra of A that contains X.

• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Theorem: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.
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Subalgebras

• for A ∈ Alg(Σ), a Σ-subalgebra Asub ⊆ A is given by subset |Asub | ⊆ |A| closed

under the operations.

• for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A genereted by X, 〈A〉X , is the

least subalgebra of A that contains X.

• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Theorem: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.

Proof: Let X0 = X, and for i ≥ 0,

Xi+1 = Xi ∪ {fA(x1, . . . , xn) | f : s1 × . . .× sn → s, x1 ∈ (Xi)s1 , . . . , xn ∈ (Xi)sn}.
Then |〈A〉X | =

⋃
i≥0Xi contains X (clearly) and is closed under the operations.

Moreover, if a subset of |A| contains X and is closed under the operations then it

contains each Xi, i ≥ 0, and hence so defined |〈A〉X | as well.
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• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Theorem: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.

Proof:

Lemma: The intersection of any family of subsets of |A| closed under the

operations is closed under the operations as well.

Then |〈A〉X | =
⋂
{|Asub | | X ⊆ |Asub |, Asub ⊆ A} is closed under the operations and

contains X. Moreover, it is contained in every subalgebra of A that contains X.
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Subalgebras

• for A ∈ Alg(Σ), a Σ-subalgebra Asub ⊆ A is given by subset |Asub | ⊆ |A| closed

under the operations.

• for A ∈ Alg(Σ) and X ⊆ |A|, the subalgebra of A genereted by X, 〈A〉X , is the

least subalgebra of A that contains X.

• A ∈ Alg(Σ) is reachable if 〈A〉∅ coincides with A.

Theorem: For any A ∈ Alg(Σ) and X ⊆ |A|, 〈A〉X exists.

Proof (idea):

• generate the generated subalgebra from X by closing it under operations in A; or

• the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

|A|s1 × . . .× |A|sn

|B|s1 × . . .× |B|sn

|A|s

|B|s

-

-
??

fA

fB

hs1 × . . .× hsn hs
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Theorem: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub
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• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

Theorem: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub

of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Proof: Check that:

− h−1(|Bsub |) is closed under the operations (in A) – easy!

− h(|Asub |) is closed under the operations (in B) – just a tiny bit more difficult. . .
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Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:
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of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Theorem: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).
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of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Theorem: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Proof:

− h(〈A〉X) ⊇ 〈B〉h(X), since h(〈A〉X) is a subalgebra of B and contains h(X);

− 〈A〉X ⊆ h−1(〈B〉h(X)), since h−1(〈B〉h(X)) is a subalgebra of A and contains X.

Hence h(〈A〉X) ⊆ h(h−1(〈B〉h(X))) ⊆ 〈B〉h(X).
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Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

Theorem: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub

of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Theorem: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Theorem: If two homomorphisms h1, h2 : A→ B coincide on X ⊆ |A|, then they

coincide on 〈A〉X .
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hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

Theorem: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub

of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Theorem: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Theorem: If two homomorphisms h1, h2 : A→ B coincide on X ⊆ |A|, then they

coincide on 〈A〉X .

Proof: Check that {a ∈ |A| | h1(a) = h2(a)} is closed under the operations in A.
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Homomorphisms

• for A,B ∈ Alg(Σ), a Σ-homomorphism h : A→ B is a function h : |A| → |B|
that preserves the operations:

− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an))

Theorem: Given a homomorphism h : A→ B and subalgebras Asub of A and Bsub

of B, the image of Asub under h, h(Asub), is a subalgebra of B, and the coimage of

Bsub under h, h−1(Bsub), is a subalgebra of A.

Theorem: Given a homomorphism h : A→ B and X ⊆ |A|, h(〈A〉X) = 〈B〉h(X).

Theorem: If two homomorphisms h1, h2 : A→ B coincide on X ⊆ |A|, then they

coincide on 〈A〉X .

Theorem: Identity function on the carrier of A ∈ Alg(Σ) is a homomorphism

idA : A→ A. Composition of homomorphisms h : A→ B and g : B → C is a

homomorphism h;g : A→ C.

Andrzej Tarlecki: Category Theory, 2021 - 8 -



Isomorphisms

• for A,B ∈ Alg(Σ), a Σ-isomorphism is any Σ-homomorphism i : A→ B that

has an inverse, i.e., a Σ-homomorphism i−1 : B → A such that i;i−1 = idA and

i−1;i = idB .
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• Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (“1-1” and

“onto”).
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• Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (“1-1” and

“onto”).

Proof (“⇐=”): For f : s1 × . . .× sn → s and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn ,

i−1
s (fB(b1, . . . , bn)) = i−1

s (fB(i(i−1(b1)), . . . , i(i−1(bn)))) =

i−1
s (i(fA(i−1(b1), . . . , i−1(bn)))) = fA(i−1(b1), . . . , i−1(bn))
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• Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (“1-1” and

“onto”).

Theorem: Identities are isomorphisms, and any composition of isomorphisms is an

isomorphism.
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Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).
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− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

BTW:

equivalence

≈ ⊆ X ×X

− reflexivity: x ≈ x
− symmetry: if x ≈ y then y ≈ x
− transitivity: if x ≈ y and y ≈ z then x ≈ z

Then:

− equivalence class: [x]≈ = {y ∈ X | y ≈ x}
− quotient set: X/≈ = {[x]≈ | x ∈ X}

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

(a1, . . . , an)

(a′1, . . . , a
′
n)

fA(a1, . . . , an)

fA(a′1, . . . , a
′
n)

≡s1 · · · ≡sn
6

?

6

?

-

-

fA

fA

≡s
6

?

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

(a1, . . . , an)

(a′1, . . . , a
′
n)

fA(a1, . . . , an)

fA(a′1, . . . , a
′
n)

≡s1 · · · ≡sn
6

?

6

?

-

-

fA

fA

≡s
6

?

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

(a1, . . . , an)

(a′1, . . . , a
′
n)

fA(a1, . . . , an)

fA(a′1, . . . , a
′
n)

≡s1 · · · ≡sn
6

?

6

?

-

-

fA

fA

≡s
6

?

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

Theorem: For any relation R ⊆ |A| × |A| on the carrier of a Σ-algebra A, there

exists the least congruence on A that conatins R.
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• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

Theorem: For any relation R ⊆ |A| × |A| on the carrier of a Σ-algebra A, there

exists the least congruence on A that conatins R.

Proof (idea):

• generate the least congruence from R by closing it under reflexivity, symmetry,

transitivity and the operations in A; or

• the intersection of any family of congruences on A is a congruence on A.

Andrzej Tarlecki: Category Theory, 2021 - 10 -



Congruences

• for A ∈ Alg(Σ), a Σ-congruence on A is an equivalence ≡ ⊆ |A| × |A| that is

closed under the operations:

− for f : s1 × . . .× sn → s and a1, a
′
1 ∈ |A|s1 , . . . , an, a′n ∈ |A|sn ,

if a1 ≡s1 a′1, . . . , an ≡sn a′n then fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n).

Theorem: For any relation R ⊆ |A| × |A| on the carrier of a Σ-algebra A, there

exists the least congruence on A that conatins R.

Theorem: For any Σ-homomorphism h : A→ B, the kernel of h, K(h) ⊆ |A| × |A|,
where a K(h) a′ iff h(a) = h(a′), is a Σ-congruence on A.
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hs(fA(a′1, . . . , a
′
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Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:

− for s ∈ S, |A/≡|s = {[a]≡ | a ∈ |A|s}, with [a]≡ = {a′ ∈ |A|s | a ≡s a′}
− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Theorem: The above is well-defined.

Andrzej Tarlecki: Category Theory, 2021 - 11 -



Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:

− for s ∈ S, |A/≡|s = {[a]≡ | a ∈ |A|s}, with [a]≡ = {a′ ∈ |A|s | a ≡s a′}
− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Theorem: The above is well-defined.

Andrzej Tarlecki: Category Theory, 2021 - 11 -



Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:

− for s ∈ S, |A/≡|s = {[a]≡ | a ∈ |A|s}, with [a]≡ = {a′ ∈ |A|s | a ≡s a′}
− for f : s1 × . . .× sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,

fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Theorem: The above is well-defined.

Proof: Given a′1 ∈ |A|s1 , . . . , a′n ∈ |A|sn such that a′1 ≡s1 a1, . . . , a′n ≡sn an
— so that a′i is another representant of the equivalence class [ai]≡, i = 1, . . . , n —

fA(a1, . . . , an) ≡s fA(a′1, . . . , a
′
n). Hence fA/≡([a1]≡, . . . [an]≡) =

[fA(a1, . . . , an)]≡ = [fA(a′1, . . . , a
′
n)]≡ = fA/≡([a′1]≡, . . . [a

′
n]≡)
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fA/≡([a1]≡, . . . , [an]≡) = [fA(a1, . . . , an)]≡

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a Σ-homomorphisms [ ]≡ : A→ A/≡.
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Theorem: Given two Σ-congruences ≡ and ≡′ on A, ≡ ⊆ ≡′ iff there exists a
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Theorem: Given two Σ-congruences ≡ and ≡′ on A, ≡ ⊆ ≡′ iff there exists a

Σ-homomorphism h : A/≡ → A/≡′ such that [ ]≡;h = [ ]≡′ .

Proof (idea): Define h([a]≡) = [a]≡′ :

A/≡ A/≡′

A

-h

�
�
�
���

[ ]≡
A
A
A
AAU

[ ]≡′
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Theorem: For any Σ-homomorphism h : A→ B, A/K(h) is isomorphic with h(A).

Andrzej Tarlecki: Category Theory, 2021 - 11 -



Quotients

• for A ∈ Alg(Σ) and Σ-congruence ≡ ⊆ |A| × |A| on A, the quotient algebra

A/≡ is built in the natural way on the equivalence classes of ≡:
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Theorem: Given two Σ-congruences ≡ and ≡′ on A, ≡ ⊆ ≡′ iff there exists a

Σ-homomorphism h : A/≡ → A/≡′ such that [ ]≡;h = [ ]≡′ .

Theorem: For any Σ-homomorphism h : A→ B, A/K(h) is isomorphic with h(A).

Proof (idea): Check that i : A/K(h)→ B defined by i([a]K(h)) = h(a) is injective

and is “onto” h(A).
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Products

• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏
i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:
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Products

• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏
i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:

BTW:

Cartesian product of sets Xi, i ∈ I∏
i∈I Xi

−
∏
i∈I Xi = {p : I →

⋃
i∈I Xi | p(i) ∈ Xi, i ∈ I} (for I = ∅,

⋃
i∈I Xi = ∅)

− projections πk :
∏
i∈I Xi → Xk, πk(p) = p(k).
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Products

• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏
i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:

− for s ∈ S, |
∏
i∈I Ai|s =

∏
i∈I |Ai|s

− for f : s1 × . . .× sn → s and a1 ∈ |
∏
i∈I Ai|s1 , . . . , an ∈ |

∏
i∈I Ai|sn , for

i ∈ I, f∏
i∈I Ai

(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))
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• for Ai ∈ Alg(Σ), i ∈ I, the product of 〈Ai〉i∈I ,
∏
i∈I Ai is built in the natural

way on the Cartesian product of the carriers of Ai, i ∈ I:

− for s ∈ S, |
∏
i∈I Ai|s =

∏
i∈I |Ai|s

− for f : s1 × . . .× sn → s and a1 ∈ |
∏
i∈I Ai|s1 , . . . , an ∈ |

∏
i∈I Ai|sn , for

i ∈ I, f∏
i∈I Ai

(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

Theorem: For any family 〈Ai〉i∈I of Σ-algebras, projections πi(a) = a(i), where

i ∈ I and a ∈
∏
i∈I |Ai|, are Σ-homomorphisms πi :

∏
i∈I Ai → Ai.
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i ∈ I, f∏
i∈I Ai

(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

Theorem: For any family 〈Ai〉i∈I of Σ-algebras, projections πi(a) = a(i), where

i ∈ I and a ∈
∏
i∈I |Ai|, are Σ-homomorphisms πi :

∏
i∈I Ai → Ai.

Define the product of the empty family of Σ-algebras.
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Theorem: For any family 〈Ai〉i∈I of Σ-algebras, projections πi(a) = a(i), where

i ∈ I and a ∈
∏
i∈I |Ai|, are Σ-homomorphisms πi :

∏
i∈I Ai → Ai.

Define the product of the empty family of Σ-algebras.

When the projection πi is an isomorphism?
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Terms

Consider an S-sorted set X of variables.

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Ω

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

f(t1, . . . , tn) ∈ |TΣ(X)|s
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Terms

Consider an S-sorted set X of variables.

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Ω

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

f(t1, . . . , tn) ∈ |TΣ(X)|s
BTW:

− f(t1, . . . , tn) really is “f”ˆ“(”ˆt1ˆ“,”. . . “,”ˆtnˆ“)”

− constants: for f : s (i.e. f : → s), the term f() is simply written as f

− overloading may cause probles with “parsing”:

consider for instance a : s1, f : s1 → s, a : s2, f : s2 → s;

then there are “two” terms “f(a)” of sort s
a :s1 a :s2

s

�
���f
A
AAK f

— better write terms for instance as f(a:s1):s and f(a:s2):s.
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Terms

Consider an S-sorted set X of variables.

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Ω

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

f(t1, . . . , tn) ∈ |TΣ(X)|s

• for any Σ-algebra A and valuation v : X → |A|, the value tA[v] ∈ |A|s of a term

t ∈ |TΣ(X)|s in A under v is determined inductively:

− xA[v] = vs(x), for x ∈ Xs, s ∈ S for f : s1 × . . .× sn → s and

t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn

Above and in the following: assuming unambiguous “parsing” of terms!
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Andrzej Tarlecki: Category Theory, 2021 - 13 -



Terms

Consider an S-sorted set X of variables.

• terms t ∈ |TΣ(X)| are built using variables X, constants and operations from Ω

in the usual way: |TΣ(X)| is the least set such that

− X ⊆ |TΣ(X)|
− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

f(t1, . . . , tn) ∈ |TΣ(X)|s
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− (f(t1, . . . , tn))A[v] = fA((t1)A[v], . . . , (tn)A[v]), for f : s1 × . . .× sn → s

and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn
BTW: There are three kinds of parenthesis here!
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Term algebras

Consider an S-sorted set X of variables.

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

Andrzej Tarlecki: Category Theory, 2021 - 14 -



Term algebras

Consider an S-sorted set X of variables.

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

• Ground terms: terms with no variables.

• Ground term algebra:

TΣ = TΣ(∅)
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Term algebras

Consider an S-sorted set X of variables.

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

Fact: TΣ(X) is generated by X; TΣ is reachable.
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Term algebras

Consider an S-sorted set X of variables.

• The term algebra TΣ(X) has the set of terms as the carrier and operations

defined “syntactically”:

− for f : s1 × . . .× sn → s and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

Theorem: For any S-sorted set X of variables, Σ-algebra A and valuation

v : X → |A|, there is a unique Σ-homomorphism v# : TΣ(X)→ A that extends v.

Moreover, for t ∈ |TΣ(X)|, v#(t) = tA[v].

X |TΣ(X)|

|A|

TΣ(X)

A

-
HHH

HHH
HHHj ? ?

idX ↪→|TΣ (X )|

v ∃! v#|v#|SetS Alg(Σ)
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One simple consequence
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One simple consequence

Notation: Given t ∈ |TΣ(X)|, x1 ∈ Xs1 , t1 ∈ |TΣ(X)|s1 , . . . , xn ∈ Xsn ,

tn ∈ |TΣ(X)|sn , x1, . . . , xn mutually distinct:

t with t1, . . . , tn simultaneously substituted for x1, . . . , xn, respectively:

t[x1 7→t1, . . . , xn 7→tn]
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Fact: t[x1 7→t1][x2 7→t2] = t[x1 7→t1[x2 7→t2], x2 7→t2]
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One simple consequence

Notation: Given t ∈ |TΣ(X)|, x1 ∈ Xs1 , t1 ∈ |TΣ(X)|s1 , . . . , xn ∈ Xsn ,

tn ∈ |TΣ(X)|sn , x1, . . . , xn mutually distinct:

t with t1, . . . , tn simultaneously substituted for x1, . . . , xn, respectively:

t[x1 7→t1, . . . , xn 7→tn]

Fact: t[x1 7→t1][x2 7→t2] = t[x1 7→t1[x2 7→t2], x2 7→t2]

Proof: By laborious (double) induction on the structure of t and t1.
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One simple consequence

Notation: Given t ∈ |TΣ(X)|, x1 ∈ Xs1 , t1 ∈ |TΣ(X)|s1 , . . . , xn ∈ Xsn ,

tn ∈ |TΣ(X)|sn , x1, . . . , xn mutually distinct:

t with t1, . . . , tn simultaneously substituted for x1, . . . , xn, respectively:

t[x1 7→t1, . . . , xn 7→tn]

Fact: t[x1 7→t1][x2 7→t2] = t[x1 7→t1[x2 7→t2], x2 7→t2]

Proof: By laborious (double) induction on the structure of t and t1.

Alternative:

Generalise!
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One simple consequence

Notation: Given substitution θ : X → |TΣ(X)|:

t with substition θ carried out: t[θ]

Fact: t[θ] = tTΣ(X)[θ] = θ#(t)

X |TΣ(X)|

|TΣ(X)|

TΣ(X)

TΣ(X)

-
HHH

HHH
HHHj ? ?

idX ↪→|TΣ (X )|

θ
∃! θ#|θ#|SetS Alg(Σ)
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One simple consequence

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions

θ1 : X → |TΣ(Y )| and θ2 : Y → |TΣ(Z)|

θ#
1 ;θ#

2 = (θ1;θ#
2 )#

X |TΣ(X)|

Y |TΣ(Y )|

|TΣ(Z)|

TΣ(X)

TΣ(Y )

TΣ(Z)

-
HH

HHH
HHHHj ? ?

idX ↪→|TΣ (X )|

θ1 ∃! θ#
1θ#

1

-
HH

HHH
HHHHj ? ?

idX ↪→|TΣ (Y )|

θ2
∃! θ#

2θ#
2

?

θ1;θ#
2

$

%�

∃! (θ1;θ#
2 )#

$

%�

(θ1;θ#
2 )#

SetS Alg(Σ)
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One simple consequence

Theorem: For any S-sorted set X, Σ-algebras A,B ∈ Alg(Σ), valuation
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Consequences for reachability

∅ |TΣ|

|A|

TΣ

A

-
H
HHH

HHH
HHj ? ?

id∅↪→|TΣ |

id∅↪→|A|
∃! ∅#|∅#|SetS Alg(Σ)

Theorem:

• For any Σ-algebra A ∈ Alg(Σ), there is a unique Σ-homomorphism !A : TΣ → A.

• Σ-algebra A ∈ Alg(Σ) is reachable iff the unique homomorphism !A : TΣ → A is

surjective.

• Each reachable Σ-algebra is isomorphic to a quotient of TΣ.

• For any Σ-algebras A,B ∈ Alg(Σ), if A is reachable then there is at most one

homomorphism h : A→ B.

• For any reachable Σ-algebra A, each homomorphism h : B → A is surjective.
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Equations

• Equation:

∀X.t = t′

where:

− X is a set of variables, and

− t, t′ ∈ |TΣ(X)|s are terms of a common sort.

• Satisfaction relation: Σ-algebra A satisfies ∀X.t = t′

A |= ∀X.t = t′

when for all v : X → |A|, tA[v] = t′A[v].

— — — — — — — — — — — — — — — — —

BTW: A |= ∀X.t = t′ holds “trivially” if for some s ∈ S, Xs 6= ∅ and |A|s = ∅.
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Semantic entailment

Φ |=Σ ϕ

Σ-equation ϕ is a semantic consequence of a set of Σ-equations Φ

if ϕ holds in every Σ-algebra that satisfies Φ.

BTW:

• Models of a set of equations: Mod(Φ) = {A ∈ Alg(Σ) | A |= Φ}

• Theory of a class of algebras: Th(C) = {ϕ | C |= ϕ}

• Φ |= ϕ ⇐⇒ ϕ ∈ Th(Mod(Φ))

• Mod and Th form a Galois connection: Mod(Φ) ⊇ C iff Φ ⊆ Th(C).

− C ⊆ Mod(Th(C)), Φ ⊆ Th(Mod(Φ))
− Mod(Th(Mod(Φ))) = Mod(Φ), Th(Mod(Th(C))) = Th(C)
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Equational specifications

〈Σ,Φ〉

• signature Σ, to determine the static module interface

• axioms (Σ-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of Σ-algebras is equationally definable iff it is a variety

(i.e. is closed under subalgebras, products and homomorphic images).

“=⇒”: Easy!

“⇐=”: Not so easy, hints later. . .
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Example

spec NaiveNat = sort Nat

ops 0: Nat ;

succ : Nat → Nat ;

+ : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

Now:

NaiveNat 6|= ∀n,m:Nat • n+m = m+ n

Andrzej Tarlecki: Category Theory, 2021 - 20 -



How to fix this

• Other (stronger) logical systems: conditional equations, first-order logic,

higher-order logics, other bells-and-whistles

− more about this elsewhere. . .

�
�

�
�

�
�

�

Institutions!

• Constraints:

− reachability (and generation): “no junk”

− initiality (and freeness): “no junk” & “no confusion”

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. . .
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Initial models

Theorem: Every equational specification 〈Σ,Φ〉 has an initial model: there exists a

Σ-algebra I ∈ Mod(Φ) such that for every Σ-algebra M ∈ Mod(Φ) there exists a

unique Σ-homomorphism from I to M .

Proof (idea):

• I is the quotient of the algebra of ground Σ-terms by the congruence that glues

together all ground terms t, t′ such that Φ |= ∀∅.t = t′.

• I is the reachable subalgebra of the product of “all” (up to isomorphism)

reachable algebras in Mod(Φ).

BTW: This can be generalised to the existence of a free

model of 〈Σ,Φ〉 over any (many-sorted) set of data.

M |= Φ-��〈M〉∅-�TΣ/≡-PI = 〈P 〉∅ -��
where P =

∏
≡∈{≡ | (TΣ/≡)|=Φ} TΣ/≡
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M |= Φ-��〈M〉∅-�TΣ/≡-PI = 〈P 〉∅ -��
where P =
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≡∈{≡ | (TΣ/≡)|=Φ} TΣ/≡
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Free models

Theorem: For any equational specification 〈Σ,Φ〉 and S-sorted set X, there exists

an algebra F ∈ Mod(Φ) over X that is free over X with unit η : X → |F |, i.e. such

that for every Σ-algebra M ∈ Mod(Φ) and valuation v : X → |M |, there exists a

unique Σ-homomorphism h : F →M such that η;h = v.

X |F |

|M |

F

M

-
HH
HHHH

HHHj ? ?

η

v ∃! hhSetS Mod(Φ)

Proof:

− Define ≡ ⊆ |TΣ(X)| × |TΣ(X)|: t1 ≡ t2 iff Φ |= ∀X.t1 = t2
− Show that ≡ is a congruence on TΣ(X), and TΣ(X)/≡ |= Φ

− Show that for any M |= Φ with v : X → |M |, ≡ ⊆ K(v# : TΣ(X)→M)

− Conclude that F = TΣ(X)/≡ with η = [ ]≡ : X → |F | has the required property.
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≡ ⊆ |TΣ(X)| × |TΣ(X)|: t1 ≡ t2 iff Φ |= ∀X.t1 = t2

• ≡ is a congruence on TΣ(X)
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≡ ⊆ |TΣ(X)| × |TΣ(X)|: t1 ≡ t2 iff Φ |= ∀X.t1 = t2

• ≡ is a congruence on TΣ(X)

− reflexivity, transitivity, symmetry: easy!

− congruence property: easy as well!
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• TΣ(X)/≡ |= Φ

Lemma: For w : Y → |TΣ(X)/≡|, let w̃ : Y → |TΣ(X)| be such that

w(y) = [w̃(y)]≡, y ∈ Y . Then for t ∈ |TΣ(Y )|, tTΣ(X)/≡[w] = [tTΣ(X)[w̃]]≡.
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%�

∃! w#
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%�

w#

SetS Alg(Σ)

-
idY ↪→|TΣ (Y )|

TΣ(X)|TΣ(X)|

HHH
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HHHj

w̃

? ?

[ ]≡[ ]≡

? ?

∃! (w̃)#(w̃)#
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Let (∀Y.t1 = t2) ∈ Φ, and consider w : Y → |TΣ(X)/≡|.
Then Φ |= ∀X.(t1)TΣ(X)[w̃] = (t2)TΣ(X)[w̃].
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− for M |= Φ and v : X → |M |, ((t1)TΣ(X)[w̃])M [v] = v#((t1)TΣ(X)[w̃])

= (t1)M [w̃;v#]

= (t2)M [w̃;v#]

= v#((t2)TΣ(X)[w̃])

= ((t2)TΣ(X)[w̃])M [v]
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≡ ⊆ |TΣ(X)| × |TΣ(X)|: t1 ≡ t2 iff Φ |= ∀X.t1 = t2

• ≡ is a congruence on TΣ(X)

• TΣ(X)/≡ |= Φ

• for M |= Φ with v : X → |M |, ≡ ⊆ K(v# : TΣ(X)→M)

• for M |= Φ with v : X → |M |, there is unique Σ-homomorphism

h : (TΣ(X)/≡)→M such that hs([x]≡) = v(x).
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h : (TΣ(X)/≡)→M such that hs([x]≡) = v(x).
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Free models

Theorem: For any equational specification 〈Σ,Φ〉 and S-sorted set X, define

≡ ⊆ |TΣ(X)| × |TΣ(X)| so that t1 ≡ t2 iff Φ |= ∀X.t1 = t2.

Then ≡ is a congruence on TΣ(X) and the quotient term algebra TΣ(X)/≡ with

unit [ ]≡ : X → |TΣ(X)/≡| is free over X in Mod(Φ), that is TΣ(X)/≡ ∈ Mod(Φ)

and for every Σ-algebra M ∈ Mod(Φ) and valuation v : X → |M |, there exists a

unique Σ-homomorphism h : (TΣ(X)/≡)→M such that [ ]≡;h = v.

X |TΣ(X)/≡|

|M |

TΣ(X)/≡

M

-
H
HHH

HHH
HHj ? ?

[ ]≡

v ∃! hhSetS Mod(Φ)
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Initial models

Theorem: Every equational specification 〈Σ,Φ〉 has an initial model: there exists a

Σ-algebra I ∈ Mod(Φ) such that for every Σ-algebra M ∈ Mod(Φ) there exists a

unique Σ-homomorphism from I to M .

Proof (idea):

• I is the quotient of the algebra of ground Σ-terms by the congruence that glues

together all ground terms t, t′ such that Φ |= ∀∅.t = t′.

• I is the reachable subalgebra of the product of “all” (up to isomorphism)

reachable algebras in Mod(Φ).

BTW: This can be generalised to the existence of a free

model of 〈Σ,Φ〉 over any (many-sorted) set of data.

M |= Φ-��〈M〉∅-�TΣ/≡-PI = 〈P 〉∅ -��
where P =

∏
≡∈{≡ | (TΣ/≡)|=Φ} TΣ/≡
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Initial models

Theorem: Every equational specification 〈Σ,Φ〉 has an initial model: there exists a

Σ-algebra I ∈ Mod(Φ) such that for every Σ-algebra M ∈ Mod(Φ) there exists a

unique Σ-homomorphism from I to M .

Fact: Any two initial models of an equational specification are isomorphic.

I I ′

� �
?

� �6

!I′

!′I

�
�^

�
��

!I′ ;!
′
I = !I = idI !′I ;!I′ = !′I′ = idI ′

BTW: This can be generalised to the existence of a free

model of 〈Σ,Φ〉 over any (many-sorted) set of data.
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Example

spec Nat = free { sort Nat

ops 0: Nat ;

succ : Nat → Nat ;

+ : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

}

Now:

Nat |= ∀n,m:Nat • n+m = m+ n
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Example′

spec Nat′ = free type Nat ::= 0 | succ(Nat)

op + : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

Nat ≡ Nat′
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Another example

spec String =

generated { sort String

ops nil : String ;

a, . . . , z : String ;̂ : String × String → String }
axioms ∀s:String • s ̂ nil = s;

∀s:String • nil ̂ s = s;

∀s, t, v:String • s ̂ (t ̂ v) = (s ̂ t) ̂ v
}
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Birkhoff’s Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Proof (“⇐=”): Make precise and prove:

• If C is closed under subalgebras and products then for any set X, there exists an

algebra FX ∈ C that is free in C over X with unit ηX : X → |FX |, given as the

subalgebra generated by (the image under ηX of) X of the product of “all”

algebras A ∈ C generated by v(X) for v : X → |A|.

• For t, t′ ∈ |TΣ(X)|s, if tFX [ηX ] = t′FX [ηX ] then ∀X.t = t′ ∈ Th(C).

• Let A ∈ Mod(Th(C)). Then there is a homomorphism h : F|A| → A such that

η|A|;h = id|A|. Hence A ∈ C.

Conclude:

Mod(Th(C)) = C
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Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y )|
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Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y )|

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b
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Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y )|

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b

In general, ∀x:s.(a:s′) = (b:s′) 6|= ∀∅.(a:s′) = (b:s′).

For instance, over signature Σ with sorts s, s′ and constants a, b : s′ and no other

operations, for any algebra A ∈ Alg(Σ) such that |A|s = ∅

A |= ∀x:s.a = b, even if aA 6= bA
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Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y )|

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b without a “witness” for x
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Equational calculus

∀X.t = t

∀X.t = t′

∀X.t′ = t

∀X.t = t′ ∀X.t′ = t′′

∀X.t = t′′

∀X.t1 = t′1 . . . ∀X.tn = t′n

∀X.f(t1 . . . tn) = f(t′1 . . . t
′
n)

∀X.t = t′

∀Y.t[θ] = t′[θ]
for θ : X → |TΣ(Y )|

• reflexivity , symmetry , transitivity : clear

• congruence: clear as well

• substitution allows one to:

− substitute terms for (some) variables, possibly with different variables

− increase the set of variables

− remove unused variables, if “witnesses” to substitute for them remain
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Proof-theoretic entailment

Φ `Σ ϕ

Σ-equation ϕ is a proof-theoretic consequence of a set of Σ-equations Φ

if ϕ can be derived from Φ by the rules.

How to justify this?

Semantics!
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Soundness & completeness

Theorem: The equational calculus is sound and complete:

Φ |= ϕ ⇐⇒ Φ ` ϕ

• soundness: “all that can be proved, is true” (Φ |= ϕ⇐= Φ ` ϕ)

• completeness: “all that is true, can be proved” (Φ |= ϕ =⇒ Φ ` ϕ)

Proof (idea):

• soundness: easy!

• completeness: not so easy!
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“Ground” completeness

Φ |= ∀∅.t1 = t2 =⇒ Φ ` ∀∅.t1 = t2
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“Ground” completeness

Φ |= ∀∅.t1 = t2 =⇒ Φ ` ∀∅.t1 = t2

Proof (idea):

− Define ≈ ⊆ |TΣ| × |TΣ|: t1 ≈ t2 iff Φ ` ∀∅.t1 = t2

− Show that ≈ is a congruence on TΣ, and TΣ/≈ |= Φ

− Show that for any M |= Φ, ≈ ⊆ K(!M : TΣ →M)

− Conclude that TΣ/≈ is initial in Mod(Φ)

− Therefore TΣ/≡ and TΣ/≈ are isomorphic

− Thus ≡ = ≈

Φ |= ∀∅.t1 = t2 =⇒ Φ ` ∀∅.t1 = t2
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“Ground” completeness

Φ |= ∀∅.t1 = t2 =⇒ Φ ` ∀∅.t1 = t2

Proof (idea):

− Define ≈ ⊆ |TΣ| × |TΣ|: t1 ≈ t2 iff Φ ` ∀∅.t1 = t2
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− Show that for any M |= Φ, ≈ ⊆ K(!M : TΣ →M)
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− Therefore TΣ/≡ and TΣ/≈ are isomorphic

− Thus ≡ = ≈

Φ |= ∀∅.t1 = t2 =⇒ Φ ` ∀∅.t1 = t2
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea): Generalise the previous proof by building a free algebra TΣ(X)/≈ in

Mod(Φ) with unit [ ]≈ : X → TΣ(X)/≈, where ≈ ⊆ |TΣ(X)| × |TΣ(X)| is given by

t1 ≈ t2 iff Φ ` ∀X.t1 = t2.
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to

Σ(X)-algebras A[v] ∈ Alg(Σ(X))

− Identify terms in |TΣ(X)| with those in |TΣ(X)| (and in |TΣ(X)[idX ]|)
− Show Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to

Σ(X)-algebras A[v] ∈ Alg(Σ(X))

− Identify terms in |TΣ(X)| with those in |TΣ(X)| (and in |TΣ(X)[idX ]|)
− Show Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2
· easy!
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to

Σ(X)-algebras A[v] ∈ Alg(Σ(X))

− Identify terms in |TΣ(X)| with those in |TΣ(X)| (and in |TΣ(X)[idX ]|)
− Show Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2

− Show Φ `Σ ∀X.t1 = t2 iff Φ `Σ(X) ∀∅.t1 = t2

· Straightforward induction on the structure of derivation does not go through!
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Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to

Σ(X)-algebras A[v] ∈ Alg(Σ(X))

− Identify terms in |TΣ(X)| with those in |TΣ(X)| (and in |TΣ(X)[idX ]|)
− Show Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2
− Show Φ `Σ ∀X.t1 = t2 iff Φ `Σ(X) ∀∅.t1 = t2

· Straightforward induction on the structure of derivation does not go through!
· Induction works for a more general thesis:

Φ `Σ ∀X∪Y .t1 = t2 iff Φ `Σ(X) ∀Y.t1 = t2
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Completeness

Φ |= ∀X.t1 = t2 =⇒ Φ ` ∀X.t1 = t2

Proof (idea):

− For each signature Σ and a set of variables X, define a new signature Σ(X) that

extends Σ by variables from X as constants

− Σ-algebras A ∈ Alg(Σ) with valuations v : X → |A| correspond to

Σ(X)-algebras A[v] ∈ Alg(Σ(X))

− Identify terms in |TΣ(X)| with those in |TΣ(X)| (and in |TΣ(X)[idX ]|)
− Show Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2

− Show Φ `Σ ∀X.t1 = t2 iff Φ `Σ(X) ∀∅.t1 = t2

− Using ground completeness, conclude: Φ |=Σ ∀X.t1 = t2 iff Φ |=Σ(X) ∀∅.t1 = t2

iff Φ `Σ(X) ∀∅.t1 = t2 iff Φ `Σ ∀X.t1 = t2

Andrzej Tarlecki: Category Theory, 2021 - 29 -



Moving between signatures

Let Σ = (S,Ω) and Σ′ = (S′,Ω′)

σ : Σ→ Σ′

• Signature morphism maps:

− sorts to sorts: σ : S → S′

− operation names to operation names, preserving their profiles:

σ : Ωw,s → Ω′σ(w),σ(s), for w ∈ S∗, s ∈ S, that is:

if f : s1 × . . .× sn → s then σ(f) : σ(s1)× . . .× σ(sn)→ σ(s),
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Let σ : Σ→ Σ′

Translating syntax

• translation of variables: X 7→ X ′, where X ′s′ =
⊎
σ(s)=s′ Xs

• translation of terms: σ : |TΣ(X)|s → |TΣ′(X
′)|σ(s), for s ∈ S

• translation of equations: σ(∀X.t1 = t2) yields ∀X ′.σ(t1) = σ(t2)

. . . and semantics

• σ-reduct: σ : Alg(Σ′)→ Alg(Σ), where for A′ ∈ Alg(Σ′)

− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
= σ(f)A′ for f ∈ Ω

�
�

�

�� ��this is well-defined
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• σ-reduct: σ : Alg(Σ′)→ Alg(Σ), where for A′ ∈ Alg(Σ′)

− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
= σ(f)A′ for f ∈ Ω

�
�

�

�� ��this is well-defined

Note the contravariancy!
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− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
= σ(f)A′ for f ∈ Ω

�
�

�

�� ��this is well-defined

· for f : s1 × . . .× sn → s, f
A′ σ

: |A′ σ|s1 × . . .× |A′ σ|sn → |A′ σ|s since

σ(f)A′ : |A′|σ(s1) × . . .× |A′|σ(sn) → |A′|σ(s)
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Let σ : Σ→ Σ′

Translating syntax

• translation of variables: X 7→ X ′, where X ′s′ =
⊎
σ(s)=s′ Xs

• translation of terms: σ : |TΣ(X)|s → |TΣ′(X
′)|σ(s), for s ∈ S

• translation of equations: σ(∀X.t1 = t2) yields ∀X ′.σ(t1) = σ(t2)

. . . and semantics

• σ-reduct: σ : Alg(Σ′)→ Alg(Σ), where for A′ ∈ Alg(Σ′)

− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
= σ(f)A′ for f ∈ Ω

�
�

�

�� ��this is well-defined

BTW: Given a Σ′-homomorphism h′ : A′ → B′, Σ-homomoprhism h′ σ : A′ σ → B′ σ

is defined by (h′ σ)s = h′σ(s) for s ∈ S.
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Let σ : Σ→ Σ′

Translating syntax

• translation of variables: X 7→ X ′, where X ′s′ =
⊎
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• translation of terms: σ : |TΣ(X)|s → |TΣ′(X
′)|σ(s), for s ∈ S

• translation of equations: σ(∀X.t1 = t2) yields ∀X ′.σ(t1) = σ(t2)
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• σ-reduct: σ : Alg(Σ′)→ Alg(Σ), where for A′ ∈ Alg(Σ′)

− |A′ σ|s = |A′|σ(s), for s ∈ S
− f

A′ σ
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Note the contravariancy!
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Satisfaction condition

Theorem: For any signature morphism σ : Σ→ Σ′, Σ′-algebra A′ and Σ-equation ϕ:

Σ′

Σ

6
σ

A′

ϕ

? |=?

?
A′ σ |=Σ

6

σ(ϕ)|=Σ′

A′ σ |=Σ ϕ ⇐⇒ A′ |=Σ′ σ(ϕ)
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Satisfaction condition

Theorem: For any signature morphism σ : Σ→ Σ′, Σ′-algebra A′ and Σ-equation ϕ:

Σ′

Σ

6
σ

A′

ϕ

? |=?

?
A′ σ |=Σ

6

σ(ϕ)|=Σ′

A′ σ |=Σ ϕ ⇐⇒ A′ |=Σ′ σ(ϕ)

Proof (idea): for t ∈ |TΣ(X)| and v : X → |A′ σ|, tA′ σ [v] = σ(t)A′ [v
′], where

v′ : X ′ → |A′| is given by v′σ(s)(x) = vs(x) for s ∈ S, x ∈ Xs.
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Satisfaction condition

Theorem: For any signature morphism σ : Σ→ Σ′, Σ′-algebra A′ and Σ-equation ϕ:

Σ′

Σ

6
σ

A′

ϕ

? |=?

?
A′ σ |=Σ

6

σ(ϕ)|=Σ′

A′ σ |=Σ ϕ ⇐⇒ A′ |=Σ′ σ(ϕ)

TRUTH is preserved (at least) under:

• change of notation

• restriction/extension of irrelevant context
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Preservation of consequence

Given any signature morphism σ : Σ→ Σ′, set of Σ-equations Φ and Σ-equation ϕ:

Φ |=Σ ϕ =⇒ σ(Φ) |=Σ′ σ(ϕ)

Moreover, if σ : Alg(Σ′)→ Alg(Σ) is surjective then:

Φ |=Σ ϕ ⇐⇒ σ(Φ) |=Σ′ σ(ϕ)

�
�

�

�
 �	In general, the equivalence does not hold!
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Specification morphisms

Specification morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is a signature morphism σ : Σ→ Σ′ such that for all M ′ ∈ Alg(Σ′):

M ′ ∈ Mod(Φ′) =⇒ M ′ σ ∈ Mod(Φ)�
 �	Then σ : Mod(Φ′)→ Mod(Φ)

Theorem: A signature morphism σ : Σ→ Σ′ is a specification morphism

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 if and only if Φ′ |= σ(Φ) .
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Specification morphisms

Specification morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is a signature morphism σ : Σ→ Σ′ such that for all M ′ ∈ Alg(Σ′):

M ′ ∈ Mod(Φ′) =⇒ M ′ σ ∈ Mod(Φ)�
 �	Then σ : Mod(Φ′)→ Mod(Φ)

Theorem: A signature morphism σ : Σ→ Σ′ is a specification morphism

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 if and only if Φ′ |= σ(Φ) .

Proof: “⇐=” If M ′ |= Φ′ then M ′ |= σ(Φ), and so M ′ σ |= Φ.

“ =⇒” If M ′ |= Φ′ then M ′ σ |= Φ, and so M ′ |= σ(Φ).
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Conservativity

A specification morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is conservative if for all Σ-equations ϕ: Φ′ |=Σ′ σ(ϕ) =⇒ Φ |=Σ ϕ�
�

�
�

�
�

�
�

BTW: for all specification morphisms
Φ |=Σ ϕ =⇒ Φ′ |=Σ′ σ(ϕ)

A specification morphism σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion if for each

M ∈ Mod(Φ) there exists M ′ ∈ Mod(Φ′) such that M ′ σ = M

(i.e., σ : Mod(Φ′)→ Mod(Φ) is surjective).

Theorem: If σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion then it is conservative.�
�

�

�
 �	In general, the equivalence does not hold!
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Theorem: If σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion then it is conservative.�
�

�

�
 �	In general, the equivalence does not hold!

Andrzej Tarlecki: Category Theory, 2021 - 35 -



Conservativity

A specification morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is conservative if for all Σ-equations ϕ: Φ′ |=Σ′ σ(ϕ) =⇒ Φ |=Σ ϕ�
�

�
�

�
�

�
�

BTW: for all specification morphisms
Φ |=Σ ϕ =⇒ Φ′ |=Σ′ σ(ϕ)

A specification morphism σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion if for each

M ∈ Mod(Φ) there exists M ′ ∈ Mod(Φ′) such that M ′ σ = M

(i.e., σ : Mod(Φ′)→ Mod(Φ) is surjective).

Theorem: If σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion then it is conservative.�
�

�

�
 �	In general, the equivalence does not hold!

Andrzej Tarlecki: Category Theory, 2021 - 35 -



Conservativity

A specification morphism:

σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉

is conservative if for all Σ-equations ϕ: Φ′ |=Σ′ σ(ϕ) =⇒ Φ |=Σ ϕ�
�

�
�

�
�

�
�

BTW: for all specification morphisms
Φ |=Σ ϕ =⇒ Φ′ |=Σ′ σ(ϕ)

A specification morphism σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion if for each

M ∈ Mod(Φ) there exists M ′ ∈ Mod(Φ′) such that M ′ σ = M

(i.e., σ : Mod(Φ′)→ Mod(Φ) is surjective).

Theorem: If σ : 〈Σ,Φ〉 → 〈Σ′,Φ′〉 admits model expansion then it is conservative.�
�

�

�
 �	In general, the equivalence does not hold!

Andrzej Tarlecki: Category Theory, 2021 - 35 -



More general signature morphisms

Let Σ = (S,Ω) and Σ′ = (S′,Ω′)

δ : Σ→ Σ′

• Derived signature morphism maps sorts to sorts: δ : S → S′, and operation

names to terms, preserving their profiles: for f : s1 × . . .× sn → s,

δ(f) ∈ |TΣ′({x1:δ(s1), . . . , xn:δ(sn)})|δ(s)

• Translation of syntax, reducts of algebras, satisfaction condition, and many other

notions and results: similarly as before. �
 �	not quite all though. . .
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Partial algebras

• Algebraic signature Σ: as before

• Partial Σ-algebra:

A = (|A|, 〈fA〉f∈Ω)

as before, but operations fA : |A|s1 × . . .× |A|sn ⇀ |A|s, for

f : s1 × . . .× sn → s, may now be partial functions.�
 �	BTW: Constants may be undefined as well.

• PAlg(Σ) stands for the class of all partial Σ-algebras.
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Fix a signature Σ = (S,Ω) for a while.

Few further notions

• subalgebra Asub ⊆ A: given by subset |Asub | ⊆ |A| closed under the operations;

BTW: at least three different natural notions are possible.
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Few further notions

• subalgebra Asub ⊆ A: given by subset |Asub | ⊆ |A| closed under the operations;

BTW: at least three different natural notions are possible.

For f : s1 × . . . sn → s and a1 ∈ |Asub |s1 , . . . , an ∈ |Asub |sn
− (strong) subalgebra: if fA(a1, . . . , an) is defined then fAsub

(a1, . . . , an) is

defined

− (full) subalgebra: if fA(a1, . . . , an) is defined and fA(a1, . . . , an) ∈ |Asub |s
then fAsub

(a1, . . . , an) is defined

− (weak) subalgebra: if fAsub
(a1, . . . , an) is defined then fA(a1, . . . , an) is

defined

and fAsub
(a1, . . . , an) = fA(a1, . . . , an).
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Fix a signature Σ = (S,Ω) for a while.

Few further notions

• subalgebra Asub ⊆ A: given by subset |Asub | ⊆ |A| closed under the operations;

BTW: at least three different natural notions are possible.

• homomorphism h : A→ B: map h : |A| → |B| that preserves definedness and

results of operations; it is strong if in addition it reflects definedness of

operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h : |A|⇀ |B| that preserves

results of operations.

• congruence ≡ on A: equivalence ≡ ⊆ |A| × |A| closed under the operations

whenever they are defined; it is strong if in addition it reflects definedness of

operations; (strong) congruences are kernels of (strong) homomorphisms

• quotient algebra A/≡: built in the natural way on the equivalence classes of ≡;

the natural homomorphism from A to A/≡ is strong if the congruence is strong.
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Formulae
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Formulae

(Strong) equation:

∀X.t s
= t′

as before

Definedness formula:

∀X.def t

where X is a set of variables, and t ∈
|TΣ(X)|s is a term

Satisfaction relation

partial Σ-algebra A satisfies ∀X.t s
= t′

A |= ∀X.t s
= t′

when for all v : X → |A|, tA[v] is de-
fined iff t′A[v] is defined, and then tA[v] =
t′A[v]

partial Σ-algebra A satisfies ∀X.def t

A |= ∀X.def t

when for all v : X → |A|, tA[v] is defined
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An alternative

• (Existence) equation:

∀X.t e
= t′

where:

− X is a set of variables, and

− t, t′ ∈ |TΣ(X)|s are terms of a common sort.

• Satisfaction relation: Σ-algebra A satisfies ∀X.t e
= t′

A |= ∀X.t e
= t′

when for all v : X → |A|, tA[v] = t′A[v] — both sides are defined and equal.

BTW:

• ∀X.t e
= t′ iff ∀X.(t s

= t′ ∧ def t)

• ∀X.t s
= t′ iff ∀X.(def t ⇐⇒ def t′) ∧ (def t =⇒ t

e
= t′)
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Further notions and results

To introduce and/or check:

• partial equational specifications (trivial)

• characterization of definable classes of partial algebras (difficult!)

• existence of initial models for partial equational specifications (non-trivial for

existence equations; difficult for strong equations and definedness formulae)

• proof systems for partial equational logic (ditto)

• signature morphisms, translation of formulae, reducts of partial algebras,

satisfaction condition; specification morphisms, conservativity, etc. (easy)

• even more general signature morphisms: δ : Σ→ Σ′ maps sort names to sort

names, and operation names f : s1 × . . . sn → s to sequences 〈ϕi, ti〉i≥0, where

ϕi is a Σ′-formula and ti is a Σ′-term of sort δ(s), both with variables among

x1:δ(s1), . . . , xn:δ(sn); syntax does not quite translate, but reducts are well

defined. . .
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Example

spec NatPred = free { sort Nat

ops 0: Nat ;

succ : Nat → Nat ;

+ : Nat ×Nat → Nat

pred : Nat →? Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

∀n:Nat • pred(succ(n))
s
= n;

}
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Example′

spec NatPred′ = free type Nat ::= 0 | succ(pred :?Nat)

op + : Nat ×Nat → Nat

axioms ∀n:Nat • n+ 0 = n;

∀n,m:Nat • n+ succ(m) = succ(n+m)

NatPred ≡ NatPred′
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