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Recall:

Term algebras I

Theorem: For any S-sorted set X of variables, Y-algebra A and valuation

v: X — |A|, there is a unique ¥-homomorphism v# : Ts(X) — A that extends v, so
that
idx s 7 () 07 =
x| 75 (20)]
X > [T5(X)| Ts(X)
SetS N ¥ et Alg(®)

Al A
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Free objects'

Consider any functor G: K’ — K

Definition:

K/
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Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K

7

K/

Andrzej Tarlecki: Category Theory, 2021 - 111 -



Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K

, a free object over A w.r.t. G
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Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K|, a free object over A w.r.t. G is a K'-object
A’ € |K'| together with a K-morphism na: A — G(A") (called unit morphism)

K/
A A - G(A) A

Andrzej Tarlecki: Category Theory, 2021 - 111 -



Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K|, a free object over A w.r.t. G is a K'-object
A’ € |K'| together with a K-morphism na: A — G(A") (called unit morphism) such
that given any K'-object B" € |K'| with K-morphism f: A — G(B’),

K K’

Andrzej Tarlecki: Category Theory, 2021

- 111 -



Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K|, a free object over A w.r.t. G is a K'-object
A’ € |K'| together with a K-morphism na: A — G(A") (called unit morphism) such
that given any K'-object B" € |K'| with K-morphism f: A — G(B’), for a unique
K'-morphism f#: A’ — B’ we have

na;G(f#) = f
K . K’
A A - G(A) A
f G(f#) | f#

G(B’) B’
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Free objects'

Consider any functor G: K’ — K

Definition: Given an object A € |K|, a free object over A w.r.t. G is a K'-object
A’ € |K'| together with a K-morphism na: A — G(A") (called unit morphism) such
that given any K'-object B" € |K'| with K-morphism f: A — G(B’), for a unique
K'-morphism f#: A’ — B’ we have

na;G(f7) = [

; : G ,
Paradigmatic example: K K
Term algebra T5(X) with unit A A - G (A A
idX<—>|Tg(X)|: X — |T2(X)| IS
free over X € |Set®| w.r.t. the f G(f#) 3| £#
carrier functor | |: Alg(¥) —

Set® G(B') B’
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Examples
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them.

Real L Int

Andrzej Tarlecki: Category Theory, 2021 - 112 -



Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

Real L Int
<

r — [r] (7]
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

Real L Int
<

r — [r] (7]

S IN INA

™
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

Andrzej Tarlecki: Category Theory, 2021 - 112 -



Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set. X
Set — Monoid
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set. X

Set Monoid

X SlngX > X* <X*,A,€>
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. .

What about free objects w.r.t. the inclusion of rationals into reals?
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,

(7] € Int is free over r w.r.t. .
What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free
over G w.r.t. the graph functor G: Cat — Graph.
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,

(7] € Int is free over r w.r.t. i.
What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free

over G w.r.t. the graph functor G: Cat — Graph.
g
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,

(7] € Int is free over r w.r.t. i.
What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free

over G w.r.t. the graph functor G: Cat — Graph.
g

Cat
aQ »G(Path(G)) Path(G)

Graph -
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,

(7] € Int is free over r w.r.t. i.
What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free
over G w.r.t. the graph functor G: Cat — Graph.

Graph - g Cat
G > G(Path(G)) Path(G)
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G(K) K
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and 7 as a functor between them. For any real r € Real, the ceiling of r,

(7] € Int is free over r w.r.t. i.
What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free
over G w.r.t. the graph functor G: Cat — Graph.
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Examples I

e Consider inclusion i: Int <— Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. 3.

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph

, the category of its paths, Path(G) € |Cat]|, is free
over G w.r.t. the graph functor G: Cat — Graph.

e Discrete topologies, completion of metric spaces, free groups, ideal completion of
partial orders, ideal completion of free partial algebras, ...
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Examples I

e Consider inclusion i: Int <— Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the ceiling of r,
(7] € Int is free over r w.r.t. 3.

What about free objects w.r.t. the inclusion of rationals into reals?

e For any set X € |Set|, the “free monoid” List(X) = (X™, 7, ¢) is free over X
w.r.t. | _|: Monoid — Set.

e For any graph G € |Graph|, the category of its paths, Path(G) € |Cat|, is free
over G w.r.t. the graph functor G: Cat — Graph.

e Discrete topologies, completion of metric spaces, free groups, ideal completion of
partial orders, ideal completion of free partial algebras, ...

Makes precise these and other similar examples

Indicate unit morphisms!
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Free equational models'
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Free equational models'

e Recall: for any algebraic signature 3 = (S5, ), term algebra Tx(X) is free over
X € |Set®| w.r.t. the carrier functor |_|: Alg(X) — Set”.
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Free equational models'

e Recall: for any algebraic signature 3 = (S5, ), term algebra Tx(X) is free over
X € |Set®| w.r.t. the carrier functor |_|: Alg(X) — Set”.

Set® | Alg(¥)

id :
% XL Ty (X)) Ts(X)
¥ f# f#
B B
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Free equational models'

e Recall: for any algebraic signature 3 = (S5, ), term algebra Tx(X) is free over
X € |Set®| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of YX-equations ®, for any set X &€ |Set5|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
_|: Mod((2, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg () given by the models of ®.
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Free equational models'

e Recall: for any algebraic signature 3 = (S, €2}, term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X € |Set®”|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
_|: Mod((Z, ®)) — Set®, where Mod((X, ®)) is the full subcategory of

Alg(X) given by the models of ®.

SetS ~——1 Mod((s, ®))
X > |FCI’(X)| FCI)(X)
f f# f#
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Free equational models'

e Recall: for any algebraic signature 3 = (S, €2}, term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X € |Set®”|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
_|: Mod((Z, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg(X) given by the models of ®. Recall: F®(X) is Tx(X)/=, where = is the
congruence on Tx(X) such that t; = t5 iff ® =EVX.t; = t5.

Set$ ~———1— Mod((%, ®))
X = L e
f f# f#
| B B
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Free equational models'

e Recall: for any algebraic signature 3 = (S, €2}, term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X &€ |SetS|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
|: Mod((Z, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg(X) given by the models of ®.

e For any algebraic signature morphism o: ¥ — X/, for any X-algebra
A € |Alg(Y)|, there exist a ¥'-algebra F,(A) € |Alg(Y’)| that is free over A
w.r.t. the reduct functor _|,: Alg(X') — Alg(X).
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Fact: For any algebraic signature inclusion o: > — ¥’ for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Alg(Y) i Alg(X))
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Tx/(|A|)/= with unit [ |=: A — (TE/(|A|)/E)‘J,
Alg(Y) ke Alg(X))
A—E L @A) /D), To(A) /= ~—HE— T (a)
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Ty (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f:s1 X ... X s, = sin X
and a1 € |Alsy,. - -.an €| Als, | falar,...,an) = flag, ..., a,)
Alg(Y) ke Alg(X))
A [*]E > (TZ’(’AD/E)‘U TZ’(‘Al)/E - [*]E TZ’(|AD
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Ty (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f:s1 X ... X s, = sin X
and a1 € |Alsy,. - -.an €| Als, | falar,...,an) = flag, ..., a,)
o [ |=: A— (Ix(|A])/=)|s is indeed a X-homomorphism, since
falar, ... an)]= = [f(a1,...,an)]= = fTZ/(|A|)/E([a1]Ev oy lan]=)
Alg(Y) ke Alg(X))
A—= @Ayl 1gay/z —HE— 10 0a)
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Ty (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f:s1 X ... X s, = sin X
and a1 € |Alsy,. - -.an €| Als, | falar,...,an) = flag, ..., a,)

o for B’ € [Alg(X')| and h: A — B'|,,

Alg(X) - ‘0 Alg(X)
A—= L may/2),  Tu(A)/= —HE T (la)
h
B'|, B’
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Ty (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f:s1 X ... X s, = sin X
and a1 € |Alsy,. - -.an €| Als, | falar,...,an) = flag, ..., a,)

o for B' € [Alg(X')| and h: A — B'|,, consider () p/|h]: Ts/ (|A]) = B'.

Alg(Y) ke Alg(X))
4—H= L man/m)). 1A= —HE— 1(4)
h @ran
B\, B’
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Ty (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f:s1 X ... X s, = sin X
and a1 € |Alsy,. - -.an €| Als, | falar,...,an) = flag, ..., a,)

o for B' € [Alg(X')| and h: A — B'|,, consider () p/|h]: Ts/ (|A]) = B'.
Then = g K((f)B’ [h]),

Alg(Y) ke Alg(X))
a— = L @mays),  Te(ap/z —B

>
e
=

B\, B
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Tsy (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f: sy X ... X s, = sin X
and ay € |Als,,. .. ,an € |Als,, | fala1,...,a,) = f(a1,...,a,)

o for B’ € [Alg(X')| and h: A — B'|,, consider () p/|h]: Ts/ (|A]) — B'.
Then = C K((_)p|h]), since:
hs(falar,...,an)) = fp(hs,(a1),... hs,(an)) = (f(a1,...,an))p |h]
Alg(Y) ke Alg(X)
At (To(AD/2)]s  Tu(A/= ~———E— Ty (4]

>
e
=

B\, B
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Fact: For any algebraic signature inclusion o: > — ¥', for any Y-algebra
A € |Alg(X)|, there exist a ¥'-algebra F,(A) € |Alg(X')| that is free over
A w.r.t. the reduct functor _|: Alg(X') — Alg(X).

Proof (idea): Define F,(A) to be Tsy (|A[)/= with unit [ |=: A — (Tx/ (|A])/=)]0
where = is the least congruence on Tx/(|A|) such that for f: sy X ... X s, = sin X
and ay € |Als,,. .. ,an € |Als,, | fala1,...,a,) = f(a1,...,a,)

o for B’ € [Alg(X')| and h: A — B'|,, consider () p/|h]: Ts/ (|A]) — B'.
Then = C K((_)p|h]), and so there is unique 3’-homomorphism
h#: (T (|A])/=) — B’ such that [_]=;h7 = (U)p[h].

‘J

Alg(X) - Alg(X)
A—= L (@(A)/2)),  Te(A)/= —EE 1(4)
h "o i Ol
B"a B’
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Free equational models'

e Recall: for any algebraic signature 3 = (S, €2}, term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X &€ |SetS|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
|: Mod((Z, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg(X) given by the models of ®.

e For any algebraic signature morphism o: ¥ — X/, for any X-algebra
A € |Alg(Y)|, there exist a ¥'-algebra F,(A) € |Alg(Y’)| that is free over A

w.r.t. the reduct functor _|,: Alg(X') — Alg(X).

e For any equational specification morphism o: (3, ®) — (' &'}, for any model
A € Mod(®), there exist a model F®'(A) € Mod(®') that is free over A w.r.t,
the reduct functor _| : Mod (X', ®")) — Mod({X, ®)).

Prove the above.
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Alg(Y) . Mod((X,®)) C  Alg(Y)
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Fact:

For any algebraic signature morphism o: ¥ — Y’ and set ®' of Y'-equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define Fff/ (A) to be Ty (X')/= with unit [ |=: A = (Tx (X’)/E)‘J,
Alg(Y) e Mod((X/,®')) C  Alg(X)
A [7]5 > (TE’(X )/E)‘o Tg/(X,)/E - [7]5 TE/(X)
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Fact:

For any algebraic signature morphism o: ¥ — Y’ and set ®' of Y'-equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define Fff/ (A) to be Ty (X')/= with unit [ |=: A = (Tx (X’)/E)‘J,

where X;/ — wa(s):s’ |A|s

Mod((¥', ')

Tg/(X,)/E -
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F2'(A) to be Tsy (X')/= with unit [ ]=: A — (Tx (X")/=) o
where X, =, = |A4ls and = is the least congruence on T (X’) such that
t1 =ty when @ =EVX' 1t =t

Alg(Y) e Mod((X/,®')) C  Alg(X)
A [7]5 - (TE/(X/)/E)‘G Tg/(X,)/E - [7]5 TE/(X/)
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F&'(A) to be Tsy(X’)/= with unit []=: A — (T5y (X’)/E)‘J,
where X, =, = |A4ls and = is the least congruence on T (X’) such that

t1 =ty when @ =VX' 1ty =ty as well as for f: 57 X ... X s, — sin X and

a1 € |Alsy,. . an € |Als,, | falar,...,an) =0o(f)(a1,...,an)

Alg(Y) e Mod((X/,®')) C  Alg(X)
A [7]5 - (TE/(X/)/E)‘G Tg/(X,)/E - [7]5 TE/(X/)
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F&'(A) to be Tsy(X’)/= with unit []=: A — (T5y (X’)/E)‘J,
where X, =, = |A4ls and = is the least congruence on T (X’) such that

t1 =ty when @ =VX' 1ty =ty as well as for f: 57 X ... X s, — sin X and

a1 € |Alsy,. . an € |Als,, | falar,...,an) =0o(f)(a1,...,an)

o T/ (|A])/=E @', i.e. indeed Txy (|A])/= € Mod(P')

Alg(Y) e Mod((X/,®')) C  Alg(X)
A [7]5 - (TE/(X/)/E)‘G Tg/(X,)/E - [7]5 TE/(X/)
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define Ff/ (A) to be Tsy(X")/= with unit [ |=: A — (Tx (X/)/E)‘G,

where X, =4, = |Als and = is the least congruence on T (X’) such that
t1 =ty when @ =VX'ty =ty as well as for f: 51 X ... X s, = sin X and

a1 € |Alsy,. . an € |Als, | falar,...,an) =o(f)(a1,...,an)

o [ |=: A— (Tw (|A])/=)|o is indeed a E-homomorphism, since
[fA(alv e 7an)]£ — [U(f)(alv s 7an)]5 — f(TE,(X’)/E)‘J([al]E’ T [an]E)
Alg(Y) - ke Mod((¥/,®")) <  Alg(Y)

A [7]5 - (TE/ (X/)/E)‘g TE/ (X/)/E - [7]5 TZ’ (X/)
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F2'(A) to be Tsy(X')/= with unit [ ]=: A — (Tx (X")/=) o
where X, =4, =y [Als and = is the least congruence on T/ (X') such that
t1 =ty when @ =VX' 1t =ty as well as for f: 51 X ... X s, — sin X and

ay € |Als,,....an € |Als,, | falar,...;an) =o(f)(ar,...,a,)

e for B € [Mod({¥X,®"))| and h: A — B"a,

Alg(Y) - e Mod((X/, %)) C  Alg(Y)
A [7]5 P (TZ/(X/)/E)‘U TE/(X/)/E - [7]5 TE/(X,)

>

B\, B
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F2'(A) to be Tsy(X')/= with unit [ ]=: A — (Tx (X")/=) o
where X, =4, =y [Als and = is the least congruence on T/ (X') such that
t1 =ty when @ =VX' 1t =ty as well as for f: 51 X ... X s, — sin X and

ay € |Als,,....an € |Als,, | falar,...;an) =o(f)(ar,...,a,)

e for B’ € [Mod({¥/,®"))| and h: A — B"G, =C K(()p/[M]) (W: X" — |B'| is
as h),

Alg(Y) - e Mod((X/, %)) C  Alg(Y)
A [7]5 P (TZ/(X/)/E)‘U TE/(X/)/E - [7]5 TE/(X,)
h () B [1]

B\, B
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Fact: For any algebraic signature morphism o: ¥ — X' and set ®' of >’ -equations,
for any Y-algebra A € |Alg(X)|, there exist a ¥'-algebra F2' (A) € Mod(®') that
is free over A w.r.t. the reduct functor _|,: Mod((X/, ")) — Alg(X%).

Proof (idea): Define F2'(A) to be Tsy (X')/= with unit [ ]=: A — (Tx (X")/2)|o
where X, =, = |A4ls and = is the least congruence on T (X’) such that
t1 =ty when @ =VX't; =ty as well as for f: 57 X ... X s, — sin X and

ay € |Als,, - ..an € |Als,, | falar,...;an) =o(f)(ar,...,an)
o for B € [Mod((X',®))| and h: A = B'|,, = C K((L)p [I']) (h': X" = |B'| is
as h), and we get unique h*: (Tsv (|A])/=) — B’ with [_]=;h" = (U)p/[I].

Alg(Y) . Mod((X,®)) C  Alg(Y)
A [7]5 > (TE/(X/)/E)‘J TE/(X/)/E - [7]5 TE/(X/)

h#‘a

>

B'|,
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Fact: Given a functor G: K' - K and A € |K
unitna: A — G(A") w.rt. G.

Consider a subcategory K" C K with inclusion J: K" — K such that ng: A —
G(A") is in K" and we have a functor G': K’ — K" such that G’;J = G (i.e. the
image of G is within K" ).

Then A" € |K'| is free over A with unitna: A — G'(A") w.rt. G': K — K”.

, let A’ € |K’| be free over A with
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Fact: Given a functor G: K — K and A € |K|, let A’ € |K’| be free over A with
unitna: A — G(A") w.rt. G.

Consider a subcategory K" C K with inclusion J: K" — K such that ng: A —
G(A") is in K" and we have a functor G': K’ — K" such that G’;J = G (i.e. the
image of G is within K" ).

Then A" € |K'| is free over A with unitna: A — G'(A") w.rt. G': K — K”.

Just check:

J G’

K K" K’
A 1A P-G(A/) _ G/(A/) A

f G(f7)|=G'(f*) 3"

G(B') =G (B) B’
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Free equational models'

e Recall: for any algebraic signature 3 = (S, €2}, term algebra Tx(X) is free over
X € [Set”| w.r.t. the carrier functor |_|: Alg(X) — Set”.

e For any set of Y-equations ®, for any set X &€ |SetS|, there exist a model
F®(X) € Mod(®) that is free over X w.r.t. the carrier functor
|: Mod((Z, ®)) — Set®, where Mod((X, ®)) is the full subcategory of
Alg(X) given by the models of ®.

e For any algebraic signature morphism o: ¥ — X/, for any X-algebra
A € |Alg(Y)|, there exist a ¥'-algebra F,(A) € |Alg(Y’)| that is free over A

w.r.t. the reduct functor _|,: Alg(X') — Alg(X).

e For any equational specification morphism o: (3, ®) — (' &'}, for any model
A € Mod(®), there exist a model F®'(A) € Mod(®') that is free over A w.r.t,
the reduct functor _| : Mod (X', ®")) — Mod({X, ®)).

Prove the above.
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit nga: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

K G K’

A 1A ~ G(A) A
f G(f%) 3| f#

G(B') B’

Andrzej Tarlecki: Category Theory, 2021
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free

over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category

(Ca,G), where C4: 1 — K is the constant functor.

1 Ca - K . K’
. A 4 - G(A') A

ide ida G(f7) 31| f7
o A 7 > G(B) B’

Andrzej Tarlecki: Category Theory, 2021
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit nga: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.

e The function (L) : K(A4,G(B")) — K'(A’, B') is bijective for each B’ € |K'|.
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L) : K(A4,G(B")) — K'(A’, B') is bijective for each B’ € |K'|.
o () ' =naG(): K'(A,B) = K(4,G(B)), ie:

— f=na;G(f7) for f: A= G(B') inK
— g= (na;G(g))# for g: A’ - B in K’
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L) : K(A4,G(B")) — K'(A’, B') is bijective for each B’ € |K'|.

e For any morphisms g1,92: A" — B in K/, g1 = g2 iff n4;G(g91) = 1n4;G(g2).
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit ng: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L) : K(A4,G(B")) — K'(A’, B') is bijective for each B’ € |K'|.

e For any morphisms g1,92: A" — B in K/, g1 = g2 iff n4;G(g91) = 1n4;G(g2).
o g1 = (14;G(01)" = (14;G(92))" = g
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K’| free
over A w.r.t. G with unit na: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L)7: K(A4,G(B’)) — K'(A’, B') is bijective for each B’ € |K'|.

e For any morphisms g1,92: A" — B' in K, g1 = g2 iff n4;G(g91) = 14;G(g2).

Colimits as free objectsI

Theorem: In a category K, given a diagram D of shape G(D), the colimit of D in

: : : D . D
K is a free object over D w.r.t. the diagonal functor Af{( ) K - DlagIg{( ).
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit na: A - G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L)7: K(A4,G(B’)) — K'(A’, B') is bijective for each B’ € |K'|.
e For any morphisms g1,92: A" — B' in K/, g1 = g2 iff n4;G(g91) = 14;G(g2).

Colimits as free objects'

Theorem: In a category K, given a diagram D of shape G(D), the colimit of D in

: : : D . D
K is a free object over D w.r.t. the diagonal functor Af{( I Dlag%( ).

. . . G(D
Proof (idea): Cocones a.: D — X are diagram morphisms a: D — AK( )(X).
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Facts '

Consider a functor G: K’ — K, and object A € |K]|, and an object A" € |K'| free
over A w.r.t. G with unit na: A — G(A4").

e A free objects over A w.r.t. G the initial objects in the comma category
(Ca,G), where C4: 1 — K is the constant functor.

e A free object over A w.r.t. G, if exists, is unique up to isomorphism.
e The function (L)#: K(A4,G(B’")) — K/'(A’, B') is bijective for each B’ € |K'|.
e For any morphisms g1,92: A" — B" in K, g1 = g2 iff n4;G(g91) = 14;G(g2).

Colimits as free objects'

Theorem: In a category K, given a diagram D of shape G(D), the colimit of D in

K is a free object over D w.r.t. the diagonal functor Af{(D) K — Diagf{(D).

Spell this out for initial objects, coproducts, coequalisers, and pushouts
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Left adjoints'

Consider a functor G: K/ — K.

K/
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Left adjoints'

Consider a functor G: K/ — K.

Theorem: Assume that for each object A € |K| there is a free object over A w.r.t.
G,

K/
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Left adjoints'

Consider a functor G: K/ — K.

Theorem: Assume that for each object A € |K| there is a free object over A w.r.t.
G, say F(A) € |K'| is free over A with unitna: A — G(F(A)).

K - K’
A A, G(F(A)) F(A)
B B, G(F(B)) F(B)
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Left adjoints'

Consider a functor G: K/ — K.

Theorem: Assume that for each object A € |K| there is a free object over A w.r.t.
G, say F(A) € |K'| is free over A with unit na: A — G(F(A)). Then the mappings:
- (Ae[K])— (F(4) € [K'|)
— (f+ A= B) = ((fmp)*: F(4) — F(B))

form a functor F: K — K.

K & K’
A A, G(F(A)) F(A)
F(f) =
/ GED)
B B, G(F(B)) F(B)
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Left adjoints'

Consider a functor G: K/ — K.

Theorem: Assume that for each object A € |K| there is a free object over A w.r.t.
G, say F(A) € |K'| is free over A with unit na: A — G(F(A)). Then the mappings:
- (Ae[K])— (F(4) € [K'|)
— (f+ A= B) = ((fmp)*: F(4) — F(B))

form a functor F: K — K’. Moreover, n: Idx — F;G is a natural transformation.

K & K’
A A, G(F(A)) F(A)
F(f) =
/ GED)
B B, G(F(B)) F(B)
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Proof'

F preserves identities:

F(idA) = (idA;nA)# — idF(A)
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Proof'

F preserves identities: A 14 G(F(4)) F(A)
F(ida) = (idaina)?® = idp(a) idAl l ZdF(A) led F(A)
= 1d G(F(A))

A—4 L G(F(A F(A)
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Proof'

F preserves identities: A 14 G(F(4)) F(A)
F(ida) = (idaina)?® = idp(a) idAl l ZdF(A) led F(A)
= 1d G(F(A))

A—4 L G(F(A F(A)

F preserves composition:

F(f:9) = (f;gme)® = F(f);F(g)
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Proof'

F preserves identities: A A, G(F(A)) F

(A)
F(ida) = (idaina)? = idpa) z’dAl l b deGI?;?A)) lzdF(A)

A A, F(A)
F preserves composition:
F(fi9) = (f;gnc)® =F(f);F(g)
A—A o G(F(4)) \ F(A)~
fl F(f)
B CEDF) - rB) (F(HFQ
gl J'F(g)
c—1¢  G(F(0)) 4/ F(C)<’
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Proof'

F preserves identities: A A, G(F(A)) F

(A)
F(ida) = (idaina)? = idpa) z’dAl l b de;(;?L)) lzdF(A)

A a F(A)
F preserves composition:
F(fi9) = (figme)® = F(f):F(g)
A—A o G(F(4)) F(A)~
fl G(F(f)) F(f)
s (F(f):F(9))
B G(F(B)) = G(F(f));G(F(9)) F(B) F(f);F(g)
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Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).
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Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I
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Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I

e The term-algebra functor Ts;: Set® — Alg(X) is left adjoint to the carrier
functor |_|: Alg(X) — Set”, for any algebraic signature ¥ = (S, Q).

Andrzej Tarlecki: Category Theory, 2021 - 117 -



Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I

e The term-algebra functor Ts;: Set® — Alg(X) is left adjoint to the carrier
functor |_|: Alg(X) — Set”, for any algebraic signature ¥ = (S, Q).

e The ceiling [ _|: Real — Int is left adjoint to the inclusion i: Int — Real of
integers into reals.
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Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I

e The term-algebra functor Ts;: Set® — Alg(X) is left adjoint to the carrier
functor |_|: Alg(X) — Set”, for any algebraic signature ¥ = (S, Q).

e The ceiling [ _|: Real — Int is left adjoint to the inclusion i: Int — Real of
integers into reals.

e [he path-category functor Path: Graph — Cat is left adjoint to the graph
functor G: Cat — Graph.
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Left adjoints'

Definition: A functor F: K — K’ is left adjoint to (a functor) G: K' — K with
unit (natural transformation) n: Idx — F;G if for all objects A € |K|, F(A) € |K/|
is free over A with unit morphism na: A — G(F(A)).

Examples I

e The term-algebra functor Ts;: Set® — Alg(X) is left adjoint to the carrier
functor |_|: Alg(X) — Set”, for any algebraic signature ¥ = (S, Q).

e The ceiling [ _|: Real — Int is left adjoint to the inclusion i: Int — Real of
integers into reals.

e [he path-category functor Path: Graph — Cat is left adjoint to the graph
functor G: Cat — Graph.

e ... other examples given by the examples of free objects above . ..

Andrzej Tarlecki: Category Theory, 2021 - 117 -



Uniqueness of left adjoints'
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism:
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idg — F;G and n': Idx — F’;G, respectively,

Andrzej Tarlecki: Category Theory, 2021 - 118 -



Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idgx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F’ such that n;(7-G) = 7n’.

(F(A)) F(A)

G
A% G(74) =
\7714A
G(
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idgx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F’ such that n;(7-G) = 7n’.

Proof: For each A € |[K|, T4 = (047
(F(A)) F(A) K| a4 = (n4)

G
A% G(74) =
\7714A
G(
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idgx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F’ such that n;(7-G) = 7n’.

Proof: For each A € |K|, 74 = (0/4)7.
FA) R g Ac
Put also 7,7 = (na)™ .

G
A% G(74) =
\7714A
G(
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K’ — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idx — F;G and n': Idk — F’;G, respectively, then
there exists a natural isomorphism 7: F — F’ such that n;(7-G) =n’.

Proof: For each A € |K|, 74 = (7/4)7.

GE(A) ) 00 T ACl :
% ut also 7,7 = (na)” .

A G(7a) = 74  Then show:
\ 7G)a — TasTy = idp(ay and T4 ima = idp(a)

/

Uy G(
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K' — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F' such that n;(7-G) =1n’.

Proof: For each A € |K|, 74 = (7/4)*.

G(F(A)) O A
% ut also 7, = (na)™ .

A G(7a) = T4  1hen show:
\ (T.G)A - TA;Tgl — ZdF(A) and 7'21;7'14 = ZdF’(A)

/ . ;- :

Uy G(F'(A4)) F/(A) — 7: F — F'’ is a natural transformation
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Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K' — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F' such that n;(7-G) =1n’.

Proof: For each A € |K|, 74 = (7/4)*.

G(F(A)) O A
% ut also 7, = (na)™ .

A G(7a) = T4  1hen show:
\ (T.G)A - TA;Tgl — ZdF(A) and 7'21;7'14 = ZdF’(A)

/ . ;- :

Uy G(F'(A4)) F/(A) — 7: F — F'’ is a natural transformation

— For f: A= B, F(f) = (fms)*

Andrzej Tarlecki: Category Theory, 2021 - 118 -




Uniqueness of left adjoints'

Theorem: A left adjoint to any functor G: K' — K, if exists, is determined
uniquely up to a natural isomorphism: if F: K — K’ and F': K — K’ are left
adjoint to G with units n: Idx — F;G and n': Idx — F’;G, respectively, then
there exists a natural isomorphism 7: F — F' such that n;(7-G) =1n’.

Proof: For each A € |K|, 74 = (7/4)*.

G(F(A)) O A
% ut also 7, = (na)™ .

A G(7a) = T4  1hen show:
\ (T.G)A - TA;Tgl — ZdF(A) and 7'21;7'14 = ZdF’(A)

/ . ;- :

Uy G(F'(A4)) F/(A) — 7: F — F'’ is a natural transformation

— For f: A— B, F(f) = (fims)".
— For g1,92: F(A) — e, if n4;G(g1) = na;G(g2) then g1 = ga.
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Left adjoints and colimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.
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Left adjoints and colimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: F is cocontinuous (preserves colimits).
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Left adjoints and colimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: F is cocontinuous (preserves colimits).

Proof:
K K’
x—3h , Gg(Y) F(X)—D" oy
A A A A
On, F(
1 EANEE AN 1A AN AN
D \ %Dn;G}&Q \ %n \ F(D)
Dn. >0 Dn). >0

Andrzej Tarlecki: Category Theory, 2021 - 119 -



Given a diagram D in K
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(S N
b \ \\
Doy >e

Given a diagram D in K with colimit a: D — X,
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AN AN

an \. O\ F(a,) \

N O\ N\
< \\ \0 P \ \.

D \. ‘>. \. \-. F(D)
D, D)

Given a diagram D in K with colimit a: D — X,
F(a): F(D) — F(X) is a colimit of F(D) in K’
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Ax \

T NS (A AN
(N AN e
Dn. -0 Dn). >0

Given a diagram D in K with colimit a: D — X,
F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K’.
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=
o
=

Ax \

T NS (A AN
(N AN e
Dn. -0 Dn). >0

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)),
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K
X G(Y)
A A
7T 7 I
D \ /DR;G(XQ
DY >

F(X) Y
A A
F(
(A VAN
NZN
D) >

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’

K/

Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D.
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X G(Y) F(X) Y
A A A A
Qn F(
1A VAN 1A VAN
o oy AN o
Dn. -0 Dn). >0

Given a diagram D in K with colimit a: D — X,
F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D.

Fact: For any functors F1,Fs: K1 — Ky, natural transformation 7: F1 — F5 and
a diagram D in Ky, 7p: F1(D) — F2(D) is a diagram morphism, where
D = <TDnZ Fl(Dn) — F2(Dn)>nEN
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X G(Y) F(X) Y
A A A A
Qn F(
1A VAN 1A VAN
o oy AN o
Dn. -0 Dn). >0

Given a diagram D in K with colimit a: D — X,
F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D.

Fact: For any functors ¥1,Fo: K1 — Ko, natural transformation 7: F1 — Fo and
a diagram D in Ky, 7p: F1(D) — F2(D) is a diagram morphism, where

™ = (Tp, : F1(Dn) = F2(Dy)),cn- Then for any cocone v: Fo(D) — A in Ky,
mpiy: F1(D) — A is a cocone in Ky as well.

Andrzej Tarlecki: Category Theory, 2021 - 119 -



x—3ah 5 G(Y) F(X) Y
A A A /
Qn F(
1A VAN 1A VAN
o ot AN o
Dn. >0 Dn). >0

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(5).
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
o Y ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h¥) = h.
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
N ! ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h¥) = h. It holds then:

F(a);h? =3
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
N ! ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h¥) = h. It holds then:

F(a);h? =3
since: 7p;G(F(a);h#) = np;G(F(a));G(h*) = a;nx;G(h#) = a;h = np;G(B).
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
o Y ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h¥) = h. It holds then:

F(o);h? = f
Consider any g: F(X) — Y such that F(a);g = 5.
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
N ! ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h¥) = h. It holds then:

F(a);h? =3
Consider any g: F(X) — Y such that F(a);g = 8. Then nx;G(g9) = h: X — G(Y),
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
N ! ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) —» F(X) is a colimit of F(D) in K’
Let 3: F(D) — Y be a cocone on F(D) in K'. Then G(8): G(F(D)) - G(Y) is a
cocone on G(F (D)), and np;G(B): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h*: F(X) — Y such
that nx;G(h*) = h. It holds then:

F();h™ =3
Consider any g: F(X) — Y such that F(«a);g = 8. Then nx;G(g9) = h: X — G(Y),
since a;nx;G(g) = np;G(F());G(g) = np;G(F(a):g) = np;G(B) = a;h,
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x—3h , G(Y) FX)—h" oy
A A A A
tn F(
1A VAN 1A VAN
o N oy AN o
N ! ot Y

Given a diagram D in K with colimit a: D — X,

F(a): F(D) — F(X) is a colimit of F(D) in K’
Let 5: F(D) — Y be a cocone on F(D) in K'. Then G(8): G(F(D)) — G(Y) is a
cocone on G(F (D)), and np;G(8): D — G(Y) is a cocone on D. We get unique
h: X — G(Y) such that a;h = np;G(B). Consider the unique h#: F(X) — Y such
that nx;G(h*) = h. It holds then:

F(o);h?* = f
Consider any g: F(X) — Y such that F(a);g = 8. Then nx;G(g9) = h: X — G(Y),
and so g = h*".
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Left adjoints and colimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: F is cocontinuous (preserves colimits).

Proof:
K K’
x—3h , Gg(Y) F(X)—D" oy
A A A A
On, F(
1 EANEE AN 1A AN AN
D \ %Dn;G}&Q \ %n \ F(D)
Dn. >0 Dn). >0

Andrzej Tarlecki: Category Theory, 2021 - 119 -



Left adjoints and Iimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.
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Left adjoints and Iimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: G is continuous (preserves limits).
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Left adjoints and Iimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: G is continuous (preserves limits).

Proof:
K/
X<  F(Y)
° o< /\ °
(o NZNL
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Given a diagram D in K’
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Given a diagram D in K’ with limit a: X — D,
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K K/’

x\\ . X5\
T NI 7 NS
Y NN

D,) Dy,

Given a diagram D in K’ with limit a: X — D,
G(a): G(X) = G(D) is a limit of G(D) in K
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K/

3 N
N
/N [ 7. NI
VN NN\ )

-0 L

Given a diagram D in K’ with limit a: X — D,
G(a): G(X) = G(D) is a limit of G(D) in K
Let 5: Y — G(D) be a cone on G(D) in K.
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Y F(Y)
G(
/\ { /\ {
AN ZANDE
—y )M

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’
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Y F(Y)
G(
/\ . A
i\ :
— —

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, since for any e: n — m in D, 87;D, = 87,
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Y F(Y)
G(
/\ ! !
2N :
— —

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, since for any e: n — m in D, 87;D, = 37 because

UY;G(B#JDG) — nY;G(Q#);G(De) — ﬁn;G(De) — ﬁm — nY;G(ﬂﬁ)
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Y F(Y)
G(
/\ . A
i\ :
— —

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K, and so we get a unique h: F(Y) — X such that h;a = (8)7.
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F(Y)
G(
/\ . .
2N :
— —

Given a diagram D in K’ with limit a: X — D,
G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D

in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y - G(X).
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F(Y)
G(
/ \ . .
2N b
— —

Given a diagram D in K’ with limit a: X — D,
G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D

in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y — G(X). It holds then:

(ny;G(h));G(a) =
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G(X) < DGy F(Y)
G(
/\ { .
VAN :
e ~

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y — G(X). It holds then:
(ny;G(h));G(a) =
since (1y;G(h));G(a) = ny;G(h;a) = nv;G((8)%) = B.
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G(X) < DGy F(Y)
G(
/\ { .
VAN :
e ~

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y — G(X). It holds then:
(ny;G(h));G(a) =
Consider any f: Y — G(X) such that f;G(«a) = 6.
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G(X) < DGy F(Y)
G(
/\ { .
VAN :
e ~

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y — G(X). It holds then:
(ny;G(h));G(a) =
Consider any f: Y — G(X) such that f;G(a) = . Then f#: F(Y) — X and
f#a=(8)7,
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Y F(Y)
o< / \ ° °
NZN ’
y — —

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let B: Y — G(D) be a cone on G(D) in K. Then (8)7: F(Y) — D is a cone on D
in K, and so we get a unique h: F(Y) — X such that h;a = (8)%. Consider
ny;G(h): Y — G(X). It holds then:
(ny;G(h));G(a) = 5
Consider any f: Y — G(X) such that f;G(«)

f#ia = (B)7, since ny;G(f7ia) = ny;G(f7);

= . Then f#: F(Y) — X and
G( ) = fiG(a) = B =ny;G((B)7)
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G(X) < DGy F(Y)
G(
/\ { .
VAN D
~ .

Given a diagram D in K’ with limit a: X — D,

G(a): G(X) = G(D) is a limit of G(D) in K
Let 3: Y — G(D) be a cone on G(D) in K. Then (8)*: F(Y) — D is a cone on D
in K’, and so we get a unique h: F(Y) — X such that h;a = (3)*. Consider
ny;G(h): Y — G(X). It holds then:
(ny;G(h));G(a) = 3
Consider any f: Y — G(X) such that f;G(a) = 5. Then f#: F(Y) — X and
f#:a = (B)7, and so f# = h, which yields f = ny;G(h).
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Left adjoints and Iimits'

Let F: K — K’ be left adjoint to G: K’ — K with unit n: Idg — F;G.

Theorem: G is continuous (preserves limits).

Proof:
K/
X<  F(Y)
° o< /\ °
(o NZNL
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category,.
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |K'| with morphisms f;: A — G(X;),i€Z)
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), @ € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, i € Z, we have h = f;;G(f).
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), @ € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, i € Z, we have h = f;;G(f).

Proof:
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), @ € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, i € Z, we have h = f;;G(f).

Proof:

“=": Let F: K — K’ be left adjoint to G with unit : Idx — F;G. Then 1.
follows by the previous fact, and for 2. just put Z = {x}, Xy = F(A), and
fx =na: A— G(F(4))
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), @ € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, i € Z, we have h = f;;G(f).

Proof:

“=": Let F: K — K’ be left adjoint to G with unit : Idx — F;G. Then 1.
follows by the previous fact, and for 2. just put Z = {x}, Xy = F(A), and
fx =na: A— G(F(4))

“<": It is enough to show that for each A € |K| the comma category (C 4, G) has
an initial object.
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Existence of left adjoints'

Theorem: Let K’ be a locally small complete category. Then a functor G: K' — K
has a left adjoint iff

1. G is continuous, and

2. for each A € |K| there exists a set {f;: A - G(X;) | i € L} (of objects
X; € |[K'| with morphisms f;: A — G(X;), @ € Z) such that for each B € |K/|
and h: A — G(B), for some f: X; — B, i € Z, we have h = f;;G(f).

Proof:

“=": Let F: K — K’ be left adjoint to G with unit : Idx — F;G. Then 1.
follows by the previous fact, and for 2. just put Z = {x}, Xy = F(A), and
fx =na: A— G(F(4))

“<": It is enough to show that for each A € |K| the comma category (C 4, G) has

an initial object. Under our assumptions, (C4, G) is complete. The rest follows
by the next fact.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.
Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K,
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.
e Given ¢g1,92: £ — B,
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given ¢1,¢92: E — B, take their equaliser ¢’: £/ — F.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K]| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’. Then hie';e: P — P,

Andrzej Tarlecki: Category Theory, 2021 - 121 -



On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K]| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’. Then h;e/;e: P — P, and by the construction of
e: E— P, e;h;e’;e = e;idp = idg;e.
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K]| be a product of Z, with projections px: P — X for X € T.

Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’. Then h;e/;e: P — P, and by the construction of

e: E— P, e;h;e’;e = e;idp = idg;e. Now, since e is mono, e;h;e’ = idg,
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K]| be a product of Z, with projections px: P — X for X € T.
Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’. Then h;e/;e: P — P, and by the construction of
e: E— P, e;h;e’;e = e;idp = idg;e. Now, since e is mono, e;h;e’ = idg, and so
e’ is a mono retraction, hence an isomorphism,
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On the existence of initial objects'

Theorem: A locally small complete category K has an initial object if there exists a
set of objects T C |K]| such that for all B € |K|, for some X € T thereis f: X — B.

Proof: Let P € |K]| be a product of Z, with projections px: P — X for X € T.
Let e: E — P be an “equaliser” (limit) of all morphisms in K(P, P).
Then E is initial in K, since for any B € |K|:

e epx;f: E— B, where f: X — B for some X € 1.

e Given g1,g92: E — B, take their equaliser ¢’: E' — E. As in the previous item,
we have h: P — E’. Then h;e/;e: P — P, and by the construction of
e: E— P, e;h;e’;e = e;idp = idg;e. Now, since e is mono, e;h;e’ = idg, and so
e’ is a mono retraction, hence an isomorphism, which proves g; = g».
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Cofree objectsI

Consider any functor F: K — K’
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Cofree objectsI

Consider any functor F: K — K’

Definition: Given an object A’ € |K’

7

A/
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Cofree objectsI

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A" w.r.t. F is

A/
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Cofree objects'

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A’ w.r.t. F is a
K-object A € |K| together with a K-morphism ¢ 4:: F(A) — A’ (called counit
morphism)
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Cofree objects'

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A’ w.r.t. F is a
K-object A € |K| together with a K-morphism ¢ 4:: F(A) — A’ (called counit
morphism) such that given any K-object B € |K| with K'-morphism g: F(B) — A,

K L - K’
7
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Cofree objects'

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A’ w.r.t. F is a
K-object A € |K| together with a K-morphism ¢ 4:: F(A) — A’ (called counit
morphism) such that given any K-object B € |K| with K'-morphism g: F(B) — A,
for a unique K-morphism g*: B — A we have

F(g#)iea =g

K L - K’

3![9# F(g7)
B

F(B)
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Cofree objects'

Consider any functor F: K — K’

Definition: Given an object A’ € |K'|, a cofree object under A’ w.r.t. F is a
K-object A € |K| together with a K-morphism ¢ 4:: F(A) — A’ (called counit
morphism) such that given any K-object B € |K| with K'-morphism g: F(B) — A,
for a unique K-morphism g*: B — A we have

F(97)iear = g
K E - K’
Paradigmatic example:
Function spaces, coming soon | g#*  F(g#)
g
B F(B)
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them.

Int ? > Real
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7| € Int is cofree under r w.r.t. i.

Int ? > Real
<
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7| € Int is cofree under r w.r.t. i.
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7| € Int is cofree under r w.r.t. i.

Int !

> Real
<

| ] =

VI V1

\N

&
&
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set]|.
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|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
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e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,
and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € [Set|, Fx(A) =Ax X
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,

and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € [Set|, Fx(A) =Ax X

— for any function f: A—- B, Fx(f): Ax X — B x X is a function given by
Fx(f)({a,2)) = (f(a),z).
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,

and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € [Set|, Fx(A) =Ax X

— for any function f: A—- B, Fx(f): Ax X — B x X is a function given by
Fx(f)({a,2)) = (f(a),z).

Then for any set A € |Set|, the powerset A* € |Set| (i.e., the set of all functions
from X to A) is a cofree objects under A w.r.t. Fx.
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,

and ¢ as a functor between them. For any real r € Real, the floor of r,
|7| € Int is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € [Set|, Fx(A) =Ax X

— for any function f: A—- B, Fx(f): Ax X — B x X is a function given by
Fx(f)({a,z)) = {f(a), ).

Then for any set A € |Set|, the powerset A* € |Set| (i.e., the set of all functions

from X to A) is a cofree objects under A w.r.t. Fx. The counit morphism

ea: Fx(AX) = A% x X — Ais the evaluation function: e4((f,z)) = f(z).
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Set > Set

AX AX x X “A - A
q

B B x X
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Set > Set
AX AX x X =4 - A
# —|A
g (9) 7
B B x X

where A(g: B x X — A) = \b:B.(Ax:X.g(b,x)): B — A*
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Set

AX AX % X =A - A

g7 =|Alg)  Ag)|x idx

B B x X

where A(g: B x X — A) = \b:B.(Ax:X.g(b,x)): B — A*
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Examples I

e Consider inclusion i: Int — Real, viewing Int and Real as (thin) categories,

and ¢ as a functor between them. For any real r € Real, the floor of r,
|7] € Int is cofree under r w.r.t. 7.

What about cofree objects w.r.t. the inclusion of rationals into reals?

e Fix a set X € |Set|. Consider functor Fx: Set — Set defined by:
— for any set A € [Set|, Fx(A) =Ax X

— for any function f: A—- B, Fx(f): Ax X — B x X is a function given by
Fx(f)({a,z)) = {f(a), ).

Then for any set A € |Set|, the powerset A* € |Set| (i.e., the set of all functions

from X to A) is a cofree objects under A w.r.t. Fx. The counit morphism

ea: Fx(AX) = A% x X — Ais the evaluation function: e4((f,z)) = f(z).

A generalisation to deal with exponential objects will (not) be discussed later
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Facts '

Dual to those for free objects:
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.
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an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.

e The function (L)7: K'(F(B),A’) — K(B, A) is bijective for each B € |K|.
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.
e The function (L)7: K'(F(B),A’) — K(B, A) is bijective for each B € |K|.
e For any morphisms ¢g1,92: B — A in K, g1 = g2 iff F(g1);e4 = F(g2);e.
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K| cofree under A" w.r.t. F with counit e4/: F(A) —» A’

e Cofree objects under A" w.r.t. F are the terminal objects in the comma category
(F,C4s), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.
e The function (L)7: K'(F(B),A’) — K(B, A) is bijective for each B € |K|.
e For any morphisms ¢g1,92: B — A in K, g1 = g2 iff F(g1);e4 = F(g2);e.

Limits as cofree objects'
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K]| cofree under A" w.r.t. F with counit £4/: F(A) - A"

e Cofree objects under A’ w.r.t. F are the terminal objects in the comma category
(F,Ca/), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.
e The function ()7 : K'(F(B),A’) — K(B, A) is bijective for each B € |K|.
e For any morphisms g1,92: B — A in K, g1 = g2 iff F(g1);e4 = F(g2);e’.

Limits as cofree objects'

Theorem: In a category K, given a diagram D of shape G(D), the limit of D in K

: : . D : D
Is a cofree object under D w.r.t. the diagonal functor Af{( ) K > Dlagfé ).
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Facts '

Dual to those for free objects: Consider a functor F: K — K’, object A’ € |K'|, and
an object A € |K]| cofree under A" w.r.t. F with counit £4/: F(A) - A"

e Cofree objects under A’ w.r.t. F are the terminal objects in the comma category
(F,Ca/), where C4/: 1 — K’ is the constant functor.

e A cofree object under A’ w.r.t. F, if exists, is unique up to isomorphism.
e The function ()7 : K'(F(B),A’) — K(B, A) is bijective for each B € |K|.
e For any morphisms g1,92: B — A in K, g1 = g2 iff F(g1);e4 = F(g2);e’.

Limits as cofree objects'

Theorem: In a category K, given a diagram D of shape G(D), the limit of D in K

: : . D : D
Is a cofree object under D w.r.t. the diagonal functor Af{( ) K > Dlagfé ).

Spell this out for terminal objects, products, equalisers, and pullbacks

Andrzej Tarlecki: Category Theory, 2021 - 124 -



Right adjoints'

Consider a functor F: K — K’.
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Right adjoints'

Consider a functor F: K — K’.

Theorem: Assume that for each object A’ € |K'| there is a cofree object under A’
w.r.t. F,
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Right adjoints'

Consider a functor F: K — K’.

Theorem: Assume that for each object A" € |K'| there is a cofree object under A’

w.r.t. ¥, say G(A") € |K'| is cofree under A" with counit € or: F(G(A")) — A’.

K - K’
G(A) F(G(A')) —=& - A’
G(B) F(G(B") —=~ -

Andrzej Tarlecki: Category Theory, 2021

- 125 -



Right adjoints'

Consider a functor F: K — K’.

Theorem: Assume that for each object A" € |K'| there is a cofree object under A’

w.r.t. ¥, say G(A") € |K'| is cofree under A" with counit € or: F(G(A")) — A’.
Then the mappings:

— (A" € [K'|) = (G(4") € [K])
— (g: B' = A) = ((ep9)7: G(B') = G(4))
form a functor G: K’ — K.

K g - K’
G(4') F(G(A)) —= - A’
G(g) =
L I 7
G(B) F(G(B) —~ -
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Right adjoints'

Consider a functor F: K — K’.

Theorem: Assume that for each object A" € |K'| there is a cofree object under A’

w.r.t. ¥, say G(A") € |K'| is cofree under A" with counit € or: F(G(A")) — A’.
Then the mappings:

- (A €|K')) = (G(4A) € [K])
— (g: B' = A) = ((ep9)7: G(B') = G(4))

form a functor G: K’ — K. Moreover, ¢: G;F — Idk- is a natural transformation.

K g - K’
G(4') F(G(A)) —= - A’
G(g) =
L I 7
G(B) F(G(B) —=~ -
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Right adjoints'
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Right adjoints'

Definition: A functor G: K’ — K is right adjoint to (a functor) F: K — K’ with
counit (natural transformation) e: G;F — Idy if for all objects A" € |K/|,
G(A') € |K]| is cofree under A" with counit morphism € 4: F(G(A')) — A’
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Right adjoints'

Definition: A functor G: K’ — K is right adjoint to (a functor) F: K — K’ with
counit (natural transformation) e: G;F — Idy if for all objects A" € |K/|,
G(A') € |K]| is cofree under A" with counit morphism € 4: F(G(A')) — A’

Theorem: A right adjoint to any functor F: K — K’, if exists, is determined
uniquely up to a natural isomorphism: if G: K - K and G': K’ — K are right
adjoint to F with counits ¢: G;F and £’ : G';F, respectively, then there exists a
natural isomorphism 7: G — G’ such that (7-F);e’ = €.
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Right adjoints'

Definition: A functor G: K’ — K is right adjoint to (a functor) F: K — K’ with
counit (natural transformation) e: G;F — Idy if for all objects A" € |K/|,
G(A') € |K]| is cofree under A" with counit morphism € 4: F(G(A')) — A’

Theorem: A right adjoint to any functor F: K — K’, if exists, is determined
uniquely up to a natural isomorphism: if G: K - K and G': K’ — K are right
adjoint to F with counits ¢: G;F and £’ : G';F, respectively, then there exists a
natural isomorphism 7: G — G’ such that (7-F);e’ = €.

Theorem: Let G: K’ — K be right adjoint to F: K — K’ with counit
e: G;F — Idk/. Then G is continuous (preserves limits) and ¥ is cocontinuous

(preserves colimits).
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From left adjoints to adjunctions'
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idg — F;G.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

o (G)i(e-G) = ida
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(A) G(F(G(A))  F(G(4)
1dg (A7) G(ea) EAr
G(A') o
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(A) G(F(G(A))  F(G(4)
idg(A/) G(€A/) E A’
G(A) A

o (nF);(F-e)=idp
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

GG e G - GRGW))  FGA)
id(;(A/) G(€A/) E A’
G(A') M
o (nF):(F-c) — idy G(F(4)  F(G(F(A) —— , p(4)
A F(UA) ZdF(A)
A F(A)
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk: such that:

NG (A" .

¢ (Gn)i(eG) = idg G(4) G(F(G(4)))  F(G(A)
idG (AN G(ear) £ A/
G(A) W
o (nF):(F-¢) = idp G(F(4)  F(G(F(A) —— , p(4)
4 F(na) 7
Proof (idea): A F(A)

Put eqr = (idg(A/))#.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(A) G(F(G(A))  F(G(4)
idg(A/) G(€A/) E A’
G(A) A

e: G;F — Idk- is indeed natural,

Proof (idea):
Put eqr = (idg(A/))#.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(4) G(F(G(A))  F(G(A)
id(;(A/) G(€A/) E A’
G(A) A

e: G;F — Idk- is indeed natural, i.e. for f': A" — B', ea;f' = F(G(f')):en
F(G(A) >4

F(G(f)) |f

Proof (idea):

| F(G(B'))—E%»p
Put eyqr = (ZdG(A’))#- ( ( ))
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(4) G(F(G(A))  F(G(A)
id(;(A/) G(€A/) E A’
G(A) A

e: G;F — Idk- is indeed natural, i.e. for f': A" — B', ea;f' = F(G(f')):en

This holds since ng(A/);G(eA/;f’) = (ng(A/);G(€A'));G(f/) = G(f')

Proof (idea):
Put eqr = (idg(A/))#.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(4) G(F(G(A))  F(G(A)
id(;(A/) G(€A/) E A’
G(A) A

e: G;F — Idk- is indeed natural, i.e. for f': A" — B', ea;f' = F(G(f')):en

This holds since ng(ar;G(earsf') = (nga;Glea));G(f") = G(f’) and
Naan;GEF(G(f))ep ) = (nau);GEF(G(f))));G(ep ) =
(G(f")ina(s);Ges) = G(f').

Proof (idea):
Put e 4 = (idg(A/))#.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk' such that:

/ NG (A g / /
o (G)i(eG) = idg G(4) G(F(G(A))  F(G(A)
id(;(A/) G(€A/) E A’
G(A') )

e: G;F — Idk is indeed natural, i.e. for f': A" = B, ear;f' = F(G(f'));ep.
This holds since ngar);G(earsf') = (Naar);Glear));G(f) = G(f') and
nea);GIE(G(f))en) = (g GF(G(f)))):Glep) =

(G (e Glew) = G(f) GA) i+ GE(G(A)
Proof (idea): lG(f/) lG(F(G(f,)))
Put ear = (s )™ G(B) S GF(G(B)
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk: such that:

NG (A" .

¢ (Gn)i(eG) = idg G(4) G(F(G(4)))  F(G(A)
idG (AN G(ear) £ A/
G(A) W
o (nF):(F-¢) = idp G(F(4)  F(G(F(A) —— , p(4)
4 F(na) 7
Proof (idea): A F(A)

Put eqr = (idg(A/))#.
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk: such that:

. (G)i(e-G) = idg G(4) — Y GF(G(A)))  F(G(A)
idG (AN G(ear) £ A/
G(A") "
e FrEe) gy GEA) FGEM) — s F(4)
nA F(na) 7
This holds since: A F(A)

77A5G(F(77A)55F(A)) = (77A§G(F(77A)))§G(5F(A)) = (ﬂA;ﬁG(F(A)));G(f?F(A)) —NA
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idx — F;G. Then there is a natural transformation €: G;F — Idk: such that:

o (G1);(e-G) = idg 4 = G(F(4))
lm‘ G(F(ﬂA))l

G(F(4)) —SEAL G(F(G(F(A))))

EF(A)

o (F);(Fe) = idy G(F(4))  F(G(F(4))) -~ F(A)
A F(n4) 7"
A F(A)

This holds since:

na;G(F(na)iera)) = Ma;G(F(a)));Glera)) = Mamara)));Glera)) = na
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From left adjoints to adjunctions'

Theorem: Let F: K — K’ be left adjoint to G: K' — K with unit
n: Idk — F;G. Then there is a natural transformation €: G;F — Idk: such that:

NG (A" .

¢ (Gn)i(eG) = idg G(4) G(F(G(4)))  F(G(A)
idG (AN G(ear) £ A/
G(A) W
o (nF):(F-¢) = idp G(F(4)  F(G(F(A) —— , p(4)
4 F(na) 7
Proof (idea): A F(A)

Put eqr = (idg(A/))#.
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From right adjoints to adjunctions'

Theorem: Let G: K' — K be right adjoint to F: K — K’ with counit
e: G;F — Idk/. Then there is a natural transformation n: Idg — F;G such that:

NG (A"

o (G)i(e-G) = idg G(4) ~ G(F(G(4))  F(G(A))
idG (AN G(ear) £ A/
G(A) v
o (nF):(F-¢) = idp G(F(4)  F(G(F(A) —— , p(4)
4 F(na) 7
Proof (idea): A F(A)

Put na = (idp(a))*.

Andrzej Tarlecki: Category Theory, 2021

- 128 -



From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
° (n-F);(F-s) — Zd]_:‘
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
o (nF);(F-¢)=1idp
Then:
o F is left adjoint to G with unit 7.

e G /s right adjoint to F with counit €.
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
o (nF);(F-¢)=1idp
Then:
o F is left adjoint to G with unit 7.

e G /s right adjoint to F with counit €.

Proof: For A€ |K|, B’ € |K'| and f: A — G(B’), define f#* = F(f):ep.
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
o (nF);(F-¢)=1idp
Then:
o F is left adjoint to G with unit 7.

e G /s right adjoint to F with counit €.

Proof: For A € |K|, B' € [K'| and f: A — G(B'), define f# = F(f):ep:. Then
f#:F(A) — B’ satisfies n4:G(f7) = f
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
o (nF);(F-¢)=1idp
Then:
o F is left adjoint to G with unit 7.

e G /s right adjoint to F with counit €.

Proof: For A € |[K|, B’ € |[K’'| and f: A — G(B’), define f# = F(f);ep:. Then
f7:F(A) — B’ satisfies n4;G(f#) = f — indeed:
na;G(F(f)ien) = MaiG(F(f)));Gles) = fi(nas):Gles)) = f
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg

o (1F)(F) = ide A~ GE@)
Then lf (f))l
o F is left adjoint to G with unit n. G(B') na(B) G(F(G(B")))

e G /s right adjoint to F with counit €.
Proof: For A € |[K|, B’ € |[K’'| and f: A — G(B’), define f# = F(f);ep:. Then
f#: F(A) — B’ satisfies n4;G(f7) = f — indeed:
na;G(F(f)ien) = a;G(F(f)));Glep) = fi(na):Glep)) = f
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(e-G) = idg
o (nF);(F-¢)=1idp
Then:
o F is left adjoint to G with unit 7.

e G /s right adjoint to F with counit €.

Proof: For A€ |K|, B’ € |K'| and f: A — G(B’), define f#* = F(f);ep:. Then
f#: F(A) — B’ satisfies n4;G(f?) = f and is the only such morphism in
K'(F(A),B’).
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(eG) = idg
o (n-F);(F-e) = idp
Then:
o F is left adjoint to G with unit 7.

e G is right adjoint to F with counit €.

Proof: For A € |[K|, B’ € |K’'| and f: A — G(B’), define f# = F(f);ep:. Then

f#:F(A) — B’ satisfies n4:G(f#) = f and is the only such morphism in

K'(F(A),B’). — since for any g: F(A) — B’ such that n4;G(g) = f, we have:
F(f)iep = F(na;G(9))en = F(na);(F(G(g))ien) = (F(na)era))ig = g
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and €: G;F — Idk- such that:

e (Gn)i(eG) = idg

F(G(F(4)) > F(4)
o (n-F);(F-e) = idp
Then: J’F(G(g)) J'g
o F is left adjoint to G with unit 1. F(G(B') —E—» p’

e G is right adjoint to F with counit €.

Proof: For A € |[K|, B’ € |K’'| and f: A — G(B’), define f# = F(f);ep:. Then

f#:F(A) — B’ satisfies n4:G(f#) = f and is the only such morphism in

K'(F(A),B’). — since for any g: F(A) — B’ such that n4;G(g) = f, we have:
F(f)iep = F(na;G(9))en = F(na);(F(G(g))ien) = (F(na)era))ig = g
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and e: G;F — Idk- such that:

e (Gn)i(eG) = idg
o (nF);(F-¢)=1dp
Then:
o F /s left adjoint to G with unit 7.

e G s right adjoint to F with counit €.

Proof: For A€ |K|, B’ € |K'| and f: A — G(B’), define f#* = F(f);ep:. Then
f#: F(A) — B’ satisfies n4;G(f?) = f and is the only such morphism in

K'(F(A),B’). This proves that F(A) is free over A with unit 4, and so indeed, F

is left adjoint to G with unit 7.
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From adjunctions to left and right adjoints'

Theorem: Consider two functors F: K — K’ and G: K’ — K with natural
transformations n: Idx — F;G and e: G;F — Idk- such that:

e (Gn)i(eG) = idg
o (nF);(F-¢)=1dp
Then:
o F /s left adjoint to G with unit 7.

e G s right adjoint to F with counit €.

Proof: For A€ |K|, B’ € |K'| and f: A — G(B’), define f#* = F(f);ep:. Then
f#: F(A) — B’ satisfies n4;G(f?) = f and is the only such morphism in
K'(F(A),B’). This proves that F(A) is free over A with unit 14, and so indeed, F
is left adjoint to G with unit 7.

The proof that G is right adjoint to F with counit ¢ is similar.
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Adjunctions
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Adjunctions I

Definition: An adjunction between categories K and K’ is

<F7 G7 Tl? 6~>

where F: K — K’ and G: K’ — K are functors, and n: Idgx — F;G and
e: G;F — Idk natural transformations such that:

o (G):(e-G) = idg
o (nF);(F-e)=idp
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(F,G,n,¢)

where F: K — K’ and G: K’ — K are functors, and n: Idgx — F;G and
e: G;F — Idk natural transformations such that:

o (Gn)i(eG) = idg
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where F: K — K’ and G: K’ — K are functors, and n: Idgx — F;G and
e: G;F — Idk natural transformations such that:

e (G1n);(eG)=1idg
o (n-F);(F-e) = idp
Equivalently, such an adjunction may be given by:

e Functor G: K’ — K and for each A € |K], a free object over A w.r.t. G.
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o (nF);(F-e) = idp
Equivalently, such an adjunction may be given by:
e Functor G: K’ — K and for each A € |K], a free object over A w.r.t. G.
e Functor G: K’ — K and its left adjoint.

e Functor F: K — K’ and for each A’ € |K’|, a cofree object under A" w.r.t. F.

Andrzej Tarlecki: Category Theory, 2021 - 130 -



Adjunctions I

Definition: An adjunction between categories K and K’ is
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Definition: An adjunction between categories K and K’ is

where F: K — K’ and G: K’ — K are functors, and n: Idx — F;G and

Adjunctions I

(F,G,n,¢)

e: G;F — Idk’ natural transformations such that:

e (Gn);(eG) =ida
o (nF);(F-e)=idp

Notation:

(F,G,n,e): K—> K’

FAG
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Adjunctions I

Definition: An adjunction between categories K and K’ is

(F,G,n,¢)

where F: K — K’ and G: K’ — K are functors, and n: Idx — F;G and
e: G;F — Idk natural transformations such that:

e (Gn)i(eG) = idg
o (n-F);(F-e) = idp

Exercises '

e Yet another way to present adjunctions between locally small categories:

e a natural isomorphism (_)#: Homgk (_, G(_)) — Homy (F(_),_)
(: K? x K’ — Set)
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Definition: An adjunction between categories K and K’ is

where F: K — K’ and G: K’ — K are functors, and n: Idgx — F;G and

Adjunctions I

(F,G,n,¢)

e: G;F — Idk natural transformations such that:

o (Gn)i(eG) = idg
o (n'F);(Fe)=idp

e Adjunctions compose: given adjunctions (F,G,n,e): K — K’ and

Exercises '

(F',G',n',e"): K' — K" define their composition

(F.F.G"G, , ): K = K"
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Adjunctions I

Definition: An adjunction between categories K and K’ is

(F,G,n,¢)

where F: K — K’ and G: K’ — K are functors, and n: Idgx — F;G and
e: G;F — Idk natural transformations such that:

o (Gn)i(eG) = idg
o (n'F);(Fe)=idp

Exercises '

e Adjunctions compose: given adjunctions (F,G,n,e): K — K’ and
(F',G',n',e"): K' — K" define their composition
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