Adjunctions

Recall:

Term algebras

Theorem: For any S-sorted set X of variables, Σ -algebra A and valuation $v\colon X\to |A|$, there is a unique Σ -homomorphism $v^\#\colon T_\Sigma(X)\to A$ that extends v, so that

$$id_{X \hookrightarrow |T_{\Sigma}(X)|}; v^{\#} = v$$

Consider any functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$

Definition:

Consider any functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$,

 \boldsymbol{A}

Consider any functor $G \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G}

A

Consider any functor $G \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G} is a \mathbf{K}' -object $A' \in |\mathbf{K}'|$ together with a \mathbf{K} -morphism $\eta_A \colon A \to \mathbf{G}(A')$ (called unit morphism)

$$\mathbf{K} \stackrel{\mathbf{G}}{\longleftarrow} \mathbf{K}$$

$$A \stackrel{\eta_A}{\longrightarrow} \mathbf{G}(A') \qquad A'$$

Consider any functor $G \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G} is a \mathbf{K}' -object $A' \in |\mathbf{K}'|$ together with a \mathbf{K} -morphism $\eta_A \colon A \to \mathbf{G}(A')$ (called unit morphism) such that given any \mathbf{K}' -object $B' \in |\mathbf{K}'|$ with \mathbf{K} -morphism $f \colon A \to \mathbf{G}(B')$,

Consider any functor $G \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G} is a \mathbf{K}' -object $A' \in |\mathbf{K}'|$ together with a \mathbf{K} -morphism $\eta_A \colon A \to \mathbf{G}(A')$ (called unit morphism) such that given any \mathbf{K}' -object $B' \in |\mathbf{K}'|$ with \mathbf{K} -morphism $f \colon A \to \mathbf{G}(B')$, for a unique \mathbf{K}' -morphism $f^\# \colon A' \to B'$ we have

$$\eta_A; \mathbf{G}(f^\#) = f$$

Consider any functor $G \colon \mathbf{K}' \to \mathbf{K}$

Definition: Given an object $A \in |\mathbf{K}|$, a free object over A w.r.t. \mathbf{G} is a \mathbf{K}' -object $A' \in |\mathbf{K}'|$ together with a \mathbf{K} -morphism $\eta_A \colon A \to \mathbf{G}(A')$ (called unit morphism) such that given any \mathbf{K}' -object $B' \in |\mathbf{K}'|$ with \mathbf{K} -morphism $f \colon A \to \mathbf{G}(B')$, for a unique \mathbf{K}' -morphism $f^\# \colon A' \to B'$ we have

$$\eta_A; \mathbf{G}(f^\#) = f$$

Paradigmatic example:

Term algebra $T_{\Sigma}(X)$ with unit $id_{X\hookrightarrow |T_{\Sigma}(X)|}\colon X\to |T_{\Sigma}(X)|$ is free over $X\in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|_|\colon \mathbf{Alg}(\Sigma)\to \mathbf{Set}^S$

• Consider inclusion $i: Int \hookrightarrow Real$, viewing Int and Real as (thin) categories, and i as a functor between them.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

• For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.

lacksquare Set lacksquare Monoid

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

• For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

• For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

• For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

Graph
$$\leftarrow$$
 Cat

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

Graph
$$\leftarrow$$
 Cat
$$G \longrightarrow \mathcal{G}(\mathbf{Path}(G)) \qquad \mathbf{Path}(G)$$

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.
- Discrete topologies, completion of metric spaces, free groups, ideal completion of partial orders, ideal completion of free partial algebras, . . .

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the ceiling of r, $\lceil r \rceil \in \mathbf{Int}$ is free over r w.r.t. i.

What about free objects w.r.t. the inclusion of rationals into reals?

- For any set $X \in |\mathbf{Set}|$, the "free monoid" $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$ is free over X w.r.t. $|\underline{}| : \mathbf{Monoid} \to \mathbf{Set}$.
- For any graph $G \in |\mathbf{Graph}|$, the category of its paths, $\mathbf{Path}(G) \in |\mathbf{Cat}|$, is free over G w.r.t. the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.
- Discrete topologies, completion of metric spaces, free groups, ideal completion of partial orders, ideal completion of free partial algebras, . . .

Makes precise these and other similar examples Indicate unit morphisms!

• Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|\underline{\ }|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.

• Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|\underline{\ }|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|\underline{\ }|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^\Phi(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| \colon \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ . Recall: $\mathbf{F}^\Phi(X)$ is $T_\Sigma(X)/\equiv$, where \equiv is the congruence on $T_\Sigma(X)$ such that $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$.

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .
- For any algebraic signature morphism $\sigma \colon \Sigma \to \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.

Fact: For any algebraic signature inclusion $\sigma \colon \Sigma \hookrightarrow \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $_{-|\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.

$$\mathbf{Alg}(\Sigma)$$
 \longrightarrow $-|\sigma|$ $\mathbf{Alg}(\Sigma')$

A

Fact: For any algebraic signature inclusion $\sigma \colon \Sigma \hookrightarrow \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $_{-|\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[-]_{\equiv}: A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$,

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} A \lg(\Sigma')$$

$$A \stackrel{[-] \equiv}{\longrightarrow} (T_{\Sigma'}(|A|)/\equiv)|_{\sigma} \quad T_{\Sigma'}(|A|)/\equiv \stackrel{[-] \equiv}{\longleftarrow} T_{\Sigma'}(|A|)$$

Fact: For any algebraic signature inclusion $\sigma \colon \Sigma \hookrightarrow \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $_{-|\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[-]_{\equiv}: A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f: s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$, $f_A(a_1, \ldots, a_n) \equiv f(a_1, \ldots, a_n)$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} A \lg(\Sigma')$$

$$A \stackrel{[_]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(|A|)/\equiv)|_{\sigma} \quad T_{\Sigma'}(|A|)/\equiv \stackrel{[_]_{\equiv}}{\longleftarrow} T_{\Sigma'}(|A|)$$

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[-]_{\equiv}\colon A\to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n}$, $f_A(a_1,\ldots,a_n)\equiv f(a_1,\ldots,a_n)$

• $[-]_{\equiv} : A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$ is indeed a Σ -homomorphism, since $[f_A(a_1,\ldots,a_n)]_{\equiv} = [f(a_1,\ldots,a_n)]_{\equiv} = f_{T_{\Sigma'}(|A|)/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} A \lg(\Sigma')$$

$$A \stackrel{[_]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(|A|)/\equiv)|_{\sigma} \quad T_{\Sigma'}(|A|)/\equiv \stackrel{[_]_{\equiv}}{\longleftarrow} T_{\Sigma'}(|A|)$$

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[-]_{\equiv}: A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f: s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$, $f_A(a_1, \ldots, a_n) \equiv f(a_1, \ldots, a_n)$

• for $B' \in |\mathbf{Alg}(\Sigma')|$ and $h \colon A \to B'|_{\sigma}$,

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[_]_{\equiv}\colon A\to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n}$, $f_A(a_1,\ldots,a_n)\equiv f(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Alg}(\Sigma')|$ and $h: A \to B'|_{\sigma}$, consider $(_)_{B'}[h]: T_{\Sigma'}(|A|) \to B'$.

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[-]_{\equiv}: A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f: s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$, $f_A(a_1, \ldots, a_n) \equiv f(a_1, \ldots, a_n)$

• for $B' \in |\mathbf{Alg}(\Sigma')|$ and $h: A \to B'|_{\sigma}$, consider $(_)_{B'}[h]: T_{\Sigma'}(|A|) \to B'$. Then $\equiv \subseteq K((_)_{B'}[h])$,

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[_]_{\equiv}\colon A\to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n}$, $f_A(a_1,\ldots,a_n)\equiv f(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Alg}(\Sigma')|$ and $h: A \to B'|_{\sigma}$, consider $(_)_{B'}[h]: T_{\Sigma'}(|A|) \to B'$. Then $\equiv \subseteq K((_)_{B'}[h])$, since:

 $B'|_{\sigma}$ B'

 $(_)_{B'}[h]$

Proof (idea): Define $\mathbf{F}_{\sigma}(A)$ to be $T_{\Sigma'}(|A|)/\equiv$ with unit $[_]_{\equiv}\colon A\to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$, where \equiv is the least congruence on $T_{\Sigma'}(|A|)$ such that for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n}$, $f_A(a_1,\ldots,a_n)\equiv f(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Alg}(\Sigma')|$ and $h: A \to B'|_{\sigma}$, consider $(_)_{B'}[h]: T_{\Sigma'}(|A|) \to B'$. Then $\equiv \subseteq K((_)_{B'}[h])$, and so there is unique Σ' -homomorphism $h^{\#}: (T_{\Sigma'}(|A|)/\equiv) \to B'$ such that $[_]_{\equiv}; h^{\#} = (_)_{B'}[h]$.

Free equational models

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .
- For any algebraic signature morphism $\sigma \colon \Sigma \to \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.
- For any equational specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$, for any model $A \in Mod(\Phi)$, there exist a model $\mathbf{F}_{\sigma}^{\Phi'}(A) \in Mod(\Phi')$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Mod}(\langle \Sigma', \Phi' \rangle) \to \mathbf{Mod}(\langle \Sigma, \Phi \rangle)$.

Prove the above.

$$\mathbf{Alg}(\Sigma) \overset{-|\sigma}{\longleftarrow} \mathbf{Mod}(\langle \Sigma', \Phi' \rangle) \qquad \subseteq \qquad \mathbf{Alg}(\Sigma')$$

A

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}: A \to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$,

$$A \operatorname{lg}(\Sigma) \overset{-|\sigma}{\longleftarrow} \operatorname{Mod}(\langle \Sigma', \Phi' \rangle) \subseteq \operatorname{Alg}(\Sigma')$$

$$A \overset{[_]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(X')/\equiv)|_{\sigma} \quad T_{\Sigma'}(X')/\equiv \overset{[_]_{\equiv}}{\longleftarrow} T_{\Sigma'}(X')$$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}\colon A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_{s}$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} Mod(\langle \Sigma', \Phi' \rangle) \subseteq A \lg(\Sigma')$$

$$A \stackrel{[_] \equiv}{\longrightarrow} (T_{\Sigma'}(X')/\equiv)|_{\sigma} \quad T_{\Sigma'}(X')/\equiv \stackrel{[_] \equiv}{\longleftarrow} T_{\Sigma'}(X')$$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[_]_{\equiv}\colon A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} Mod(\langle \Sigma', \Phi' \rangle) \subseteq A \lg(\Sigma')$$

$$A \stackrel{[_]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(X')/\equiv)|_{\sigma} \quad T_{\Sigma'}(X')/\equiv \stackrel{[_]_{\equiv}}{\longleftarrow} T_{\Sigma'}(X')$$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}:A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} Mod(\langle \Sigma', \Phi' \rangle) \subseteq A \lg(\Sigma')$$

$$A \stackrel{[_]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(X')/\equiv)|_{\sigma} \quad T_{\Sigma'}(X')/\equiv \stackrel{[_]_{\equiv}}{\longleftarrow} T_{\Sigma'}(X')$$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}:A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

• $T_{\Sigma'}(|A|)/\equiv \models \Phi'$, i.e. indeed $T_{\Sigma'}(|A|)/\equiv \in Mod(\Phi')$

$$A \lg(\Sigma) \stackrel{-|\sigma}{\longleftarrow} Mod(\langle \Sigma', \Phi' \rangle) \subseteq A \lg(\Sigma')$$

$$A \stackrel{[-]_{\equiv}}{\longrightarrow} (T_{\Sigma'}(X')/\equiv)|_{\sigma} T_{\Sigma'}(X')/\equiv \stackrel{[-]_{\equiv}}{\longleftarrow} T_{\Sigma'}(X')$$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}:A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

• $[-]_{\equiv} : A \to (T_{\Sigma'}(|A|)/\equiv)|_{\sigma}$ is indeed a Σ -homomorphism, since $[f_A(a_1,\ldots,a_n)]_{\equiv} = [\sigma(f)(a_1,\ldots,a_n)]_{\equiv} = f_{(T_{\Sigma'}(X')/\equiv)|_{\sigma}}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})$ $Alg(\Sigma) \longleftarrow Mod(\langle \Sigma',\Phi'\rangle) \subseteq Alg(\Sigma')$ $A \longleftarrow (T_{\Sigma'}(X')/\equiv)|_{\sigma} T_{\Sigma'}(X')/\equiv \longleftarrow T_{\Sigma'}(X')$

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}:A\to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Mod}(\langle \Sigma', \Phi' \rangle)|$ and $h \colon A \to B'|_{\sigma}$,

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}\colon A \to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Mod}(\langle \Sigma', \Phi' \rangle)|$ and $h: A \to B'|_{\sigma}$, $\equiv \subseteq K((_)_{B'}[h'])$ $(h': X' \to |B'|)$ is as h,

Proof (idea): Define $\mathbf{F}_{\sigma}^{\Phi'}(A)$ to be $T_{\Sigma'}(X')/\equiv$ with unit $[-]_{\equiv}\colon A \to (T_{\Sigma'}(X')/\equiv)|_{\sigma}$, where $X'_{s'}=\biguplus_{\sigma(s)=s'}|A|_s$ and \equiv is the least congruence on $T_{\Sigma'}(X')$ such that $t_1\equiv t_2$ when $\Phi'\models \forall X'.t_1=t_2$ as well as for $f\colon s_1\times\ldots\times s_n\to s$ in Σ and $a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_A(a_1,\ldots,a_n)\equiv \sigma(f)(a_1,\ldots,a_n)$

• for $B' \in |\mathbf{Mod}(\langle \Sigma', \Phi' \rangle)|$ and $h \colon A \to B'|_{\sigma}$, $\equiv \subseteq K((_)_{B'}[h'])$ $(h' \colon X' \to |B'|)$ is as h, and we get unique $h^{\#} \colon (T_{\Sigma'}(|A|)/\equiv) \to B'$ with $[_]_{\equiv}; h^{\#} = (_)_{B'}[h']$.

Fact: Given a functor $G: \mathbf{K}' \to \mathbf{K}$ and $A \in |\mathbf{K}|$, let $A' \in |\mathbf{K}'|$ be free over A with unit $\eta_A: A \to \mathbf{G}(A')$ w.r.t. G.

Consider a subcategory $\mathbf{K}'' \subseteq \mathbf{K}$ with inclusion $\mathbf{J} \colon \mathbf{K}'' \to \mathbf{K}$ such that $\eta_A \colon A \to \mathbf{G}(A')$ is in \mathbf{K}'' and we have a functor $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$ such that $\mathbf{G}' \colon \mathbf{J} = \mathbf{G}$ (i.e. the image of \mathbf{G} is within \mathbf{K}'').

Then $A' \in |\mathbf{K}'|$ is free over A with unit $\eta_A \colon A \to \mathbf{G}'(A')$ w.r.t. $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$.

Fact: Given a functor $G: \mathbf{K}' \to \mathbf{K}$ and $A \in |\mathbf{K}|$, let $A' \in |\mathbf{K}'|$ be free over A with unit $\eta_A: A \to \mathbf{G}(A')$ w.r.t. G.

Consider a subcategory $\mathbf{K}'' \subseteq \mathbf{K}$ with inclusion $\mathbf{J} \colon \mathbf{K}'' \to \mathbf{K}$ such that $\eta_A \colon A \to \mathbf{G}(A')$ is in \mathbf{K}'' and we have a functor $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$ such that $\mathbf{G}' \colon \mathbf{J} = \mathbf{G}$ (i.e. the image of \mathbf{G} is within \mathbf{K}'').

Then $A' \in |\mathbf{K}'|$ is free over A with unit $\eta_A \colon A \to \mathbf{G}'(A')$ w.r.t. $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$.

Just check:

Free equational models

- Recall: for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, term algebra $\mathbf{T}_{\Sigma}(X)$ is free over $X \in |\mathbf{Set}^S|$ w.r.t. the carrier functor $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$.
- For any set of Σ -equations Φ , for any set $X \in |\mathbf{Set}^S|$, there exist a model $\mathbf{F}^{\Phi}(X) \in Mod(\Phi)$ that is free over X w.r.t. the carrier functor $|\underline{\ }| : \mathbf{Mod}(\langle \Sigma, \Phi \rangle) \to \mathbf{Set}^S$, where $\mathbf{Mod}(\langle \Sigma, \Phi \rangle)$ is the full subcategory of $\mathbf{Alg}(\Sigma)$ given by the models of Φ .
- For any algebraic signature morphism $\sigma \colon \Sigma \to \Sigma'$, for any Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$, there exist a Σ' -algebra $\mathbf{F}_{\sigma}(A) \in |\mathbf{Alg}(\Sigma')|$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$.
- For any equational specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$, for any model $A \in Mod(\Phi)$, there exist a model $\mathbf{F}_{\sigma}^{\Phi'}(A) \in Mod(\Phi')$ that is free over A w.r.t. the reduct functor $-|_{\sigma} \colon \mathbf{Mod}(\langle \Sigma', \Phi' \rangle) \to \mathbf{Mod}(\langle \Sigma, \Phi \rangle)$.

Prove the above.

Consider a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. \mathbf{G} with unit $\eta_A \colon A \to \mathbf{G}(A')$.

Consider a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. \mathbf{G} with unit $\eta_A \colon A \to \mathbf{G}(A')$.

• A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.

Andrzej Tarlecki: Category Theory, 2021

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

• A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

• A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.

Consider a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. \mathbf{G} with unit $\eta_A \colon A \to \mathbf{G}(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.

Andrzej Tarlecki: Category Theory, 2021

Consider a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. \mathbf{G} with unit $\eta_A \colon A \to \mathbf{G}(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
 - $((_)^{\#})^{-1} = \eta_A; \mathbf{G}(_) : \mathbf{K}'(A', B') \to \mathbf{K}(A, \mathbf{G}(B')), \text{ i.e.}$
 - $f = \eta_A; \mathbf{G}(f^{\#}) \text{ for } f: A \to \mathbf{G}(B') \text{ in } \mathbf{K}$
 - $-g = (\eta_A; \mathbf{G}(g))^{\#} \text{ for } g \colon A' \to B' \text{ in } \mathbf{K}'$

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.

Andrzej Tarlecki: Category Theory, 2021

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.
 - $g_1 = (\eta_A; \mathbf{G}(g_1))^\# = (\eta_A; \mathbf{G}(g_2))^\# = g_2$

Andrzej Tarlecki: Category Theory, 2021

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.

Colimits as free objects

Theorem: In a category \mathbf{K} , given a diagram D of shape $\mathcal{G}(D)$, the colimit of D in \mathbf{K} is a free object over D w.r.t. the diagonal functor $\Delta_{\mathbf{K}}^{\mathcal{G}(D)} \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^{\mathcal{G}(D)}$.

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.

Colimits as free objects

Theorem: In a category K, given a diagram D of shape $\mathcal{G}(D)$, the colimit of D in K is a free object over D w.r.t. the diagonal functor $\Delta_{\mathbf{K}}^{\mathcal{G}(D)} \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^{\mathcal{G}(D)}$.

Proof (idea): Cocones $\alpha \colon D \to X$ are diagram morphisms $\alpha \colon D \to \Delta_{\mathbf{K}}^{\mathcal{G}(D)}(X)$.

Consider a functor $G \colon \mathbf{K}' \to \mathbf{K}$, and object $A \in |\mathbf{K}|$, and an object $A' \in |\mathbf{K}'|$ free over A w.r.t. G with unit $\eta_A \colon A \to G(A')$.

- A free objects over A w.r.t. G the initial objects in the comma category (C_A, G) , where $C_A : 1 \to K$ is the constant functor.
- A free object over A w.r.t. G, if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}(A, \mathbf{G}(B')) \to \mathbf{K}'(A', B')$ is bijective for each $B' \in |\mathbf{K}'|$.
- For any morphisms $g_1, g_2 \colon A' \to B'$ in \mathbf{K}' , $g_1 = g_2$ iff $\eta_A \colon \mathbf{G}(g_1) = \eta_A \colon \mathbf{G}(g_2)$.

Colimits as free objects

Theorem: In a category \mathbf{K} , given a diagram D of shape $\mathcal{G}(D)$, the colimit of D in \mathbf{K} is a free object over D w.r.t. the diagonal functor $\Delta_{\mathbf{K}}^{\mathcal{G}(D)} \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^{\mathcal{G}(D)}$.

Spell this out for initial objects, coproducts, coequalisers, and pushouts

Consider a functor $G: \mathbf{K}' \to \mathbf{K}$.

Consider a functor $G: \mathbf{K}' \to \mathbf{K}$.

Theorem: Assume that for each object $A \in |\mathbf{K}|$ there is a free object over A w.r.t. \mathbf{G} ,

Consider a functor $G: \mathbf{K}' \to \mathbf{K}$.

Theorem: Assume that for each object $A \in |\mathbf{K}|$ there is a free object over A w.r.t. \mathbf{G} , say $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

$$\mathbf{K} \longleftarrow \mathbf{G} \qquad \mathbf{K}'$$

$$A \longrightarrow \mathbf{G}(\mathbf{F}(A)) \qquad \mathbf{F}(A)$$

$$B \xrightarrow{\eta_B} \mathbf{G}(\mathbf{F}(B))$$
 $\mathbf{F}(B)$

Consider a functor $G \colon K' \to K$.

Theorem: Assume that for each object $A \in |\mathbf{K}|$ there is a free object over A w.r.t.

G, say $F(A) \in |K'|$ is free over A with unit $\eta_A \colon A \to G(F(A))$. Then the mappings:

- $(A \in |\mathbf{K}|) \mapsto (\mathbf{F}(A) \in |\mathbf{K}'|)$
- $-(f:A\to B)\mapsto ((f;\eta_B)^{\#}:\mathbf{F}(A)\to\mathbf{F}(B))$

form a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$.

Consider a functor $G \colon K' \to K$.

Theorem: Assume that for each object $A \in |\mathbf{K}|$ there is a free object over A w.r.t.

G, say $F(A) \in |K'|$ is free over A with unit $\eta_A \colon A \to G(F(A))$. Then the mappings:

- $(A \in |\mathbf{K}|) \mapsto (\mathbf{F}(A) \in |\mathbf{K}'|)$
- $-(f:A\to B)\mapsto ((f;\eta_B)^{\#}:\mathbf{F}(A)\to\mathbf{F}(B))$

form a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$. Moreover, $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ is a natural transformation.

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves composition:

$$\mathbf{F}(f;g) = (f;g;\eta_C)^{\#} = \mathbf{F}(f);\mathbf{F}(g)$$

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves composition:

$$\mathbf{F}(f;g) = (f;g;\eta_C)^{\#} = \mathbf{F}(f);\mathbf{F}(g)$$

F preserves identities:

$$\mathbf{F}(id_A) = (id_A; \eta_A)^{\#} = id_{\mathbf{F}(A)}$$

F preserves composition:

$$\mathbf{F}(f;g) = (f;g;\eta_C)^{\#} = \mathbf{F}(f);\mathbf{F}(g)$$

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

Examples

• The term-algebra functor $T_{\Sigma} \colon \mathbf{Set}^{S} \to \mathbf{Alg}(\Sigma)$ is left adjoint to the carrier functor $|\underline{\ }| \colon \mathbf{Alg}(\Sigma) \to \mathbf{Set}^{S}$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$.

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

- The term-algebra functor $T_{\Sigma} \colon \mathbf{Set}^{S} \to \mathbf{Alg}(\Sigma)$ is left adjoint to the carrier functor $|\underline{\ }| \colon \mathbf{Alg}(\Sigma) \to \mathbf{Set}^{S}$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$.
- The ceiling [_]: Real → Int is left adjoint to the inclusion i: Int → Real of integers into reals.

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

- The term-algebra functor $T_{\Sigma} \colon \mathbf{Set}^{S} \to \mathbf{Alg}(\Sigma)$ is left adjoint to the carrier functor $|\underline{\ }| \colon \mathbf{Alg}(\Sigma) \to \mathbf{Set}^{S}$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$.
- The ceiling $\lceil _ \rceil$: $\mathbf{Real} \to \mathbf{Int}$ is left adjoint to the inclusion $i : \mathbf{Int} \hookrightarrow \mathbf{Real}$ of integers into reals.
- The path-category functor $\mathbf{Path} \colon \mathbf{Graph} \to \mathbf{Cat}$ is left adjoint to the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.

Definition: A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is left adjoint to (a functor) $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit (natural transformation) $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ if for all objects $A \in |\mathbf{K}|$, $\mathbf{F}(A) \in |\mathbf{K}'|$ is free over A with unit morphism $\eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$.

- The term-algebra functor $T_{\Sigma} \colon \mathbf{Set}^{S} \to \mathbf{Alg}(\Sigma)$ is left adjoint to the carrier functor $|\underline{\ }| \colon \mathbf{Alg}(\Sigma) \to \mathbf{Set}^{S}$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$.
- The ceiling 「_]: Real → Int is left adjoint to the inclusion i: Int → Real of integers into reals.
- The path-category functor $\mathbf{Path} \colon \mathbf{Graph} \to \mathbf{Cat}$ is left adjoint to the graph functor $\mathcal{G} \colon \mathbf{Cat} \to \mathbf{Graph}$.
- ... other examples given by the examples of free objects above ...

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism:

Theorem: A left adjoint to any functor $G: \mathbf{K}' \to \mathbf{K}$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F}: \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}': \mathbf{K} \to \mathbf{K}'$ are left adjoint to \mathbf{G} with units $\eta: \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$ and $\eta': \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}'; \mathbf{G}$, respectively,

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $F: K \to K'$ and $F': K \to K'$ are left adjoint to G with units $\eta: Id_K \to F; G$ and $\eta': Id_K \to F'; G$, respectively, then there exists a natural isomorphism $\tau: F \to F'$ such that $\eta: (\tau \cdot G) = \eta'$.

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $F: K \to K'$ and $F': K \to K'$ are left adjoint to G with units $\eta: Id_K \to F; G$ and $\eta': Id_K \to F'; G$, respectively, then there exists a natural isomorphism $\tau: F \to F'$ such that $\eta; (\tau \cdot G) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A')^{\#}$.

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to G with units $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$ and $\eta' \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to G with units $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$ and $\eta'\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A')^{\#}$.

$$au_A; au_A^{-1}=id_{\mathbf{F}(A)}$$
 and $au_A^{-1}; au_A=id_{\mathbf{F}'(A)}$

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to G with units $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$ and $\eta'\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A')^{\#}$.

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to G with units $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$ and $\eta'\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A)^{\#}$.

- For $f: A \to B$, $\mathbf{F}(f) = (f; \eta_B)^{\#}$.

Theorem: A left adjoint to any functor $G: K' \to K$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{F}' \colon \mathbf{K} \to \mathbf{K}'$ are left adjoint to G with units $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$ and $\eta'\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}'; \mathbf{G}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{F} \to \mathbf{F}'$ such that $\eta; (\tau \cdot \mathbf{G}) = \eta'$.

Proof: For each $A \in |\mathbf{K}|$, $\tau_A = (\eta_A')^{\#}$.

- For $f: A \to B$, $\mathbf{F}(f) = (f; \eta_B)^\#$. For $g_1, g_2 \colon \mathbf{F}(A) \to \bullet$, if $\eta_A; \mathbf{G}(g_1) = \eta_A; \mathbf{G}(g_2)$ then $g_1 = g_2$.

Left adjoints and colimits

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Left adjoints and colimits

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: F is cocontinuous (preserves colimits).

Left adjoints and colimits

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: F is cocontinuous (preserves colimits).

Proof:

 \mathbf{K}'

Given a diagram D in ${\bf K}$

 \mathbf{K}'

Given a diagram D in ${\bf K}$ with colimit $\alpha\colon D\to X$,

Given a diagram D in $\mathbf K$ with colimit $\alpha\colon D\to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' .

 \mathbf{K}'

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$,

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D \colon \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D.

 \mathbf{K}'

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D \colon \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D.

Fact: For any functors $\mathbf{F}_1, \mathbf{F}_2 \colon \mathbf{K}_1 \to \mathbf{K}_2$, natural transformation $\tau \colon \mathbf{F}_1 \to \mathbf{F}_2$ and a diagram D in \mathbf{K}_1 , $\tau_D \colon \mathbf{F}_1(D) \to \mathbf{F}_2(D)$ is a diagram morphism, where $\tau_D = \langle \tau_{D_n} \colon \mathbf{F}_1(D_n) \to \mathbf{F}_2(D_n) \rangle_{n \in N}$.

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D \colon \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D.

Fact: For any functors $\mathbf{F}_1, \mathbf{F}_2 \colon \mathbf{K}_1 \to \mathbf{K}_2$, natural transformation $\tau \colon \mathbf{F}_1 \to \mathbf{F}_2$ and a diagram D in \mathbf{K}_1 , $\tau_D \colon \mathbf{F}_1(D) \to \mathbf{F}_2(D)$ is a diagram morphism, where $\tau_D = \langle \tau_{D_n} \colon \mathbf{F}_1(D_n) \to \mathbf{F}_2(D_n) \rangle_{n \in N}$. Then for any cocone $\gamma \colon \mathbf{F}_2(D) \to A$ in \mathbf{K}_2 , $\tau_D; \gamma \colon \mathbf{F}_1(D) \to A$ is a cocone in \mathbf{K}_2 as well.

 D_n

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D \colon \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha \colon h = \eta_D \colon \mathbf{G}(\beta)$.

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$.

Given a diagram D in \mathbf{K} with colimit $\alpha \colon D \to X$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

since: $\eta_D; \mathbf{G}(\mathbf{F}(\alpha); h^\#) = \eta_D; \mathbf{G}(\mathbf{F}(\overline{\alpha})); \mathbf{G}(h^\#) = \alpha; \eta_X; \mathbf{G}(h^\#) = \alpha; h = \eta_D; \mathbf{G}(\beta).$

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

Consider any $g \colon \mathbf{F}(X) \to Y$ such that $\mathbf{F}(\alpha); g = \beta$.

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

Consider any $g \colon \mathbf{F}(X) \to Y$ such that $\mathbf{F}(\alpha); g = \beta$. Then $\eta_X; \mathbf{G}(g) = h \colon X \to \mathbf{G}(Y)$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

Consider any $g \colon \mathbf{F}(X) \to Y$ such that $\mathbf{F}(\alpha); g = \beta$. Then $\eta_X ; \mathbf{G}(g) = h \colon X \to \mathbf{G}(Y)$, since $\alpha; \eta_X ; \mathbf{G}(g) = \eta_D ; \mathbf{G}(\mathbf{F}(\alpha)); \mathbf{G}(g) = \eta_D ; \mathbf{G}(\mathbf{F}(\alpha); g) = \eta_D ; \mathbf{G}(\beta) = \alpha; h$,

 $\mathbf{F}(\alpha) \colon \mathbf{F}(D) \to \mathbf{F}(X)$ is a colimit of $\mathbf{F}(D)$ in \mathbf{K}'

Let $\beta \colon \mathbf{F}(D) \to Y$ be a cocone on $\mathbf{F}(D)$ in \mathbf{K}' . Then $\mathbf{G}(\beta) \colon \mathbf{G}(\mathbf{F}(D)) \to \mathbf{G}(Y)$ is a cocone on $\mathbf{G}(\mathbf{F}(D))$, and $\eta_D; \mathbf{G}(\beta) \colon D \to \mathbf{G}(Y)$ is a cocone on D. We get unique $h \colon X \to \mathbf{G}(Y)$ such that $\alpha; h = \eta_D; \mathbf{G}(\beta)$. Consider the unique $h^\# \colon \mathbf{F}(X) \to Y$ such that $\eta_X; \mathbf{G}(h^\#) = h$. It holds then:

$$\mathbf{F}(\alpha); h^{\#} = \beta$$

Consider any $g \colon \mathbf{F}(X) \to Y$ such that $\mathbf{F}(\alpha); g = \beta$. Then $\eta_X; \mathbf{G}(g) = h \colon X \to \mathbf{G}(Y)$, and so $g = h^\#$.

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: F is cocontinuous (preserves colimits).

Proof:

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: G is continuous (preserves limits).

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: G is continuous (preserves limits).

Proof:

 \mathbf{K}'

Given a diagram D in \mathbf{K}'

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} .

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta\colon Y\to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^\#\colon \mathbf{F}(Y)\to D$ is a cone on D in \mathbf{K}' ,

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , since for any $e \colon n \to m$ in D, $\beta_n^{\#}; D_e = \beta_m^{\#}$,

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D

in \mathbf{K}' , since for any $e \colon n \to m$ in D, $\beta_n^\#; D_e = \beta_m^\#$, because

$$\eta_Y; \mathbf{G}(\beta_n^{\#}; D_e) = \eta_Y; \mathbf{G}(\beta_n^{\#}); \mathbf{G}(D_e) = \beta_n; \mathbf{G}(D_e) = \beta_m = \eta_Y; \mathbf{G}(\beta_m^{\#})$$

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$.

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$.

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

since $(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \eta_Y; \mathbf{G}(h; \alpha) = \overline{\eta_Y; \mathbf{G}((\beta)^\#)} = \beta.$

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

Consider any $f: Y \to \mathbf{G}(X)$ such that $f: \mathbf{G}(\alpha) = \beta$.

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y ; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

Consider any $f: Y \to \mathbf{G}(X)$ such that $f: \mathbf{G}(\alpha) = \beta$. Then $f^{\#}: \mathbf{F}(Y) \to X$ and $f^{\#}: \alpha = (\beta)^{\#}$,

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y \colon \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

Consider any $f: Y \to \mathbf{G}(X)$ such that $f: \mathbf{G}(\alpha) = \beta$. Then $f^{\#}: \mathbf{F}(Y) \to X$ and $f^{\#}: \alpha = (\beta)^{\#}$, since $\eta_{Y}: \mathbf{G}(f^{\#}: \alpha) = \eta_{Y}: \mathbf{G}(f^{\#}): \mathbf{G}(\alpha) = f: \mathbf{G}(\alpha) = \beta = \eta_{Y}: \mathbf{G}(\beta)^{\#}$

 $\mathbf{G}(\alpha) \colon \mathbf{G}(X) \to \mathbf{G}(D)$ is a limit of $\mathbf{G}(D)$ in \mathbf{K}

Let $\beta \colon Y \to \mathbf{G}(D)$ be a cone on $\mathbf{G}(D)$ in \mathbf{K} . Then $(\beta)^{\#} \colon \mathbf{F}(Y) \to D$ is a cone on D in \mathbf{K}' , and so we get a unique $h \colon \mathbf{F}(Y) \to X$ such that $h; \alpha = (\beta)^{\#}$. Consider $\eta_Y ; \mathbf{G}(h) \colon Y \to \mathbf{G}(X)$. It holds then:

$$(\eta_Y; \mathbf{G}(h)); \mathbf{G}(\alpha) = \beta$$

Consider any $f: Y \to \mathbf{G}(X)$ such that $f: \mathbf{G}(\alpha) = \beta$. Then $f^{\#}: \mathbf{F}(Y) \to X$ and $f^{\#}: \alpha = (\beta)^{\#}$, and so $f^{\#} = h$, which yields $f = \eta_{Y}: \mathbf{G}(h)$.

Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: G is continuous (preserves limits).

Proof:

Theorem: Let K' be a locally small complete category.

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

1. G is continuous, and

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$)

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h : A \to \mathbf{G}(B)$, for some $f : X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i ; \mathbf{G}(f)$.

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h : A \to \mathbf{G}(B)$, for some $f : X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i ; \mathbf{G}(f)$.

Proof:

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i \colon A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i \colon A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h \colon A \to \mathbf{G}(B)$, for some $f \colon X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i; \mathbf{G}(f)$.

Proof:

" \Rightarrow ": Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to \mathbf{G} with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then 1. follows by the previous fact, and for 2. just put $\mathcal{I} = \{*\}$, $X_* = \mathbf{F}(A)$, and $f_* = \eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h : A \to \mathbf{G}(B)$, for some $f : X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i ; \mathbf{G}(f)$.

Proof:

- " \Rightarrow ": Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to \mathbf{G} with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then 1. follows by the previous fact, and for 2. just put $\mathcal{I} = \{*\}$, $X_* = \mathbf{F}(A)$, and $f_* = \eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$
- " \Leftarrow ": It is enough to show that for each $A \in |\mathbf{K}|$ the comma category $(\mathbf{C}_A, \mathbf{G})$ has an initial object.

Theorem: Let \mathbf{K}' be a locally small complete category. Then a functor $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ has a left adjoint iff

- 1. G is continuous, and
- 2. for each $A \in |\mathbf{K}|$ there exists a set $\{f_i : A \to \mathbf{G}(X_i) \mid i \in \mathcal{I}\}$ (of objects $X_i \in |\mathbf{K}'|$ with morphisms $f_i : A \to \mathbf{G}(X_i)$, $i \in \mathcal{I}$) such that for each $B \in |\mathbf{K}'|$ and $h : A \to \mathbf{G}(B)$, for some $f : X_i \to B$, $i \in \mathcal{I}$, we have $h = f_i ; \mathbf{G}(f)$.

Proof:

- " \Rightarrow ": Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to \mathbf{G} with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then 1. follows by the previous fact, and for 2. just put $\mathcal{I} = \{*\}$, $X_* = \mathbf{F}(A)$, and $f_* = \eta_A \colon A \to \mathbf{G}(\mathbf{F}(A))$
- " \Leftarrow ": It is enough to show that for each $A \in |\mathbf{K}|$ the comma category $(\mathbf{C}_A, \mathbf{G})$ has an initial object. Under our assumptions, $(\mathbf{C}_A, \mathbf{G})$ is complete. The rest follows by the next fact.

On the existence of initial objects

Theorem: A locally small complete category K has an initial object if

On the existence of initial objects

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$.

Let $e: E \to P$ be an "equaliser" (limit) of all morphisms in $\mathbf{K}(P, P)$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$.

Let $e: E \to P$ be an "equaliser" (limit) of all morphisms in $\mathbf{K}(P, P)$.

Then E is initial in \mathbf{K} ,

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$.

Let $e: E \to P$ be an "equaliser" (limit) of all morphisms in $\mathbf{K}(P, P)$.

Then E is initial in \mathbf{K} , since for any $B \in |\mathbf{K}|$:

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

Proof: Let $P \in |\mathbf{K}|$ be a product of \mathcal{I} , with projections $p_X \colon P \to X$ for $X \in \mathcal{I}$. Let $e \colon E \to P$ be an "equaliser" (limit) of all morphisms in $\mathbf{K}(P,P)$. Then E is initial in \mathbf{K} , since for any $B \in |\mathbf{K}|$:

• $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f : X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$,

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f : X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 : E \to B$, take their equaliser $e' : E' \to E$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 : E \to B$, take their equaliser $e' : E' \to E$. As in the previous item, we have $h : P \to E'$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$, take their equaliser $e' \colon E' \to E$. As in the previous item, we have $h \colon P \to E'$. Then $h; e'; e \colon P \to P$,

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 : E \to B$, take their equaliser $e' : E' \to E$. As in the previous item, we have $h : P \to E'$. Then $h; e'; e : P \to P$, and by the construction of $e : E \to P$, $e; h; e'; e = e; id_P = id_E; e$.

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f : X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$, take their equaliser $e' \colon E' \to E$. As in the previous item, we have $h \colon P \to E'$. Then $h; e'; e \colon P \to P$, and by the construction of $e \colon E \to P$, $e; h; e'; e = e; id_P = id_E; e$. Now, since e is mono, $e; h; e' = id_E$,

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f: X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$, take their equaliser $e' \colon E' \to E$. As in the previous item, we have $h \colon P \to E'$. Then $h; e'; e \colon P \to P$, and by the construction of $e \colon E \to P$, $e; h; e'; e = e; id_P = id_E; e$. Now, since e is mono, $e; h; e' = id_E$, and so e' is a mono retraction, hence an isomorphism,

Theorem: A locally small complete category \mathbf{K} has an initial object if there exists a set of objects $\mathcal{I} \subseteq |\mathbf{K}|$ such that for all $B \in |\mathbf{K}|$, for some $X \in \mathcal{I}$ there is $f : X \to B$.

- $e; p_X; f: E \to B$, where $f: X \to B$ for some $X \in \mathcal{I}$.
- Given $g_1, g_2 \colon E \to B$, take their equaliser $e' \colon E' \to E$. As in the previous item, we have $h \colon P \to E'$. Then $h; e'; e \colon P \to P$, and by the construction of $e \colon E \to P$, $e; h; e'; e = e; id_P = id_E; e$. Now, since e is mono, $e; h; e' = id_E$, and so e' is a mono retraction, hence an isomorphism, which proves $g_1 = g_2$.

Consider any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$

Consider any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$,

$$K \longrightarrow K'$$

A'

Consider any functor $F \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is

A'

Consider any functor $F \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is a \mathbf{K} -object $A \in |\mathbf{K}|$ together with a \mathbf{K} -morphism $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$ (called counit morphism)

$$\mathbf{K} \xrightarrow{\mathbf{F}} \mathbf{K}'$$

$$A \qquad \mathbf{F}(A) \xrightarrow{\varepsilon_{A'}} A'$$

Consider any functor $F \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is a \mathbf{K} -object $A \in |\mathbf{K}|$ together with a \mathbf{K} -morphism $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$ (called counit morphism) such that given any \mathbf{K} -object $B \in |\mathbf{K}|$ with \mathbf{K}' -morphism $g \colon \mathbf{F}(B) \to A'$,

Consider any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is a \mathbf{K} -object $A \in |\mathbf{K}|$ together with a \mathbf{K} -morphism $\varepsilon_{A'} : \mathbf{F}(A) \to A'$ (called counit morphism) such that given any \mathbf{K} -object $B \in |\mathbf{K}|$ with \mathbf{K}' -morphism $g : \mathbf{F}(B) \to A'$, for a unique \mathbf{K} -morphism $g^{\#} : B \to A$ we have

$$\mathbf{F}(g^{\#}); \varepsilon_{A'} = g$$

Consider any functor $F \colon \mathbf{K} \to \mathbf{K}'$

Definition: Given an object $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} is a \mathbf{K} -object $A \in |\mathbf{K}|$ together with a \mathbf{K} -morphism $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$ (called counit morphism) such that given any \mathbf{K} -object $B \in |\mathbf{K}|$ with \mathbf{K}' -morphism $g \colon \mathbf{F}(B) \to A'$, for a unique \mathbf{K} -morphism $g^{\#} \colon B \to A$ we have

$$\mathbf{F}(g^{\#}); \varepsilon_{A'} = g$$

Paradigmatic example:

Function spaces, coming soon

• Consider inclusion $i: Int \hookrightarrow Real$, viewing Int and Real as (thin) categories, and i as a functor between them.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$,

 γ

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

• Fix a set $X \in |\mathbf{Set}|$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

• Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X \colon \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$
 - for any function $f: A \to B$, $\mathbf{F}_X(f): A \times X \to B \times X$ is a function given by $\mathbf{F}_X(f)(\langle a, x \rangle) = \langle f(a), x \rangle$.

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$
 - for any function $f: A \to B$, $\mathbf{F}_X(f): A \times X \to B \times X$ is a function given by $\mathbf{F}_X(f)(\langle a, x \rangle) = \langle f(a), x \rangle$.

Then for any set $A \in |\mathbf{Set}|$, the powerset $A^X \in |\mathbf{Set}|$ (i.e., the set of all functions from X to A) is a cofree objects under A w.r.t. \mathbf{F}_X .

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$
 - for any function $f: A \to B$, $\mathbf{F}_X(f): A \times X \to B \times X$ is a function given by $\mathbf{F}_X(f)(\langle a, x \rangle) = \langle f(a), x \rangle$.

Then for any set $A \in |\mathbf{Set}|$, the powerset $A^X \in |\mathbf{Set}|$ (i.e., the set of all functions from X to A) is a cofree objects under A w.r.t. \mathbf{F}_X . The counit morphism $\varepsilon_A \colon \mathbf{F}_X(A^X) = A^X \times X \to A$ is the evaluation function: $\varepsilon_A(\langle f, x \rangle) = f(x)$.

$$\mathbf{Set} \xrightarrow{(_) \times X} \mathbf{Set}$$

$$\mathbf{Set} \xrightarrow{(_) \times X} \mathbf{Set}$$

 \boldsymbol{A}

Set
$$\xrightarrow{(-) \times X}$$
 Set $A^X \times A \xrightarrow{\varepsilon_A} A$

Set
$$\xrightarrow{(-) \times X}$$
 Set $A^X \times X \xrightarrow{\varepsilon_A} A$ $B \times X$

Set
$$\xrightarrow{(_) \times X}$$
 Set
$$A^X \qquad A^X \times X \xrightarrow{\varepsilon_A} A$$
$$g^\# = \Lambda(g) \qquad g$$
$$B \qquad B \times X$$

where $\Lambda(g: B \times X \to A) = \lambda b: B.(\lambda x: X.g(b, x)): B \to A^X$

Set
$$\xrightarrow{(-) \times X}$$
 Set
$$A^X \times X \xrightarrow{\varepsilon_A} A$$
$$g^\# = \Lambda(g) \qquad \Lambda(g) \times id_X \qquad g$$
$$B \qquad B \times X$$

where $\Lambda(g: B \times X \to A) = \lambda b: B.(\lambda x: X.g(b, x)): B \to A^X$

Examples

• Consider inclusion $i: \mathbf{Int} \hookrightarrow \mathbf{Real}$, viewing \mathbf{Int} and \mathbf{Real} as (thin) categories, and i as a functor between them. For any real $r \in \mathbf{Real}$, the floor of r, $|r| \in \mathbf{Int}$ is cofree under r w.r.t. i.

What about cofree objects w.r.t. the inclusion of rationals into reals?

- Fix a set $X \in |\mathbf{Set}|$. Consider functor $\mathbf{F}_X : \mathbf{Set} \to \mathbf{Set}$ defined by:
 - for any set $A \in |\mathbf{Set}|$, $\mathbf{F}_X(A) = A \times X$
 - for any function $f: A \to B$, $\mathbf{F}_X(f): A \times X \to B \times X$ is a function given by $\mathbf{F}_X(f)(\langle a, x \rangle) = \langle f(a), x \rangle$.

Then for any set $A \in |\mathbf{Set}|$, the powerset $A^X \in |\mathbf{Set}|$ (i.e., the set of all functions from X to A) is a cofree objects under A w.r.t. \mathbf{F}_X . The counit morphism $\varepsilon_A \colon \mathbf{F}_X(A^X) = A^X \times X \to A$ is the evaluation function: $\varepsilon_A(\langle f, x \rangle) = f(x)$.

A generalisation to deal with exponential objects will (not) be discussed later

Dual to those for free objects:

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

• Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} : \mathbf{1} \to \mathbf{K}'$ is the constant functor.

Andrzej Tarlecki: Category Theory, 2021

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.

Andrzej Tarlecki: Category Theory, 2021

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.
- For any morphisms $g_1, g_2 \colon B \to A$ in \mathbf{K} , $g_1 = g_2$ iff $\mathbf{F}(g_1); \varepsilon_{A'} = \mathbf{F}(g_2); \varepsilon_{A'}$.

Andrzej Tarlecki: Category Theory, 2021

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.
- For any morphisms $g_1, g_2 \colon B \to A$ in \mathbf{K} , $g_1 = g_2$ iff $\mathbf{F}(g_1); \varepsilon_{A'} = \mathbf{F}(g_2); \varepsilon_{A'}$.

Limits as cofree objects

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.
- For any morphisms $g_1, g_2 \colon B \to A$ in \mathbf{K} , $g_1 = g_2$ iff $\mathbf{F}(g_1); \varepsilon_{A'} = \mathbf{F}(g_2); \varepsilon_{A'}$.

Limits as cofree objects

Theorem: In a category \mathbf{K} , given a diagram D of shape $\mathcal{G}(D)$, the limit of D in \mathbf{K} is a cofree object under D w.r.t. the diagonal functor $\Delta^{\mathcal{G}(D)}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{Diag}^{\mathcal{G}(D)}_{\mathbf{K}}$.

Dual to those for free objects: Consider a functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, object $A' \in |\mathbf{K}'|$, and an object $A \in |\mathbf{K}|$ cofree under A' w.r.t. \mathbf{F} with counit $\varepsilon_{A'} \colon \mathbf{F}(A) \to A'$.

- Cofree objects under A' w.r.t. \mathbf{F} are the terminal objects in the comma category $(\mathbf{F}, \mathbf{C}_{A'})$, where $\mathbf{C}_{A'} \colon \mathbf{1} \to \mathbf{K}'$ is the constant functor.
- A cofree object under A' w.r.t. \mathbf{F} , if exists, is unique up to isomorphism.
- The function $(_)^{\#}$: $\mathbf{K}'(\mathbf{F}(B), A') \to \mathbf{K}(B, A)$ is bijective for each $B \in |\mathbf{K}|$.
- For any morphisms $g_1, g_2 \colon B \to A$ in \mathbf{K} , $g_1 = g_2$ iff $\mathbf{F}(g_1); \varepsilon_{A'} = \mathbf{F}(g_2); \varepsilon_{A'}$.

Limits as cofree objects

Theorem: In a category \mathbf{K} , given a diagram D of shape $\mathcal{G}(D)$, the limit of D in \mathbf{K} is a cofree object under D w.r.t. the diagonal functor $\Delta^{\mathcal{G}(D)}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{Diag}^{\mathcal{G}(D)}_{\mathbf{K}}$.

Spell this out for terminal objects, products, equalisers, and pullbacks

Consider a functor $F \colon \mathbf{K} \to \mathbf{K}'$.

Consider a functor $F \colon \mathbf{K} \to \mathbf{K}'$.

Theorem: Assume that for each object $A' \in |\mathbf{K}'|$ there is a cofree object under A' w.r.t. \mathbf{F} ,

Consider a functor $F \colon \mathbf{K} \to \mathbf{K}'$.

Theorem: Assume that for each object $A' \in |\mathbf{K}'|$ there is a cofree object under A' w.r.t. \mathbf{F} , say $\mathbf{G}(A') \in |\mathbf{K}'|$ is cofree under A' with counit $\varepsilon_{A'} \colon \mathbf{F}(\mathbf{G}(A')) \to A'$.

$$\mathbf{K} \xrightarrow{\mathbf{F}} \mathbf{K}'$$

$$\mathbf{G}(A') \qquad \mathbf{F}(\mathbf{G}(A')) \xrightarrow{\varepsilon_{A'}} A'$$

$$\mathbf{G}(B')$$
 $\mathbf{F}(\mathbf{G}(B')) \xrightarrow{\varepsilon_{B'}} B'$

Consider a functor $F \colon K \to K'$.

Theorem: Assume that for each object $A' \in |\mathbf{K}'|$ there is a cofree object under A' w.r.t. \mathbf{F} , say $\mathbf{G}(A') \in |\mathbf{K}'|$ is cofree under A' with counit $\varepsilon_{A'} \colon \mathbf{F}(\mathbf{G}(A')) \to A'$. Then the mappings:

- $(A' \in |\mathbf{K}'|) \mapsto (\mathbf{G}(A') \in |\mathbf{K}|)$
- $(g: B' \to A') \mapsto ((\varepsilon_{B'}; g)^{\#}: \mathbf{G}(B') \to \mathbf{G}(A'))$

form a functor $G: \mathbf{K}' \to \mathbf{K}$.

Consider a functor $F: \mathbf{K} \to \mathbf{K}'$.

Theorem: Assume that for each object $A' \in |\mathbf{K}'|$ there is a cofree object under A' w.r.t. \mathbf{F} , say $\mathbf{G}(A') \in |\mathbf{K}'|$ is cofree under A' with counit $\varepsilon_{A'} \colon \mathbf{F}(\mathbf{G}(A')) \to A'$. Then the mappings:

- $(A' \in |\mathbf{K}'|) \mapsto (\mathbf{G}(A') \in |\mathbf{K}|)$
- $(g: B' \to A') \mapsto ((\varepsilon_{B'}; g)^{\#}: \mathbf{G}(B') \to \mathbf{G}(A'))$

form a functor $G \colon \mathbf{K}' \to \mathbf{K}$. Moreover, $\varepsilon \colon \mathbf{G} \colon \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ is a natural transformation.

Definition: A functor $G: \mathbf{K}' \to \mathbf{K}$ is right adjoint to (a functor) $F: \mathbf{K} \to \mathbf{K}'$ with counit (natural transformation) $\varepsilon: \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ if for all objects $A' \in |\mathbf{K}'|$, $\mathbf{G}(A') \in |\mathbf{K}|$ is cofree under A' with counit morphism $\varepsilon_{A'}: \mathbf{F}(\mathbf{G}(A')) \to A'$.

Definition: A functor $G: \mathbf{K}' \to \mathbf{K}$ is right adjoint to (a functor) $F: \mathbf{K} \to \mathbf{K}'$ with counit (natural transformation) $\varepsilon: \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ if for all objects $A' \in |\mathbf{K}'|$, $\mathbf{G}(A') \in |\mathbf{K}|$ is cofree under A' with counit morphism $\varepsilon_{A'}: \mathbf{F}(\mathbf{G}(A')) \to A'$.

Theorem: A right adjoint to any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}$ are right adjoint to \mathbf{F} with counits $\varepsilon \colon \mathbf{G} \colon \mathbf{F}$ and $\varepsilon' \colon \mathbf{G}' \colon \mathbf{F}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{G} \to \mathbf{G}'$ such that $(\tau \cdot \mathbf{F}) \colon \varepsilon' = \varepsilon$.

Definition: A functor $G: \mathbf{K}' \to \mathbf{K}$ is right adjoint to (a functor) $F: \mathbf{K} \to \mathbf{K}'$ with counit (natural transformation) $\varepsilon: \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ if for all objects $A' \in |\mathbf{K}'|$, $\mathbf{G}(A') \in |\mathbf{K}|$ is cofree under A' with counit morphism $\varepsilon_{A'}: \mathbf{F}(\mathbf{G}(A')) \to A'$.

Theorem: A right adjoint to any functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, if exists, is determined uniquely up to a natural isomorphism: if $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and $\mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}$ are right adjoint to \mathbf{F} with counits $\varepsilon \colon \mathbf{G} \colon \mathbf{F}$ and $\varepsilon' \colon \mathbf{G}' \colon \mathbf{F}$, respectively, then there exists a natural isomorphism $\tau \colon \mathbf{G} \to \mathbf{G}'$ such that $(\tau \cdot \mathbf{F}) \colon \varepsilon' = \varepsilon$.

Theorem: Let $G: \mathbf{K}' \to \mathbf{K}$ be right adjoint to $F: \mathbf{K} \to \mathbf{K}'$ with counit $\varepsilon: \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$. Then G is continuous (preserves limits) and F is cocontinuous (preserves colimits).

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then there is a natural transformation $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then there is a natural transformation $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Theorem: Let $F : K \to K'$ be left adjoint to $G : K' \to K$ with unit

 $\eta\colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$. Then there is a natural transformation $\varepsilon\colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit

 $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$. Then there is a natural transformation $\varepsilon\colon \mathbf{G}; \mathbf{F}\to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

 $\mathbf{G}(\mathbf{F}(A)) \qquad \mathbf{F}(\mathbf{G}(\mathbf{F}(A))) \xrightarrow{\varepsilon_{\mathbf{F}(A)}} \mathbf{F}(A)$ $\eta_{A} \qquad \mathbf{F}(\eta_{A}) \qquad id_{\mathbf{F}(A)}$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ is indeed natural,

Proof (idea):

Put
$$\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$$
.

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$. Then there is a natural transformation $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ is indeed natural, i.e. for $f' \colon A' \to B'$, $\varepsilon_{A'}; f' = \mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}$.

$$\mathbf{F}(\mathbf{G}(A')) \xrightarrow{\varepsilon_{A'}} A'$$

$$\mathbf{F}(\mathbf{G}(f')) \qquad f'$$

$$\mathbf{F}(\mathbf{G}(B')) \xrightarrow{\varepsilon_{B'}} B'$$

Proof (idea):

Put
$$\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$$
.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ is indeed natural, i.e. for $f' \colon A' \to B'$, $\varepsilon_{A'}; f' = \mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}$.

This holds since $\eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'}; f') = (\eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'})); \mathbf{G}(f') = \mathbf{G}(f')$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ is indeed natural, i.e. for $f' \colon A' \to B'$, $\varepsilon_{A'}; f' = \mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}$.

This holds since $\eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'}; f') = (\eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'})); \mathbf{G}(f') = \mathbf{G}(f')$ and $\eta_{\mathbf{G}(A')}; \mathbf{G}(\mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}) = (\eta_{\mathbf{G}(A')}; \mathbf{G}(\mathbf{F}(\mathbf{G}(f'))); \mathbf{G}(\varepsilon_{B'}) = (\mathbf{G}(f'); \eta_{\mathbf{G}(B')}); \mathbf{G}(\varepsilon_{B'}) = \mathbf{G}(f')$.

Proof (idea):

Put
$$\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$$
.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'} \text{ is indeed natural, i.e. for } f' \colon A' \to B', \ \varepsilon_{A'}; f' = \mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}.$ $This holds since \ \eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'}; f') = (\eta_{\mathbf{G}(A')}; \mathbf{G}(\varepsilon_{A'})); \mathbf{G}(f') = \mathbf{G}(f') \text{ and}$ $\eta_{\mathbf{G}(A')}; \mathbf{G}(\mathbf{F}(\mathbf{G}(f')); \varepsilon_{B'}) = (\eta_{\mathbf{G}(A')}; \mathbf{G}(\mathbf{F}(\mathbf{G}(f')))); \mathbf{G}(\varepsilon_{B'}) = (\mathbf{G}(f'); \eta_{\mathbf{G}(B')}); \mathbf{G}(\varepsilon_{B'}) = \mathbf{G}(f').$ $\mathbf{G}(A') \xrightarrow{\eta_{\mathbf{G}(A')}} \mathbf{G}(\mathbf{F}(\mathbf{G}(A')))$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit

 $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$. Then there is a natural transformation $\varepsilon\colon \mathbf{G}; \mathbf{F}\to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

 $\mathbf{G}(\mathbf{F}(A)) \qquad \mathbf{F}(\mathbf{G}(\mathbf{F}(A))) \xrightarrow{\varepsilon_{\mathbf{F}(A)}} \mathbf{F}(A)$ $\eta_{A} \qquad \mathbf{F}(\eta_{A}) \qquad id_{\mathbf{F}(A)}$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit $\eta: Id_K \to F; G$. Then there is a natural transformation $\varepsilon: G; F \to Id_{K'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

This holds since:

$$\eta_A; \mathbf{G}(\mathbf{F}(\eta_A); \varepsilon_{\mathbf{F}(A)}) = (\eta_A; \mathbf{G}(\mathbf{F}(\eta_A))); \mathbf{G}(\varepsilon_{\mathbf{F}(A)}) = (\eta_A; \eta_{\mathbf{G}(\mathbf{F}(A))}); \mathbf{G}(\varepsilon_{\mathbf{F}(A)}) = \eta_A$$

Theorem: Let $F: K \to K'$ be left adjoint to $G: K' \to K$ with unit

 $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$. Then there is a natural transformation $\varepsilon\colon \mathbf{G}; \mathbf{F}\to \mathbf{Id}_{\mathbf{K}'}$ such that:

•
$$(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$$

$$A \xrightarrow{\eta_A} \mathbf{G}(\mathbf{F}(A))$$

$$\downarrow^{\eta_A} \mathbf{G}(\mathbf{F}(\eta_A))$$

$$\mathbf{G}(\mathbf{F}(A)) \xrightarrow{\eta_{\mathbf{G}(\mathbf{F}(A))}} \mathbf{G}(\mathbf{F}(\mathbf{G}(\mathbf{F}(A))))$$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

This holds since:

$$\eta_A; \mathbf{G}(\mathbf{F}(\eta_A); \varepsilon_{\mathbf{F}(A)}) = (\eta_A; \mathbf{G}(\mathbf{F}(\eta_A))); \mathbf{G}(\varepsilon_{\mathbf{F}(A)}) = (\eta_A; \eta_{\mathbf{G}(\mathbf{F}(A))}); \mathbf{G}(\varepsilon_{\mathbf{F}(A)}) = \eta_A$$

Theorem: Let $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ be left adjoint to $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with unit

 $\eta\colon \mathbf{Id}_{\mathbf{K}}\to \mathbf{F}; \mathbf{G}$. Then there is a natural transformation $\varepsilon\colon \mathbf{G}; \mathbf{F}\to \mathbf{Id}_{\mathbf{K}'}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

 $\mathbf{G}(\mathbf{F}(A)) \qquad \mathbf{F}(\mathbf{G}(\mathbf{F}(A))) \xrightarrow{\varepsilon_{\mathbf{F}(A)}} \mathbf{F}(A)$ $\eta_{A} \qquad \mathbf{F}(\eta_{A}) \qquad id_{\mathbf{F}(A)}$

Proof (idea):

Put $\varepsilon_{A'} = (id_{\mathbf{G}(A')})^{\#}$.

From right adjoints to adjunctions

Theorem: Let $G: \mathbf{K}' \to \mathbf{K}$ be right adjoint to $F: \mathbf{K} \to \mathbf{K}'$ with counit

 $\varepsilon \colon \mathbf{G}; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$. Then there is a natural transformation $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F}; \mathbf{G}$ such that:

• $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$

• $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Proof (idea):

Put $\eta_A = (id_{\mathbf{F}(A)})^\#$.

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- \mathbf{F} is left adjoint to \mathbf{G} with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$.

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- \mathbf{F} is left adjoint to \mathbf{G} with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^{\#} \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^{\#}) = f$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- \mathbf{F} is left adjoint to \mathbf{G} with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^\# = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^\# \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A \colon \mathbf{G}(f^\#) = f$ — indeed: $\eta_A \colon \mathbf{G}(\mathbf{F}(f); \varepsilon_{B'}) = (\eta_A \colon \mathbf{G}(\mathbf{F}(f))) \colon \mathbf{G}(\varepsilon_{B'}) = f \colon (\eta_{\mathbf{G}(B')} \colon \mathbf{G}(\varepsilon_{B'})) = f$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- \mathbf{F} is left adjoint to \mathbf{G} with unit η .
- **G** is right adjoint to **F** with counit ε .

$$A \xrightarrow{\eta_A} \mathbf{G}(\mathbf{F}(A))$$

$$f \qquad \mathbf{G}(\mathbf{F}(f))$$

$$\mathbf{G}(B') \xrightarrow{\eta_{\mathbf{G}(B')}} \mathbf{G}(\mathbf{F}(\mathbf{G}(B')))$$

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f : A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^{\#} : \mathbf{F}(A) \to B'$ satisfies $\eta_A : \mathbf{G}(f^{\#}) = f$ — indeed: $\eta_A : \mathbf{G}(\mathbf{F}(f); \varepsilon_{B'}) = (\eta_A : \mathbf{G}(\mathbf{F}(f))) : \mathbf{G}(\varepsilon_{B'}) = f : (\eta_{\mathbf{G}(B')} : \mathbf{G}(\varepsilon_{B'})) = f$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f : A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^{\#} : \mathbf{F}(A) \to B'$ satisfies $\eta_A : \mathbf{G}(f^{\#}) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$.

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^{\#} \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^{\#}) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$. — since for any $g \colon \mathbf{F}(A) \to B'$ such that $\eta_A; \mathbf{G}(g) = f$, we have: $\mathbf{F}(f); \varepsilon_{B'} = \mathbf{F}(\eta_A; \mathbf{G}(g)); \varepsilon_{B'} = \mathbf{F}(\eta_A); (\mathbf{F}(\mathbf{G}(g)); \varepsilon_{B'}) = (\mathbf{F}(\eta_A); \varepsilon_{\mathbf{F}(A)}); g = g$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

$$\mathbf{F}(\mathbf{G}(\mathbf{F}(A))) \xrightarrow{\varepsilon_{\mathbf{F}(A)}} \mathbf{F}(A)$$

$$\mathbf{F}(\mathbf{G}(g)) \qquad \qquad g$$

$$\mathbf{F}(\mathbf{G}(B')) \xrightarrow{\varepsilon_{B'}} B'$$

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^{\#} = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^{\#} \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^{\#}) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$. — since for any $g \colon \mathbf{F}(A) \to B'$ such that $\eta_A; \mathbf{G}(g) = f$, we have: $\mathbf{F}(f); \varepsilon_{B'} = \mathbf{F}(\eta_A; \mathbf{G}(g)); \varepsilon_{B'} = \mathbf{F}(\eta_A); (\mathbf{F}(\mathbf{G}(g)); \varepsilon_{B'}) = (\mathbf{F}(\eta_A); \varepsilon_{\mathbf{F}(A)}); g = g$

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^\# = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^\# \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^\#) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$. This proves that $\mathbf{F}(A)$ is free over A with unit η_A , and so indeed, \mathbf{F} is left adjoint to \mathbf{G} with unit η .

Theorem: Consider two functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with natural transformations $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Then:

- **F** is left adjoint to **G** with unit η .
- **G** is right adjoint to **F** with counit ε .

Proof: For $A \in |\mathbf{K}|$, $B' \in |\mathbf{K}'|$ and $f \colon A \to \mathbf{G}(B')$, define $f^\# = \mathbf{F}(f); \varepsilon_{B'}$. Then $f^\# \colon \mathbf{F}(A) \to B'$ satisfies $\eta_A; \mathbf{G}(f^\#) = f$ and is the only such morphism in $\mathbf{K}'(\mathbf{F}(A), B')$. This proves that $\mathbf{F}(A)$ is free over A with unit η_A , and so indeed, \mathbf{F} is left adjoint to \mathbf{G} with unit η .

The proof that G is right adjoint to F with counit ε is similar.

Definition: An adjunction between categories K and K' is

$$\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Definition: An adjunction between categories K and K' is

$$rakebox{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Definition: An adjunction between categories K and K' is

$$rakebox{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Equivalently, such an adjunction may be given by:

• Functor $G: \mathbf{K}' \to \mathbf{K}$ and for each $A \in |\mathbf{K}|$, a free object over A w.r.t. G.

Andrzej Tarlecki: Category Theory, 2021

Definition: An adjunction between categories K and K' is

$$oxed{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

- Functor $G: \mathbf{K}' \to \mathbf{K}$ and for each $A \in |\mathbf{K}|$, a free object over A w.r.t. G.
- Functor $G \colon K' \to K$ and its left adjoint.

Definition: An adjunction between categories K and K' is

$$oxed{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ are functors, and $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

- Functor $G: \mathbf{K}' \to \mathbf{K}$ and for each $A \in |\mathbf{K}|$, a free object over A w.r.t. G.
- Functor $G \colon \mathbf{K}' \to \mathbf{K}$ and its left adjoint.
- Functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and for each $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} .

Definition: An adjunction between categories K and K' is

$$\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle$$

where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ are functors, and $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

- Functor $G: \mathbf{K}' \to \mathbf{K}$ and for each $A \in |\mathbf{K}|$, a free object over A w.r.t. G.
- Functor $G \colon \mathbf{K}' \to \mathbf{K}$ and its left adjoint.
- Functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and for each $A' \in |\mathbf{K}'|$, a cofree object under A' w.r.t. \mathbf{F} .
- Functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and its right adjoint.

Definition: An adjunction between categories K and K' is

$$rakebox{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ are functors, and $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\varepsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Notation:

$$\langle \mathbf{F}, \mathbf{G}, \eta, \varepsilon \rangle \colon \mathbf{K} \to \mathbf{K}'$$

 $\mathbf{F}\dashv\mathbf{G}$

Definition: An adjunction between categories K and K' is

$$rakebox{\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle}$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Exercises

- Yet another way to present adjunctions between locally small categories:
 - a natural isomorphism $(_)^\# \colon \mathbf{Hom}_{\mathbf{K}}(_,\mathbf{G}(_)) \to \mathbf{Hom}_{\mathbf{K'}}(\mathbf{F}(_),_)$ $(\colon \mathbf{K}^{op} \times \mathbf{K'} \to \mathbf{Set})$

Definition: An adjunction between categories K and K' is

$$\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Exercises

• Adjunctions compose: given adjunctions $\langle \mathbf{F}, \mathbf{G}, \eta, \varepsilon \rangle \colon \mathbf{K} \to \mathbf{K}'$ and $\langle \mathbf{F}', \mathbf{G}', \eta', \varepsilon' \rangle \colon \mathbf{K}' \to \mathbf{K}''$, define their composition

$$\langle \mathbf{F}; \mathbf{F}', \mathbf{G}'; \mathbf{G}, _, _ \rangle \colon \mathbf{K} \to \mathbf{K}''$$

Definition: An adjunction between categories K and K' is

$$\langle \mathbf{F}, \mathbf{G}, \eta, arepsilon
angle$$

where $F: K \to K'$ and $G: K' \to K$ are functors, and $\eta: Id_K \to F; G$ and $\varepsilon: G; F \to Id_{K'}$ natural transformations such that:

- $(\mathbf{G} \cdot \eta); (\varepsilon \cdot \mathbf{G}) = id_{\mathbf{G}}$
- $(\eta \cdot \mathbf{F}); (\mathbf{F} \cdot \varepsilon) = id_{\mathbf{F}}$

Exercises

• Adjunctions compose: given adjunctions $\langle \mathbf{F}, \mathbf{G}, \eta, \varepsilon \rangle \colon \mathbf{K} \to \mathbf{K}'$ and $\langle \mathbf{F}', \mathbf{G}', \eta', \varepsilon' \rangle \colon \mathbf{K}' \to \mathbf{K}''$, define their composition

$$\langle \mathbf{F}; \mathbf{F}', \mathbf{G}'; \mathbf{G}, \eta; (\mathbf{F} \cdot \eta' \cdot \mathbf{G}), (\mathbf{G}' \cdot \varepsilon \cdot \mathbf{F}'); \varepsilon' \rangle \colon \mathbf{K} \to \mathbf{K}''$$