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Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do ¢:=c+1

-when reading &, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

ai (e o) = (e cl).(I 2)

b (0 @) = (e cl)-(—g Q) aaabbbaab..
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

be o (e o) = uoqy(gg). aaabbbaab..
0 O0TIT2T
o T1T2T2

Thursday, November 26, 2009



Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
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c; T1IT2T 2T 3T

Thursday, November 26, 2009



Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e ) = (e cl).(I 2)
b (0 o) = (e cl)-(T 0). aaabbbaab..

0 T
co 0T1T2T2T3T
c; 11 T2T 2T 3T3

In the other direction, one can convert a2 min-automaton in matrix form
by simulating a matrix operation as a sequence of counter operations, and
then eliminating T values by storing them in the state.
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Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:
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L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .
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L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z

transitions:

saw b in state p - go to p or ¢; d:=c; ¢:=z;
saw & in state g - go to p or ¢

saw 4 In state p - go to p; c:=c+1;

saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state

transitions: .

saw b in state p - go to p or ¢; d:=c; ¢:=z; y

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state p

transitions: 0

saw b in state p - go to p or ¢; d:=c; ¢:=z; 10

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state

transitions: ) 18 f

saw b in state p - go to p or ¢; d:=c; ¢:=z; 100

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
transitions: St 1(0)1? é
saw b in state p - go to p or ¢; d:=c; ¢:=z; ;, 00 1

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
transitions: e 2P L2

: c 0101
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 001 1

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaagababaaaabab...
transitions: sate PP P PP

. c 01012
saw & in state p - go to p or q; d:=c c:=z; 4 00111

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaagababaaaabab...
transitions: Sate PP PP PP

. c 010123
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 001111

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p ppP14

tran51t.1ons: c 0101230
saw & in state p - go to p or g; d:=c; c:=z J 0011113

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p ppP949

tran51t.1ons: c 01012300
saw & in state p - go to p or g; d:=c; c:=z J 00111133

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..
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saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

Thursday, November 26, 2009



Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

itions: saate pp p pppgqgpp
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saw & in state g - go to p or ¢ d 0011113333

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..
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ons: t e c 01012300012
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saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..
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P c 010123000123
saw state p - o to p Or g; d:=¢; ¢:=2; A 001111333333

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p pppqgqgppppp
P c 0101230001234
saw b 1n state p - go to p Or g5 d!=¢; €= d 0011113333333

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

saate pp ppppgqg9p pPrLLPrqg
saw b in state p - go to p or ¢; d:=c; ¢:=z; ¢ 01012300012340
saw & in state g - go to p or ¢ d 00111133333334

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

transitions:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..
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e, ¢ 010123000123400
saw O 0 STLe prgoto POl =G =Sy 001111333333344

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:

Thursday, November 26, 2009



Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

. saate pppppPP99PPPPPI99
transitions: c 0101230001234000
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 0011113333333444
saw & in state g - go to p or ¢

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.

Corollary. Deterministic min-automaton are not closed under the second

order existential quantifier 3.X.
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Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:

limsup(c) = oo
|

“c has unbounded values”

Example. L = {a"1b a"2b a"3b...: n;,no... is unbounded}

Theorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata —

boolean combinations of min- and max-automata.
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Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Proof. min-max-automarta are a special case of @BS-automata (Bojaniczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

— Limitedness problem for Distance Automata — Hashiguchi [82], Leung [91],
Simon [94], Kirsten [05], Colcombet [09]

— Semiring of matrices over the tropical semiring

Theorem. Emptiness of min- and max-automata is PSPACE-hard.

Proof. Standard reduction from universality of nondeterministic finite automata.

Thursday, November 26, 2009



Logic

Max-automata

Thursday, November 26, 2009



Logic
Max-automata

Extension of WMSO by the quantifier

Thursday, November 26, 2009



Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Thursday, November 26, 2009



Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

Thursday, November 26, 2009



Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

Thursday, November 26, 2009



Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
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Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”
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Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

2

Thursday, November 26, 2009



Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {76 a™b a*b... : nyn2ns... converges to oo}

UX “Xisablock of as”

2

Thursday, November 26, 2009



Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {76 a™b a*b... : nyn2ns... converges to oo}

RX “Xisablock of as”

2
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RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.
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RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

R X there is a path starting in an initial counter,
ending in ¢, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX ¢(X),
where p(X) is WMSO and such that if w, X = ¢, then there is a prefix v of w such that v, X &= ¢ for any suffix .

We call RX ¢(X) aprefix R-formula.
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RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

R X there is a path starting in an initial counter,
ending in ¢, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX ¢(X),
where p(X) is WMSO and such that if w, X = ¢, then there is a prefix v of w such that v, X &= ¢ for any suffix .

We call RX ¢(X) aprefix R-formula.

(harder direction). Construct automaton by induction on structure of formula.

For deterministic automata, closure under boolean operations is for free. Must show closure under Jfin

and that nested R quantifiers can be denested. Follows from a more general theorem.
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WMSO + U < > WMSO + R

max-automata < > min-automata
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Theorem. WMSO+U has the same expressive power as deterministic max-automata.
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Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.
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WMSO + U + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?
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min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything
to the expressive power of WMSO.
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min-max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything
to the expressive power of WMSO.

Follows tfrom the more general theorem.
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Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way
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Periodicity-automata

Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way

WMSO + P

Extension of WMSO by the following quantifier

Px ¢(x)

“the set of positions x satisfying
o(x) is ultimately periodic”
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Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.
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Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has
decidable satishability.
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Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has
decidable satishability.

Theorem. WMSO + R + U + P has the same expressive power as boolean

combinations of min- max- and periodicity-automata.
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(General framework

Theorem. A WMSO+Q1+Q2+...+Qn formula is equivalent to a boolean
combination of formulas of the form  Q«X g#(X).

(We require some additional conditions on the quantifiers Q7,Qz,...,Qn

which will be phrased later)
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d:=d+1;

Thursday, November 26, 2009



Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations
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An F-automaton
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Another view on
min- and max-automata

.
A deterministic letter-to-letter transducer : A — B

An F-automaton

'The language F'is prefix-independent, i.e. F=B*FE

'The automaton accepts a word w € A» ift f(w) e E

Similarly, Biichi, Muller, parity, max- automata are F-automata
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Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX D ( X) “there exist arbitrarily large (finite) sets X, satisfying (X)”
RY 0 ( X) “there exist infinitely many sets X of the same size, satisfying o(X)”
dfin X D (X) “the family of finite sets X which satisfy ¢(X) is nonempty”

QX “the family of finite sets X satisfying o(X) has a property Q”
@ ) ying @ properry
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Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX @ ( X) “there exist arbitrarily large (finite) sets X, satisfying (X)”

RX D ( X) “there exist infinitely many sets X of the same size, satisfying p(X)”
fin X' o(X) “the family of finite sets X which satisfy g(X) is nonempty”

QX 4 (X) “the family of finite sets X satisfying ¢(X) has a property Q”

A locus quantifier: any property Q of
families of finite sets of positions
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Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus

quantifier. If  is an F-regular language over the alphabet 4 X {0,1}, then the language
QL={we A»: QX [w&XXel]}

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.
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@ - a WMSO formula with a free variable X;
ez p=VxVy suc(xy = (xeX & y¢X)

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus

quantifier. If L is an F-regular language over the alphabet 4 X {0,1}, then the language
QL={w e A»: QX [w®XeL]}

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.
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X - a finite set of positions; wXFo

Thursday, November 26, 2009



@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions;

A - a family of sets X;

wXEg
A, ={X: wX

P}
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dfin ={.X: X contains some set X}
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@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXE g

Q- a family of sets X; Ay ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}
R=1{Q": X contains infinitely many sets X of same size}
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@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)
X - a finite set of positions; wXFEo
A - a family of sets X; A, ={X: wXEg}
Q - a property of sets .%; QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}

R=1{Q": X contains infinitely many sets X of same size}
U=1{Q: L contains sets X of arbitrarily large size}
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@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXFEo

A - a family of sets X; A, ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}

R=1{Q": X contains infinitely many sets X of same size}

U=1{Q: L contains sets X of arbitrarily large size}

Q is finitely invarians: it X and ¢/difter by finitely many sets,
then XeQ & 7€Q
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@ -a WMSO formula with a free variable X; Hfin Z{%: A contains some set X}

ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g - a family of Sgts XLQZ gs;( ={X w{é = SDLZ‘ Q U= {0 X contains sets X of arbitrarily large size}
oyt | A Qs finitely invariant: if @ and 7/differ by finitely many sets,
then 1€Q & 7/eQ
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@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g- a family of SEtS X; " gs;( = {())((; w{é = SD}(I‘ 9 U={X: X contains sets X of arbitrarily large size}

_ t ts .Y 2 M -~

QX; &f,;ljj A A a Qs finitely invariant: if 2" and 7/differ by finitely many sets,
then XeQ & 7eQ

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.
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@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g- a family of SEtS X; " gs;( = {())((; w{é = SD}(I‘ 9 U={X: X contains sets X of arbitrarily large size}

- t € 8 .

QX; &{;’Ije: é?fosrjjula A a Qs finitely invariant: if 2" and 7/differ by finitely many sets,
then XeQ & 7eQ

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

What language does a formula ¢ with a free variable define?
A language L over 4 X {0,1}:

L={w®X: wXkFo }
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@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)

X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}
- a family of sets X; Ay =X wX=o} U= {0 X contains sets X of arbitrarily large size}

Q - a property of sets .4 QXo(X) iff %,€Q

QX ¢(X) - a Q-formula Q is finitely invariant: it X and 7/differ by finitely many sets,

then XeQ & 7Q

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

What language does a formula ¢ with a free variable define?
A language L over 4 X {0,1}:

L={w®X: wXkFo }

We need to show: if'L is a boolean combination of Q-formulas, then so is
QL={we A»: QX [w®XeLl]}

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus
quantifier. If L is an F-regular language over the alphabet 4 X {0,1}, then the language

QL={w e A»: QX [w®XeL]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.
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