Deterministic Automata and

Extensions of Weak MSO

Mikotaj Bojanczyk

Szymon Torunczyk

University of Warsaw

oooooooooooooooooooooooo

Languages of infinite words

Languages of infinite words

abaabbaaaaaba... € (a+b)”

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

Language: infinitely 4’s on odd positions

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

exists a set of
positions X

N

X

Language: infinitely 4’s on odd positions

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

exists a set of contains the first

positions X

\ Vs Hny ye be / position
1x {

Language: infinitely 4’s on odd positions

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

exists a set of contains the first

positions X

\ Vs Hny ye be / position
3X { Vx Vy suc(xy) = (xeX & y¢X)

\ contains every

second position

Language: infinitely 4’s on odd positions

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

exists a set of contains the first

positions X

\ Vs Hny ye be / position
3X { Vx Vy suc(xy) = (xeX & y¢X)

Vx dy2x d(y) N)/EX \ contains every
\ second position

contains infinitely
many 4’s

Language: infinitely 4’s on odd positions

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

-

exists a set of contains the first

positions X

\ Vs Hny ye be / position
3X { Vx Vy suc(xy) = (xeX & y¢X)

Vx dy2x d(y) N)/EX \ contains every
\ second position

contains infinitely

many 4’s

Monadic Secondary Order Logic (MSO)

Thursday, November 26, 2009

Languages of infinite words

abaabbaaaaaba... € (a+b)”

-

exists a set of contains the first

position
Vx Jysx yeX —

><‘v’x Vy sucxy) = (xveX & ygX)

Vx dyzx d()/) A)/EX \ contains every
Vz 4)/ >2 Afin X e \ second position

contains infinitely

positions X

many 4’s
N

Weak Monadic Secondary Order Logic (WMSO)

Thursday, November 26, 2009

w-regular languages

Thursday, November 26, 2009

w-regular languages

Automata < - Logic

Thursday, November 26, 2009

w-regular languages

Automata Logic

Muller WMSO

Thursday, November 26, 2009

Aim: find robust extensions of
w-regular languages

Automata Logic

Muller WMSO

Thursday, November 26, 2009

Aim: find robust extensions of
w-regular languages

Automata Logic

Muller WMSO
max-automata WMSO+U

Thursday, November 26, 2009

Aim: find robust extensions of
w-regular languages

Automata Logic
Muller WMSO
max-automata WMSO+U

min-automata WMSO+R

Thursday, November 26, 2009

Aim: find robust extensions of

w-regular languages

Automata

Muller

max-automata

min-automata

min-max-automata

Logic
WMSO
WMSO+U
WMSO+R

WMSO+U+R

Aim: find robust extensions of

w-regular languages

Automata

Muller

max-automata

min-automata
min-max-automata

periodicity-automata

Logic
WMSO
WMSO+U
WMSO+R
WMSO+U+R

WMSO+P

Aim: find robust extensions of

w-regular languages

Automata

Muller

max-automata

min-automata
min-max-automata
periodicity-automata

...—automata

Logic
WMSO
WMSO+U
WMSO+R
WMSO+U+R

WMSO+P
WMSO+...

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do ¢:=c+1

-when reading &, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading &, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading &, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading &, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(44 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading b, do d:=min(c,c); c:=min(z,2);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

(44 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading b, do d:=min(c,c); c:=min(z,2);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
|

“c tends to oo~

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢,d,z
-when reading 4, do c:=c+1

-when reading b, do d:=min(c,c); c:=min(z,2);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
“c tends to oo’
Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}

Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do c:=c+1

-when reading 4, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo’
Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}

Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

N

N

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}

Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

N, O

0
0
0

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}

Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

N, O

0
0
0

oSO

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

N, O

0
0
0

oSO
S O

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo’
Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z); 230

N, O
o O O
o O
-
-
(U8

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo’
Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z); s

. 000
Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z); 30101
033
000

N, O

012
000 1 1
. 000 00
Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaab..
-when reading 4, do d:=min(c,c); c:=min(z,z);

N, O

0
0
0

o O
S O N
S O W
oS W O
S W~

01
1 1
00

S = N

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:
liminf(c) = oo

“c tends to oo~

Example. L = {a"b a™b ab...: ni,n2... does not converge to oo}
Min-automaton has one state and three counters: ¢,4,z

-when reading 4, do c:=c+1 aaababaa
-when reading 4, do d:=min(c,c); c:=min(z,z); c 01230101 2
4 000033111
z 00000000O00O

oo o S

Acceptance condition: —¢A-d

Thursday, November 26, 2009

Tweaking the model

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

® One can introduce matrix operations on counters, which stems from the
semiring structure on {10,1,2,..., T}, where min with respect to O<l<2<...< T
is addition and + is multiplication

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

® One can introduce matrix operations on counters, which stems from the
semiring structure on {10,1,2,..., T}, where min with respect to O<l<2<...< T
is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

® One can introduce matrix operations on counters, which stems from the
semiring structure on {10,1,2,..., T}, where min with respect to O<l<2<...< T
is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

1 T 7T
(cdz) = (cdz)- T 0 T
T T 0

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

® One can introduce matrix operations on counters, which stems from the
semiring structure on {10,1,2,..., T}, where min with respect to O<l<2<...< T
is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

(cdz)

1 T 7T
(cdz)- T 0 T
T T 0

d:=min(c,c); c:=z can be written as:

Thursday, November 26, 2009

Tweaking the model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® One can introduce the undefined counter value T
this can be eliminated by storing in the states the info about which counters

are defined

® One can introduce matrix operations on counters, which stems from the
semiring structure on {10,1,2,..., T}, where min with respect to O<l<2<...< T
is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

1 T T
(cdz) = (cdz)- T 0 T
T T 0

d:=min(c,c); c:=z can be written as:
T 0 T
(cdz) = (cdz)- T T 7T
O T O

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
Example. Min-automaton which counts 4’s on odd positions.

Has states qo, g1 and one counter c.
Transitions:

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .
Transitions:

-saw 4 in state go — go to qr; c:=c+1

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)
b (0 @) = (e cl).(g 2)

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)
b (0 o) = (e cl)-(T 0). aaabbbaab..

0 T
co

Cl

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)
b (0 o) = (e cl)-(T 0). aaabbbaab..

0 T
co 0

c; T

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)

b (0 o) = (e cl)-(—g Q) aaabbbaab..
co 0T
c; T 1

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)
b (0 o) = (e cl)-(T 0). aaabbbaab..

0 T
co 0T 1

C]TIT

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

ai (e o) = (e cl).(I 2)

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0O T1T
C]Tsz

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0T 1712
c; T1T2T

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

be o (e o) = uoqy(gg). aaabbbaab..
0 O0TIT2T
o T1T2T2

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0 T1T2T2
c; T1T2T 2T

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0 TIT2T2T
c; T1IT2T 2T 3

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0T1T2T2T3
c; T1IT2T 2T 3T

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

a : (CO Cl) = (CO Cl)'<—{ _(|)_>

b (0 @) = (e cl)-(—g Q) aaabbbaab..
co 0OTIT2T2T3T
c; T1IT2T2T3T3

Thursday, November 26, 2009

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts 4’s on odd positions.
Has states g0, 97 and one counter .

Transitions:

-saw 4 in state go — go to qr; c:=c+1

-saw 4 In state g7 — go to gy

-saw 4 in state ¢qp — g0 to ¢

-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

oi (e) = (e cl).(I 2)
b (0 o) = (e cl)-(T 0). aaabbbaab..

0 T
co 0T1T2T2T3T
c; 11 T2T 2T 3T3

In the other direction, one can convert a2 min-automaton in matrix form
by simulating a matrix operation as a sequence of counter operations, and
then eliminating T values by storing them in the state.

Thursday, November 26, 2009

Nondeterministic min-automata

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z

transitions:

saw b in state p - go to p or ¢; d:=c; ¢:=z;
saw & in state g - go to p or ¢

saw 4 In state p - go to p; c:=c+1;

saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state

transitions: .

saw b in state p - go to p or ¢; d:=c; ¢:=z; y

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state p

transitions: 0

saw b in state p - go to p or ¢; d:=c; ¢:=z; 10

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
. state

transitions:) 18 f

saw b in state p - go to p or ¢; d:=c; ¢:=z; 100

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
transitions: St 1(0)1? é
saw b in state p - go to p or ¢; d:=c; ¢:=z; ;, 00 1

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaaababaaaabab..
transitions: e 2P L2

: c 0101
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 001 1

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaagababaaaabab...
transitions: sate PP P PP

. c 01012
saw & in state p - go to p or q; d:=c c:=z; 4 00111

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

states: p,¢q; q is the “skip block” state

counters: ¢,d,z abaagababaaaabab...
transitions: Sate PP PP PP

. c 010123
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 001111

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p ppP14

tran51t.1ons: c 0101230
saw & in state p - go to p or g; d:=c; c:=z J 0011113

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p ppP949

tran51t.1ons: c 01012300
saw & in state p - go to p or g; d:=c; c:=z J 00111133

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

itions: statc pp p pppPg9gp
;j:sbltilr?l;;tep_go t0 p or q; d=c; c=; c 010123000
saw & in state g - go to p or ¢ d 001111333

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

itions: saate pp p pppgqgpp
Eiffsétfﬁlﬁgm p-gotoporgdiee e € 0101230001
saw & in state g - go to p or ¢ d 0011113333

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

statc ppppppgqgppp
ons: t e c 01012300012
Saw & In state p - go to p Or g; d:=¢; 1=z, d 00111133333

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

saate pppppPpP9gPPPP

P c 010123000123
saw state p - o to p Or g; d:=¢; ¢:=2; A 001111333333

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

state pp p pppqgqgppppp
P c 0101230001234
saw b 1n state p - go to p Or g5 d!=¢; €= d 0011113333333

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

saate pp ppppgqg9p pPrLLPrqg
saw b in state p - go to p or ¢; d:=c; ¢:=z; ¢ 01012300012340
saw & in state g - go to p or ¢ d 00111133333334

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

transitions:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

sate ppppprgqapLrPLPLaq
e, ¢ 010123000123400
saw O 0 STLe prgoto POl =G =Sy 001111333333344

saw & in state g - go to p or ¢
saw 4 1n state p - go to p; c:=c+1;
saw 4 in state g - go to g;

transitions:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:
! q
states: p,¢q; q is the “skip block” state

counters: c,d,z abaaababaaaabab..

. saate pppppPP99PPPPPI99
transitions: c 0101230001234000
saw b in state p - go to p or ¢; d:=c; ¢:=z; J 0011113333333444
saw & in state g - go to p or ¢

saw 4 1n state p - go to p; c:=c+1;
saw 4 1n state g - g0 to g;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={a"b a72b a73b...: ny,no... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. The sequence 7;,7.... is unbounded iff it contains a subsequence

which tends to .

A nondeterministic automaton can guess the subsequence:

Theorem. A deterministic min-automaton cannot recognize the language L.

Corollary. Deterministic min-automaton are not closed under the second

order existential quantifier 3.X.

Thursday, November 26, 2009

Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:

limsup(c) = oo
|

“c has unbounded values”

Example. L = {a"1b a"2b a"3b...: n;,no... is unbounded}

Theorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata —

boolean combinations of min- and max-automata.

Thursday, November 26, 2009

Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:

limsup(c) = o
|

“c has unbounded values”

Example. L = {a"!b a"2b a"3b...: ni,no... is unbounded}

Theorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata —

boolean combinations of min- and max-automata.

Thursday, November 26, 2009

Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:

limsup(c) = o

“c has unbounded values”

Example. L = {a"1b a"?b a"3b...: ni,no... is unbounded}

Thursday, November 26, 2009

Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:
limsup(c) = o

“c has unbounded values”

Example. L = {a"1b a"?b a"3b...: ni,no... is unbounded}

Theorem. Min-automata and max-automata have incomparable expressiveness.

Thursday, November 26, 2009

Max-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=max(d,e)

acceptance condition is a boolean combination of:

limsup(c) = o

“c has unbounded values”

Example. L = {a"1b a"?b a"3b...: ni,no... is unbounded}

Theorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata —

boolean combinations of min- and max-automata.

Thursday, November 26, 2009

Emptiness of min-max-automata

Thursday, November 26, 2009

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Thursday, November 26, 2009

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Proof. min-max-automarta are a special case of @BS-automata (Bojaniczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

Thursday, November 26, 2009

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Proof. min-max-automarta are a special case of @BS-automata (Bojaniczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.

Is related to:

— Limitedness problem for Distance Automata — Hashiguchi [82], Leung [91],
Simon [94], Kirsten [05], Colcombet [09]

— Semiring of matrices over the tropical semiring

Thursday, November 26, 2009

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Proof. min-max-automarta are a special case of @BS-automata (Bojaniczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

— Limitedness problem for Distance Automata — Hashiguchi [82], Leung [91],
Simon [94], Kirsten [05], Colcombet [09]

— Semiring of matrices over the tropical semiring

Theorem. Emptiness of min- and max-automata is PSPACE-hard.

Thursday, November 26, 2009

Emptiness of min-max-automata

Theorem. There exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Proof. min-max-automarta are a special case of @BS-automata (Bojaniczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

Another proof. Uses profinite and semigroup methods.
Is related to:

— Limitedness problem for Distance Automata — Hashiguchi [82], Leung [91],
Simon [94], Kirsten [05], Colcombet [09]

— Semiring of matrices over the tropical semiring

Theorem. Emptiness of min- and max-automata is PSPACE-hard.

Proof. Standard reduction from universality of nondeterministic finite automata.

Thursday, November 26, 2009

Logic

Max-automata

Thursday, November 26, 2009

Logic
Max-automata

Extension of WMSO by the quantifier

Thursday, November 26, 2009

Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Thursday, November 26, 2009

Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

Thursday, November 26, 2009

Logic
Max-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

Thursday, November 26, 2009

Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

Thursday, November 26, 2009

Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

Thursday, November 26, 2009

Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}

UX “Xisablock of as”

2

Thursday, November 26, 2009

Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {76 a™b a*b... : nyn2ns... converges to oo}

UX “Xisablock of as”

2

Thursday, November 26, 2009

Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

Jthere exist infinitely many sets X of bounded size, satisfying o(X)

Language: {76 a™b a*b... : nyn2ns... converges to oo}

RX “Xisablock of as”

2

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of
conditions:

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

d:=d+1; c:=min(d,e); c:=c+1 ...

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

d)(d)
d:=d+1; c:=min(d,e); c:=c+1 ... @ @ L @

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

R X there is a path starting in an initial counter,
ending in ¢, with increments at positions in the set X

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

R X there is a path starting in an initial counter,
ending in ¢, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX ¢(X),
where p(X) is WMSO and such that if w, X = ¢, then there is a prefix v of w such that v, X &= ¢ for any suffix .

We call RX ¢(X) aprefix R-formula.

Thursday, November 26, 2009

RX o(X): there exist infinitely many sets X of the same size, satisfying (X)”

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Proof (easy direction). The acceptance condition is a boolean combination of

conditions:
values of ¢ do not tend to oo

(A
d:=d+1; c:=min(d,e); c:=c+1 ... \@L]'@
(&)

R X there is a path starting in an initial counter,
ending in ¢, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX ¢(X),
where p(X) is WMSO and such that if w, X = ¢, then there is a prefix v of w such that v, X &= ¢ for any suffix .

We call RX ¢(X) aprefix R-formula.

(harder direction). Construct automaton by induction on structure of formula.

For deterministic automata, closure under boolean operations is for free. Must show closure under Jfin

and that nested R quantifiers can be denested. Follows from a more general theorem.

Thursday, November 26, 2009

WMSO + U < > WMSO + R

max-automata < > min-automata

Thursday, November 26, 2009

WMSO + U WMSO + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Thursday, November 26, 2009

WMSO + U WMSO + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Thursday, November 26, 2009

WMSO + U + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?

Thursday, November 26, 2009

WMSO + U + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Thursday, November 26, 2009

WMSO + U + R

min-max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Thursday, November 26, 2009

WMSO + U + R

min-max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything
to the expressive power of WMSO.

Thursday, November 26, 2009

WMSO + U + R

min-max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything
to the expressive power of WMSO.

Follows tfrom the more general theorem.

Thursday, November 26, 2009

Periodicity-automata

Thursday, November 26, 2009

Periodicity-automata

Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way

Thursday, November 26, 2009

Periodicity-automata

Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way

WMSO + P

Thursday, November 26, 2009

Periodicity-automata

Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way

WMSO + P

Extension of WMSO by the following quantifier

Thursday, November 26, 2009

Periodicity-automata

Deterministic automata allowed to verity that certain states
appear in an ultimately periodic way

WMSO + P

Extension of WMSO by the following quantifier

Px ¢(x)

“the set of positions x satisfying
o(x) is ultimately periodic”

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has
decidable satishability.

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

Theorem. WMSO + P has the same expressive power as periodicity-automata.

Theorem. Emptiness of periodicity automata is decidable. Therefore, WMSO + P has
decidable satishability.

Theorem. WMSO + R + U + P has the same expressive power as boolean

combinations of min- max- and periodicity-automata.

Thursday, November 26, 2009

(General framework

Thursday, November 26, 2009

(General framework

Theorem. A WMSO+Q1+Q2+...+Qn formula is equivalent to a boolean
combination of formulas of the form Q«X g#(X).

(We require some additional conditions on the quantifiers Q7,Qz,...,Qn

which will be phrased later)

Thursday, November 26, 2009

Another view on
min- and max-automata

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations
a b b a b......

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations
a b b a b......
d:=d+1;

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations
a b b a b.
d:=d+1; c:=min(d,e);

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations

a % % a b......
d:=d+1; c:=min(de); c:=c+1; d:=d+1;

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations

a % % a b......
d:=d+1; c=min(de); c:=c+l;d:=d+1; c:=c+1;

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B
which outputs a sequence of counter operations

a b b a b......

d:=d+1; c=min(de); c:=c+l;d:=d+1; c:=c+1;

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations

a % % a b......
d:=d+1; c:=min(de); c:=c+1;d:=d+1; c:=c+1; c:=min(cc).....

We consider the language FC B® of sequences of instructions in which the

appropriate counters converge to oo,

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations

a % % a b......
d:=d+1; c:=min(de); c:=c+1;d:=d+1; c:=c+1; c:=min(cc).....

We consider the language FC B® of sequences of instructions in which the

appropriate counters converge to oo,

'The language F'is prefix-independent, i.e. F=B*FE

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer : A — B

which outputs a sequence of counter operations

a % % a b......
d:=d+1; c:=min(de); c:=c+1;d:=d+1; c:=c+1; c:=min(cc).....

We consider the language FC B® of sequences of instructions in which the

appropriate counters converge to oo,

'The language F'is prefix-independent, i.e. F=B*FE

'The automaton accepts a word w € A» ift f(w) e E

Thursday, November 26, 2009

Another view on
min- and max-automata

.
A deterministic letter-to-letter transducer : A — B

An F-automaton

'The language F'is prefix-independent, i.e. F=B*FE

'The automaton accepts a word w € A» ift f(w) e E

Thursday, November 26, 2009

Another view on
min- and max-automata

.
A deterministic letter-to-letter transducer : A — B

An F-automaton

'The language F'is prefix-independent, i.e. F=B*FE

'The automaton accepts a word w € A» ift f(w) e E

Similarly, Biichi, Muller, parity, max- automata are F-automata

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX @ (X) “there exist arbitrarily large (finite) sets X, satisfying o(X)”

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX @ (X) “there exist arbitrarily large (finite) sets X, satisfying (X)”

RY 0 (X) “there exist infinitely many sets X of the same size, satisfying o(X)”

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX “ (X) “there exist arbitrarily large (finite) sets X, satisfying (X)”
RY 0 (X) “there exist infinitely many sets X of the same size, satisfying o(X)”

Hfin X ¢(X) “the family of finite sets X which satisfy ¢(X) is nonempty”

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX D (X) “there exist arbitrarily large (finite) sets X, satisfying (X)”
RY 0 (X) “there exist infinitely many sets X of the same size, satisfying o(X)”
dfin X D (X) “the family of finite sets X which satisfy ¢(X) is nonempty”

QX “the family of finite sets X satisfying o(X) has a property Q”
@) ying @ properry

Thursday, November 26, 2009

Another view on quantifiers U, R, Ffin

They speak about properties of families of
finite sets of positions:

UX @ (X) “there exist arbitrarily large (finite) sets X, satisfying (X)”

RX D (X) “there exist infinitely many sets X of the same size, satisfying p(X)”
fin X' o(X) “the family of finite sets X which satisfy g(X) is nonempty”

QX 4 (X) “the family of finite sets X satisfying ¢(X) has a property Q”

A locus quantifier: any property Q of
families of finite sets of positions

Thursday, November 26, 2009

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus

quantifier. If is an F-regular language over the alphabet 4 X {0,1}, then the language
QL={we A»: QX [w&XXel]}

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus

quantifier. If L is an F-regular language over the alphabet 4 X {0,1}, then the language
QL={w e A»: QX [w®XeL]}

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
ez p=VxVy suc(xy = (xeX & y¢X)

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus

quantifier. If L is an F-regular language over the alphabet 4 X {0,1}, then the language
QL={w e A»: QX [w®XeL]}

is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXFo

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions;

A - a family of sets X;

wXEg
A, ={X: wX

P}

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXE g
Q- a family of sets X; Ay ={X: wXEg}
Q - a property of sets X QXo(X) if 2,€eQ

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXE g

Q- a family of sets X; Ay ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXE g

Q- a family of sets X; Ay ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXE g

Q- a family of sets X; Ay ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}
R=1{Q": X contains infinitely many sets X of same size}

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)
X - a finite set of positions; wXFEo
A - a family of sets X; A, ={X: wXEg}
Q - a property of sets .%; QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}

R=1{Q": X contains infinitely many sets X of same size}
U=1{Q: L contains sets X of arbitrarily large size}

Thursday, November 26, 2009

@ - a WMSO formula with a free variable X;
e p=VxVy suclxy) = (xeX & y¢X)

X - a finite set of positions; wXFEo

A - a family of sets X; A, ={X: wXEg}

Q - a property of sets X QXo(X) if 2,€eQ
QX o(X) - a Q-formula

dfin ={.X: X contains some set X}

R=1{Q": X contains infinitely many sets X of same size}

U=1{Q: L contains sets X of arbitrarily large size}

Q is finitely invarians: it X and ¢/difter by finitely many sets,
then XeQ & 7€Q

Thursday, November 26, 2009

@ -a WMSO formula with a free variable X; Hfin Z{%: A contains some set X}

ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g - a family of Sgts XLQZ gs;(={X w{é = SDLZ‘ Q U= {0 X contains sets X of arbitrarily large size}
oyt | A Qs finitely invariant: if @ and 7/differ by finitely many sets,
then 1€Q & 7/eQ

Thursday, November 26, 2009

@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g- a family of SEtS X; " gs;(= {())((; w{é = SD}(I‘ 9 U={X: X contains sets X of arbitrarily large size}

_ t ts .Y 2 M -~

QX; &f,;ljj A A a Qs finitely invariant: if 2" and 7/differ by finitely many sets,
then XeQ & 7eQ

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

Thursday, November 26, 2009

@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g- a family of SEtS X; " gs;(= {())((; w{é = SD}(I‘ 9 U={X: X contains sets X of arbitrarily large size}

- t € 8 .

QX; &{;’Ije: é?fosrjjula A a Qs finitely invariant: if 2" and 7/differ by finitely many sets,
then XeQ & 7eQ

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

What language does a formula ¢ with a free variable define?
A language L over 4 X {0,1}:

L={w®X: wXkFo }

Thursday, November 26, 2009

@ -a WMSO formula with a free variable X; Hfin :{%: X contains some set X}

ez p=VxVy suc(xy) = (veX & ygX)
X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}

g- a family of SEtS X @ “g’;{z {())((; w’.{;: SD}(I a U={X: X contains sets X of arbitrarily large size}
QX;(F;;;) Iie:té?f:f;f@; ’ S Q is ﬁnitel)f invariant: it 4 and ¢/ difter by finitely many sets,
then XeQ & 7Q

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

What language does a formula ¢ with a free variable define?
A language L over 4 X {0,1}:

L={w®X: wXkFo }

We need to show: if'L is a boolean combination of Q-formulas, then so is

QL={we A»: QX |[w®XeL]}

Thursday, November 26, 2009

@ -a WMSO formula with a free variable X; Hfin :{Qf; X contains some set X}
ez p=VxVy suc(xy) = (veX & ygX)

X - a finite set of positions; WX Eg R= {2 X contains infinitely many sets X of same size}
- a family of sets X; Ay =X wX=o} U= {0 X contains sets X of arbitrarily large size}

Q - a property of sets .4 QXo(X) iff %,€Q

QX ¢(X) - a Q-formula Q is finitely invariant: it X and 7/differ by finitely many sets,

then XeQ & 7Q

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which defines the same language.

What language does a formula ¢ with a free variable define?
A language L over 4 X {0,1}:

L={w®X: wXkFo }

We need to show: if'L is a boolean combination of Q-formulas, then so is
QL={we A»: QX [w®XeLl]}

Theorem. Let F be a prefix-independent acceptance condition and let Q be a locus
quantifier. If L is an F-regular language over the alphabet 4 X {0,1}, then the language

QL={w e A»: QX [w®XeL]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is prefix-

independent then the Q-formulas are prefix Q-formulas.

Thursday, November 26, 2009

