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“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
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In the other direction, one can convert a min-automaton in matrix form 
by simulating a matrix operation as a sequence of counter operations, and 
then eliminating ⊤ values by  storing them in the state.
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deterministic ones. Separating language: 

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following 
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence 
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than 
deterministic ones. Separating language: 

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following 
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence 
which tends to ∞. 

A nondeterministic automaton can guess the subsequence:
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than 
deterministic ones. Separating language: 

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following 
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence 
which tends to ∞. 

A nondeterministic automaton can guess the subsequence:

eorem. A deterministic min-automaton cannot recognize the language L.
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Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than 
deterministic ones. Separating language: 

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following 
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence 
which tends to ∞. 

A nondeterministic automaton can guess the subsequence:

eorem. A deterministic min-automaton cannot recognize the language L.

Corollary. Deterministic min-automaton are not closed under the second 
order existential quanti#er ∃X. 
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“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem.  Min-automata and max-automata have incomparable expressiveness.

Min-max-automata – 
boolean combinations of min- and max-automata. 
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Emptiness of min-max-automata
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eorem. ere exists an algorithm deciding emptiness of min-max-automata, 
which runs in polynomial space.

Emptiness of min-max-automata
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eorem. ere exists an algorithm deciding emptiness of min-max-automata, 
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-max-automata
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eorem. ere exists an algorithm deciding emptiness of min-max-automata, 
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-max-automata

Another proof. Uses pro#nite and semigroup methods.
Is related to:
– Limitedness problem for Distance Automata – Hashiguchi [82], Leung [91], 

     Simon [94], Kirsten [05], Colcombet [09] 
– Semiring of matrices over the tropical semiring

Thursday, November 26, 2009



eorem. ere exists an algorithm deciding emptiness of min-max-automata, 
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

eorem. Emptiness of min- and max-automata is PSPACE-hard.
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– Semiring of matrices over the tropical semiring
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eorem. ere exists an algorithm deciding emptiness of min-max-automata, 
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

eorem. Emptiness of min- and max-automata is PSPACE-hard.

Proof. Standard reduction from universality of nondeterministic #nite automata.

Emptiness of min-max-automata

Another proof. Uses pro#nite and semigroup methods.
Is related to:
– Limitedness problem for Distance Automata – Hashiguchi [82], Leung [91], 

     Simon [94], Kirsten [05], Colcombet [09] 
– Semiring of matrices over the tropical semiring
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Max-automata

Logic
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Extension of WMSO by the quanti#er

Max-automata

Logic
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Extension of WMSO by the quanti#er
UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic
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Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   “X is a block of a’s” 
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Max-automata Min-automata
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Extension of WMSO by the quanti#er

UX   “X is a block of a’s” 

UX   φ(X) 
which says

Max-automata Min-automata

RX   φ(X) 

„there exist in"nitely many sets X of bounded size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

Logic
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Extension of WMSO by the quanti#er
UX   φ(X) 

which says

Max-automata Min-automata

RX   φ(X) 

„there exist in"nitely many sets X of bounded size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

¬RX   “X is a block of a’s” 

Logic
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eorem. WMSO+R has the same expressive power as deterministic min-automata.
RX   φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”
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Proof (easy direction). e acceptance condition is a boolean combination of 
conditions:

eorem. WMSO+R has the same expressive power as deterministic min-automata.
RX   φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”
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Proof (easy direction). e acceptance condition is a boolean combination of 
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values of c do not tend to ∞
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Proof (easy direction). e acceptance condition is a boolean combination of 
conditions:

values of c do not tend to ∞

eorem. WMSO+R has the same expressive power as deterministic min-automata.

d:=d+1; c:=min(d,e); c:=c+1 ...

RX   φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”
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Proof (easy direction). e acceptance condition is a boolean combination of 
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

eorem. WMSO+R has the same expressive power as deterministic min-automata.
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d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

RX   φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”
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Proof (easy direction). e acceptance condition is a boolean combination of 
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form  RX  φ(X),
where φ(X) is WMSO and such that if w,X ⊨ φ, then there is a pre"x v of w such that vu,X ⊨ φ for any suffix u.
We call RX  φ(X) a pre"x R-formula.

eorem. WMSO+R has the same expressive power as deterministic min-automata.
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c+1
d:=d+1; c:=min(d,e); c:=c+1 ...
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Proof (easy direction). e acceptance condition is a boolean combination of 
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form  RX  φ(X),
where φ(X) is WMSO and such that if w,X ⊨ φ, then there is a pre"x v of w such that vu,X ⊨ φ for any suffix u.
We call RX  φ(X) a pre"x R-formula.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

(harder direction). Construct automaton by induction on structure of formula.
For deterministic automata, closure under boolean operations is for free. Must show closure under ∃fin 
and that nested R quanti#ers can be denested. Follows from a more general theorem.

RX   φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”
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max-automata min-automata

WMSO + U WMSO + R
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eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

WMSO + U WMSO + R
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eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

WMSO + U WMSO + R
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

Thursday, November 26, 2009



WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

min-max-automata
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

min-max-automata

Equivalently: Nesting the quanti#ers U and R does not contribute anything 
to the expressive power of WMSO. 
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

min-max-automata

Equivalently: Nesting the quanti#ers U and R does not contribute anything 
to the expressive power of WMSO. 
Follows from the more general theorem.
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Periodicity-automata

Thursday, November 26, 2009



Periodicity-automata
Deterministic automata allowed to verify that certain states 

appear in an ultimately periodic way
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Periodicity-automata
Deterministic automata allowed to verify that certain states 

appear in an ultimately periodic way

WMSO + P

Px   φ(x) 
“the set of positions x satisfying 

φ(x) is ultimately periodic”

Extension of WMSO by the following quanti#er
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Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.
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Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.

eorem. Emptiness of periodicity automata is decidable. erefore, WMSO + P has 
decidable satis#ability.
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Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.

eorem. WMSO + R + U + P  has the same expressive power as boolean 
combinations of min- max- and periodicity-automata.

eorem. Emptiness of periodicity automata is decidable. erefore, WMSO + P has 
decidable satis#ability.
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General framework
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General framework

eorem. A WMSO+Q1+Q2+...+Qn formula is equivalent to a boolean 
combination of formulas of the form     Qk X   φk(X).
(We require some additional conditions on the quanti"ers Q1,Q2,...,Qn 
which will be phrased later)
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Another view on 
min- and max-automata

A min-automaton can be viewed as:

We consider the language F⊆Bω of sequences of instructions in which the 
appropriate counters converge to ∞. 

e language F is pre$x-independent, i.e.   F=B* F.
e automaton accepts a word w ∈ Aω   iff   f(w) ∈ F.

A deterministic letter-to-letter transducer f: A → B 

An F-automaton

which outputs a sequence of counter operations

Similarly, Büchi, Muller, parity, max- automata are F-automata
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∃fin X   φ(X) “the family of $nite sets X which satisfy φ(X) is nonempty”

QX   φ(X) “the family of $nite sets X satisfying φ(X) has a property Q”

A locus quanti#er: any property Q of 
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Another view on quanti#ers U, R, ∃fin
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eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus 
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω:   QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas. 
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