
Deterministic Automata and
Extensions of Weak MSO

Mikołaj Bojańczyk
Szymon Toruńczyk

University of Warsaw

Thursday, November 26, 2009

Languages of in#nite words

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Language: in#nitely a’s on odd positions

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Language: in#nitely a’s on odd positions

∃X

exists a set of
positions X

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Language: in#nitely a’s on odd positions

∃X
∀x ∃y≤x y∈X

{

exists a set of
positions X

contains the #rst
position

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Language: in#nitely a’s on odd positions

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X){

exists a set of
positions X

contains the #rst
position

contains every
second position

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

Language: in#nitely a’s on odd positions

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)
∀x ∃y≥x a(y) ∧ y∈X

{

exists a set of
positions X

contains the #rst
position

contains every
second position

contains in#nitely
many a’s

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)
∀x ∃y≥x a(y) ∧ y∈X

{

exists a set of
positions X

contains the #rst
position

contains every
second position

contains in#nitely
many a’s

Monadic Secondary Order Logic (MSO)

Thursday, November 26, 2009

Languages of in#nite words

abaabbaaaaaba... ∈ (a+b)ω

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)
∀x ∃y≥x a(y) ∧ y∈X

{

exists a set of
positions X

contains the #rst
position

contains every
second position

contains in#nitely
many a’s

∀z ∃y>z ∃fin X ...

Weak Monadic Secondary Order Logic (WMSO)

Thursday, November 26, 2009

ω-regular languages

Thursday, November 26, 2009

LogicAutomata

ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

WMSO+Umax-automata

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

WMSO+Umax-automata

WMSO+Rmin-automata

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

WMSO+Umax-automata

WMSO+Rmin-automata

WMSO+U+Rmin-max-automata

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

WMSO+Umax-automata

WMSO+Rmin-automata

WMSO+U+Rmin-max-automata

WMSO+Pperiodicity-automata

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

LogicAutomata
WMSOMuller

WMSO+Umax-automata

WMSO+Rmin-automata

WMSO+U+Rmin-max-automata

WMSO+Pperiodicity-automata

WMSO+......-automata

Aim: #nd robust extensions of
ω-regular languages

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d
Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

2
1
0

Thursday, November 26, 2009

“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z);

Acceptance condition: ¬c∧¬d

a a a b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

2
1
0

0
2
0

Thursday, November 26, 2009

Tweaking the model

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

• One can introduce matrix operations on counters, which stems from the
semiring structure on {0,1,2,..., ⊤}, where min with respect to 0<1<2<...< ⊤
is addition and + is multiplication

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

• One can introduce matrix operations on counters, which stems from the
semiring structure on {0,1,2,..., ⊤}, where min with respect to 0<1<2<...< ⊤
is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

• One can introduce matrix operations on counters, which stems from the
semiring structure on {0,1,2,..., ⊤}, where min with respect to 0<1<2<...< ⊤
is addition and + is multiplication

(
c d z

)
:=

(
c d z

)
·




1 ! !
! 0 !
! ! 0



 .

In Example 1, c:=c+1 can be written as:

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

• One can introduce matrix operations on counters, which stems from the
semiring structure on {0,1,2,..., ⊤}, where min with respect to 0<1<2<...< ⊤
is addition and + is multiplication

(
c d z

)
:=

(
c d z

)
·




1 ! !
! 0 !
! ! 0



 .

In Example 1, c:=c+1 can be written as:

d:=min(c,c); c:=z can be written as:

Thursday, November 26, 2009

Tweaking the model
• Instructions c:=0, c:=d can be implemented into the model, as in the example

• One can introduce the unde#ned counter value ⊤
this can be eliminated by storing in the states the info about which counters
are de#ned

• One can introduce matrix operations on counters, which stems from the
semiring structure on {0,1,2,..., ⊤}, where min with respect to 0<1<2<...< ⊤
is addition and + is multiplication

(
c d z

)
:=

(
c d z

)
·




1 ! !
! 0 !
! ! 0



 .

(
c d z

)
:=

(
c d z

)
·




! 0 !
! ! !
0 ! 0



 .

In Example 1, c:=c+1 can be written as:

d:=min(c,c); c:=z can be written as:

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
.

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤

⊤
3

c0

c1

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤

⊤
3

c0

c1

3
⊤

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤

⊤
3

c0

c1

3
⊤

⊤
3

Thursday, November 26, 2009

eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
Has states q0, q1 and one counter c.
Transitions:
-saw a in state q0 – go to q1; c:=c+1
-saw a in state q1 – go to q0

-saw b in state q0 – go to q1

-saw b in state q1 – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
. a a a b b b a a b...

0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤

⊤
3

c0

c1

3
⊤

⊤
3

In the other direction, one can convert a min-automaton in matrix form
by simulating a matrix operation as a sequence of counter operations, and
then eliminating ⊤ values by storing them in the state.

Thursday, November 26, 2009

Nondeterministic min-automata

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
state

c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

p
3
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

p
3
3

p
4
3

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

p
3
3

p
4
3

q
0
4

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

p
3
3

p
4
3

q
0
4

q
0
4

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:
states: p,q; q is the “skip block” state
counters: c,d,z

transitions:
saw b in state p - go to p or q; d:=c; c:=z;
saw b in state q - go to p or q
saw a in state p - go to p; c:=c+1;
saw a in state q - go to q;

a b a a a b a b a a a a b a b...
p
0
0

p
1
0

p
0
1

p
1
1

p
2
1

p
3
1

q
0
3

q
0
3

p
0
3

p
1
3

p
2
3

p
3
3

p
4
3

q
0
4

q
0
4

q
0
4

state
c
d

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:

eorem. A deterministic min-automaton cannot recognize the language L.

Thursday, November 26, 2009

Nondeterministic min-automata

Nondeterministic min-automata are strictly more expressive than
deterministic ones. Separating language:

L={an1 b an2 b an3 b...: n1,n2... is unbounded}.

Can be recognized by a nondeterministic min-automaton, due to the following
Observation. e sequence n1,n2... is unbounded iff it contains a subsequence
which tends to ∞.

A nondeterministic automaton can guess the subsequence:

eorem. A deterministic min-automaton cannot recognize the language L.

Corollary. Deterministic min-automaton are not closed under the second
order existential quanti#er ∃X.

Thursday, November 26, 2009

“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata –
boolean combinations of min- and max-automata.

Thursday, November 26, 2009

“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata –
boolean combinations of min- and max-automata.

Thursday, November 26, 2009

“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata –
boolean combinations of min- and max-automata.

Thursday, November 26, 2009

“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata –
boolean combinations of min- and max-automata.

Thursday, November 26, 2009

“c has unbounded values”

limsup(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=max(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Max-automata

Example. L = {an1 b an2 b an3 b...: n1,n2... is unbounded}

eorem. Min-automata and max-automata have incomparable expressiveness.

Min-max-automata –
boolean combinations of min- and max-automata.

Thursday, November 26, 2009

Emptiness of min-max-automata

Thursday, November 26, 2009

eorem. ere exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.

Emptiness of min-max-automata

Thursday, November 26, 2009

eorem. ere exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-max-automata

Thursday, November 26, 2009

eorem. ere exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-max-automata

Another proof. Uses pro#nite and semigroup methods.
Is related to:
– Limitedness problem for Distance Automata – Hashiguchi [82], Leung [91],

 Simon [94], Kirsten [05], Colcombet [09]
– Semiring of matrices over the tropical semiring

Thursday, November 26, 2009

eorem. ere exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet
[06]), so emptiness is decidable. is gives bad complexity, however.

eorem. Emptiness of min- and max-automata is PSPACE-hard.

Emptiness of min-max-automata

Another proof. Uses pro#nite and semigroup methods.
Is related to:
– Limitedness problem for Distance Automata – Hashiguchi [82], Leung [91],

 Simon [94], Kirsten [05], Colcombet [09]
– Semiring of matrices over the tropical semiring

Thursday, November 26, 2009

eorem. ere exists an algorithm deciding emptiness of min-max-automata,
which runs in polynomial space.
Proof. min-max-automata are a special case of ωBS-automata (Bojańczyk, Colcombet
[06]), so emptiness is decidable. is gives bad complexity, however.

eorem. Emptiness of min- and max-automata is PSPACE-hard.

Proof. Standard reduction from universality of nondeterministic #nite automata.

Emptiness of min-max-automata

Another proof. Uses pro#nite and semigroup methods.
Is related to:
– Limitedness problem for Distance Automata – Hashiguchi [82], Leung [91],

 Simon [94], Kirsten [05], Colcombet [09]
– Semiring of matrices over the tropical semiring

Thursday, November 26, 2009

Max-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Max-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er
UX φ(X)

„there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX φ(X)

„there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX “X is a block of a’s”

UX φ(X)

„there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX “X is a block of a’s”

UX φ(X)

„there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

which says

Max-automata Min-automata

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX “X is a block of a’s”

UX φ(X)

„there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

which says

Max-automata Min-automata

RX φ(X)

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX “X is a block of a’s”

UX φ(X)
which says

Max-automata Min-automata

RX φ(X)

„there exist in"nitely many sets X of bounded size, satisfying φ(X)”

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er

UX “X is a block of a’s”

UX φ(X)
which says

Max-automata Min-automata

RX φ(X)

„there exist in"nitely many sets X of bounded size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

Logic

Thursday, November 26, 2009

Extension of WMSO by the quanti#er
UX φ(X)

which says

Max-automata Min-automata

RX φ(X)

„there exist in"nitely many sets X of bounded size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

¬RX “X is a block of a’s”

Logic

Thursday, November 26, 2009

eorem. WMSO+R has the same expressive power as deterministic min-automata.
RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

eorem. WMSO+R has the same expressive power as deterministic min-automata.
RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

eorem. WMSO+R has the same expressive power as deterministic min-automata.
RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

eorem. WMSO+R has the same expressive power as deterministic min-automata.

d:=d+1; c:=min(d,e); c:=c+1 ...

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX φ(X),
where φ(X) is WMSO and such that if w,X ⊨ φ, then there is a pre"x v of w such that vu,X ⊨ φ for any suffix u.
We call RX φ(X) a pre"x R-formula.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

Proof (easy direction). e acceptance condition is a boolean combination of
conditions:

values of c do not tend to ∞

R X. there is a path starting in an initial counter,
ending in c, with increments at positions in the set X

In particular, min-automata recognize boolean combinations of languages of the form RX φ(X),
where φ(X) is WMSO and such that if w,X ⊨ φ, then there is a pre"x v of w such that vu,X ⊨ φ for any suffix u.
We call RX φ(X) a pre"x R-formula.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

c
d

e

d +1

c+1
d:=d+1; c:=min(d,e); c:=c+1 ...

(harder direction). Construct automaton by induction on structure of formula.
For deterministic automata, closure under boolean operations is for free. Must show closure under ∃fin
and that nested R quanti#ers can be denested. Follows from a more general theorem.

RX φ(X): „there exist in"nitely many sets X of the same size, satisfying φ(X)”

Thursday, November 26, 2009

max-automata min-automata

WMSO + U WMSO + R

Thursday, November 26, 2009

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

WMSO + U WMSO + R

Thursday, November 26, 2009

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

WMSO + U WMSO + R

Thursday, November 26, 2009

WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?

Thursday, November 26, 2009

WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Thursday, November 26, 2009

WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

min-max-automata

Thursday, November 26, 2009

WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

min-max-automata

Equivalently: Nesting the quanti#ers U and R does not contribute anything
to the expressive power of WMSO.

Thursday, November 26, 2009

WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

min-max-automata

Equivalently: Nesting the quanti#ers U and R does not contribute anything
to the expressive power of WMSO.
Follows from the more general theorem.

Thursday, November 26, 2009

Periodicity-automata

Thursday, November 26, 2009

Periodicity-automata
Deterministic automata allowed to verify that certain states

appear in an ultimately periodic way

Thursday, November 26, 2009

Periodicity-automata
Deterministic automata allowed to verify that certain states

appear in an ultimately periodic way

WMSO + P

Thursday, November 26, 2009

Periodicity-automata
Deterministic automata allowed to verify that certain states

appear in an ultimately periodic way

WMSO + P
Extension of WMSO by the following quanti#er

Thursday, November 26, 2009

Periodicity-automata
Deterministic automata allowed to verify that certain states

appear in an ultimately periodic way

WMSO + P

Px φ(x)
“the set of positions x satisfying

φ(x) is ultimately periodic”

Extension of WMSO by the following quanti#er

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.

eorem. Emptiness of periodicity automata is decidable. erefore, WMSO + P has
decidable satis#ability.

Thursday, November 26, 2009

Periodicity-automata

WMSO + P

eorem. WMSO + P has the same expressive power as periodicity-automata.

eorem. WMSO + R + U + P has the same expressive power as boolean
combinations of min- max- and periodicity-automata.

eorem. Emptiness of periodicity automata is decidable. erefore, WMSO + P has
decidable satis#ability.

Thursday, November 26, 2009

General framework

Thursday, November 26, 2009

General framework

eorem. A WMSO+Q1+Q2+...+Qn formula is equivalent to a boolean
combination of formulas of the form Qk X φk(X).
(We require some additional conditions on the quanti"ers Q1,Q2,...,Qn
which will be phrased later)

Thursday, November 26, 2009

Another view on
min- and max-automata

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

a b b a b.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e);

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1;

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1; c:=c+1;

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1; c:=c+1; c:=min(c,c);.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1; c:=c+1; c:=min(c,c);.

We consider the language F⊆Bω of sequences of instructions in which the
appropriate counters converge to ∞.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1; c:=c+1; c:=min(c,c);.

We consider the language F⊆Bω of sequences of instructions in which the
appropriate counters converge to ∞.

e language F is pre$x-independent, i.e. F=B* F.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

d:=d+1;
a b b a b.

 c:=min(d,e); c:=c+1; d:=d+1; c:=c+1; c:=min(c,c);.

We consider the language F⊆Bω of sequences of instructions in which the
appropriate counters converge to ∞.

e language F is pre$x-independent, i.e. F=B* F.
e automaton accepts a word w ∈ Aω iff f(w) ∈ F.

A deterministic letter-to-letter transducer f: A → B
which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

We consider the language F⊆Bω of sequences of instructions in which the
appropriate counters converge to ∞.

e language F is pre$x-independent, i.e. F=B* F.
e automaton accepts a word w ∈ Aω iff f(w) ∈ F.

A deterministic letter-to-letter transducer f: A → B

An F-automaton

which outputs a sequence of counter operations

Thursday, November 26, 2009

Another view on
min- and max-automata

A min-automaton can be viewed as:

We consider the language F⊆Bω of sequences of instructions in which the
appropriate counters converge to ∞.

e language F is pre$x-independent, i.e. F=B* F.
e automaton accepts a word w ∈ Aω iff f(w) ∈ F.

A deterministic letter-to-letter transducer f: A → B

An F-automaton

which outputs a sequence of counter operations

Similarly, Büchi, Muller, parity, max- automata are F-automata
Thursday, November 26, 2009

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

UX φ(X) “there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

UX φ(X) “there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

RX φ(X) “there exist in"nitely many sets X of the same size, satisfying φ(X)”

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

UX φ(X) “there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

RX φ(X) “there exist in"nitely many sets X of the same size, satisfying φ(X)”

∃fin X φ(X) “the family of $nite sets X which satisfy φ(X) is nonempty”

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

UX φ(X) “there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

RX φ(X) “there exist in"nitely many sets X of the same size, satisfying φ(X)”

∃fin X φ(X) “the family of $nite sets X which satisfy φ(X) is nonempty”

QX φ(X) “the family of $nite sets X satisfying φ(X) has a property Q”

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

ey speak about properties of families of
#nite sets of positions:

UX φ(X) “there exist arbitrarily large ("nite) sets X, satisfying φ(X)”

RX φ(X) “there exist in"nitely many sets X of the same size, satisfying φ(X)”

∃fin X φ(X) “the family of $nite sets X which satisfy φ(X) is nonempty”

QX φ(X) “the family of $nite sets X satisfying φ(X) has a property Q”

A locus quanti#er: any property Q of
families of #nite sets of positions

Another view on quanti#ers U, R, ∃fin

Thursday, November 26, 2009

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which de"nes the same language.

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

What language does a formula φ with a #ee variable de"ne?
A language L over A ⨉ {0,1}:

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which de"nes the same language.

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

L={w⨂X: w,X ⊨ φ }

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

What language does a formula φ with a #ee variable de"ne?
A language L over A ⨉ {0,1}:

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which de"nes the same language.

We need to show: if L is a boolean combination of Q-formulas, then so is

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

L={w⨂X: w,X ⊨ φ }

Q L={w ∈ Aω: QX [w⨂X∈L]}

Thursday, November 26, 2009

 φ - a WMSO formula with a free variable X;
eg. φ = ∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

X - a #nite set of positions; w,X ⊨ φ
X - a family of sets X; Xφ = {X : w,X ⊨ φ}
Q - a property of sets X; QX φ(X) iff Xφ ∈Q
QX φ(X) – a Q-formula

∃fin ={X : X contains some set X}
R= {X : X contains in$nitely many sets X of same size}
U= {X : X contains sets X of arbitrarily large size}
Q is $nitely invariant: if X and Y differ by #nitely many sets,
then X ∈Q ⇔ Y ∈Q

What language does a formula φ with a #ee variable de"ne?
A language L over A ⨉ {0,1}:

Goal: convert a (WMSO+Q)-formula into a boolean combination of
Q-formulas, which de"nes the same language.

We need to show: if L is a boolean combination of Q-formulas, then so is

eorem. Let F be a pre#x-independent acceptance condition and let Q be a locus
quanti#er. If L is an F-regular language over the alphabet A ⨉ {0,1}, then the language

Q L={w ∈ Aω: QX [w⨂X∈L]}
is a boolean combination of F-regular languages and Q-formulas. Moreover, if Q is pre#x-
independent then the Q-formulas are pre#x Q-formulas.

L={w⨂X: w,X ⊨ φ }

Q L={w ∈ Aω: QX [w⨂X∈L]}

Thursday, November 26, 2009

