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“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

Boolean combinations of 
min- & max-automata

Equivalently: Nesting the quanti$ers U and R does not contribute anything 
to the expressive power of WMSO. 
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1st proof. min-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-automata

2nd proof. Reduction to the limitedness problem for distance-automata. 
Gives PSPACE algorithm, which is optimal.

eorem. Emptiness of max-automata is decidable.

eorem. Emptiness of a boolean combination of min- and max-automata is 
decidable.
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the difference between ⊤ and ∞ is that     lim ∞ = ∞      while      lim ⊤≠ ∞

• Can introduce matrix operations on counters, which stems from the semiring 
structure on {0,1,2,..., ∞, ⊤}, where min with respect to    0<1<2<...< ∞<⊤      
is addition and + is multiplication 

In Example 1, c:=c+1 can be written as:

d:=min(c,c); c:=min(z,z) can be written as:

(
c d z

)
:=

(
c d z

)
·




1 ! !
! 0 !
! ! 0





(
c d z

)
:=

(
c d z

)
·




! 0 !
! ! !
0 ! 0





=
(

c + 1 d z )
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
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Example. Min-automaton which counts a’s on odd positions.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

Wednesday, November 18, 2009



eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
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Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
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-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
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States: q0, q1, one counter c. 
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-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0
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Example of a min-automaton A.
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

2 2 1

⊤ ⊤ 0

⊤ ⊤ 0
abb:
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

2 2 1

⊤ ⊤ 0

⊤ ⊤ 0
abb:

0 ⊤ ⊤Initial valuation:

Acceptance condition:    ¬ liminf(c3) = ∞
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

where ⊤+ x = x +⊤=⊤
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

where ⊤+ x = x +⊤=⊤

Wednesday, November 18, 2009



e tropical semiring

T = {0,1,2,..., ∞, ⊤}
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where n+1=∞ 

πn : T  →  Tn
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is a homomorphism of semirings
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

πn : T  →  Tn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

where ⊤+ x = x +⊤=⊤

πn : Tm  →  Tn  for  m>n

MkT – k by k matrices over T
with matrix multiplication

MkTn – k by k matrices over Tn
with matrix multiplication

πn : MkT  →  MkTn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

πn : Tm  →  Tn  for  m>n
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

πn : T  →  Tn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

where ⊤+ x = x +⊤=⊤

πn : Tm  →  Tn  for  m>n

MkT – k by k matrices over T
with matrix multiplication

MkTn – k by k matrices over Tn
with matrix multiplication

πn : MkT  →  MkTn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

πn : Tm  →  Tn  for  m>n

3 ∞ 1
0 ∞ 1
2 ∞ ∞

3 32 1
0 11 1
2 7 ∞

∞ ∞ 1
0 ∞ 1
∞ ∞ ∞

π6 π2
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Pro$nite monoid
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Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000
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Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication
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Pro$nite monoid
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   preserve multiplication

M3T0 M3T1 M3T2 M3T3
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Pro$nite monoid
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Pro$nite monoid

3 ∞ 1
0 ∞ 1
2 ∞ ∞

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

.
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Pro$nite monoid
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0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

∞ ∞ 1
⊤ ⊤ 0

⊤ ⊤ 0
bω:

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  

colored by elements 
of a compact space

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . . .. . . . . .

..
colored by elements 
of a compact space

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . . .. . . . . .

..

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . . .. . . . . .

..
.

. .

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

.x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . . .. . . . . .

..
.

. .

.

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

.

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

.
x x

.

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

.
x x

.
.

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

.
x x

.
. .

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
.

. .

.
x x x x x x x x x  x  x  x  x  x  x

. .

.
x x

.
. .

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .x

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .x

lim

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  

x

lim

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  .

x

lim

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  .

x

lim

d(  ,     )<1/Nlim

N

Wednesday, November 18, 2009



Ramsey eorem
for compact spaces

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  . .
. .

.
x x x x x x x x x  x  x  x  x  x  x

.

.
x x .

x   x   x   x   x   x   x   x   x   x   x   x  x  x  x  x  x  x  x  x  x  x  x  x  x  ..

x

lim

d(  ,     )<1/Nlim d(  ,     )<1/N’lim

N N'

Wednesday, November 18, 2009



Emptiness of min-automata
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eorem. For any $nite stabilization semigroup S and word 
w ∈ S+ there exists a factorization tree over w of height ≤ 9|S|2. 
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ank you for your attention!
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