Deciding Emptiness of min-automata

Szymon Toruńczyk joint work with Mikołaj Bojańczyk

LSV Cachan / University of Warsaw

deterministic automata with counters transitions invoke counter operations:

c:=c+1 c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min*(*d*,*e*)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1

c:=min(d, e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=c+1 c:=min(d,e)

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to }\infty\text{''}}} \infty$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to ∞''}}} \infty$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\liminf_{\substack{||\\ \text{``c tends to ∞''}}} \infty$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)d

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c, d, z-when reading a, do c:=c+1-when reading b, do $d:=min(c,c); \ c:=min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty \}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b \dots : n_1, n_2 \dots \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do $d:=min(c,c); \ c:=min(z,z)$ Acceptance condition: $\neg \liminf(c) = \infty \land \neg \liminf(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to ∞''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d,e)*

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Example. $L = \{a^{n_1}b \ a^{n_2}b \ a^{n_3}b...: n_1, n_2... \text{ does not converge to } \infty\}$ Min-automaton has one state and three counters: c,d,z-when reading a, do c:=c+1-when reading b, do d:=min(c,c); c:=min(z,z)cccdd<

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

deterministic automata with counters transitions invoke counter operations:

c:=*c*+1 *c*:=*min(d*,*e*)

acceptance condition is a boolean combination of:

 $\begin{array}{c} \operatorname{liminf}(c) = \infty \\ || \\ \text{``c tends to } \infty \text{''} \end{array}$

Acceptance condition: $\neg \operatorname{liminf}(c) = \infty \land \neg \operatorname{liminf}(d) = \infty$

Logic

Logic

Extension of WMSO by the quantifier

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X)$

which says

, there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X)$

which says

, there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: { $a^{n_1}b a^{n_2}b a^{n_3}b... : n_1 n_2 n_3...$ is unbounded}

Logic

Extension of WMSO by the quantifier $UX \varphi(X)$

which says

, there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Min-automata

Extension of WMSO by the quantifier $UX \ \varphi(X)$

which says

, there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X) \longrightarrow RX \ \varphi(X)$

which says

, there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X) \longrightarrow RX \ \varphi(X)$

which says

,,there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X) \longrightarrow RX \ \varphi(X)$

which says

,,there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Language: $\{a^{n_1}b \ a^{n_2}b \ a^{n_3}b... : n_1 \ n_2 \ n_3... \text{ converges to } \infty\}$ UX "X is a block of a's"

Logic

Extension of WMSO by the quantifier $UX \ \varphi(X) \longrightarrow RX \ \varphi(X)$

which says

,,there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Language: $\{a^{n_1}b \ a^{n_2}b \ a^{n_3}b... : n_1 n_2 n_3... \text{ converges to } \infty\}$ $\neg \mathsf{R}X$ "X is a block of a's"

WMSO + U

 \longleftrightarrow

WMSO + R

max-automata

 \longleftrightarrow

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of min- and max-automata.

WMSO + U + R Boolean combinations of min- & max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of min- and max-automata.

WMSO + U + R Boolean combinations of min- & max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything to the expressive power of WMSO.

Theorem. Emptiness of min-automata is decidable.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of max-automata is decidable.

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of ω BS-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of max-automata is decidable.

Theorem. Emptiness of a boolean combination of min- and max-automata is decidable.

• Instructions c:=0, c:=d can be implemented into the model, as in the example

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2,...,\infty,\top\}$, where *min* with respect to $0<1<2<...<\infty<\top$ is addition and + is multiplication

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0, 1, 2, ..., \infty, \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \infty < \top$ is addition and + is multiplication

In Example 1, c := c + 1 can be written as:

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0, 1, 2, ..., \infty, \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \infty < \top$ is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

$$\left(\begin{array}{cccc}c & d & z\end{array}\right) \quad := \quad \left(\begin{array}{cccc}c & d & z\end{array}\right) \cdot \left(\begin{array}{cccc}1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0\end{array}\right)$$

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0, 1, 2, ..., \infty, \top\}$, where *min* with respect to $0 < 1 < 2 < ... < \infty < \top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2,...,\infty,\top\}$, where *min* with respect to $0<1<2<...<\infty<\top$ is addition and + is multiplication

In Example 1, c := c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2,...,\infty,\top\}$, where *min* with respect to $0<1<2<...<\infty<\top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

$$\left(\begin{array}{cccc}c & d & z\end{array}\right) \quad := \quad \left(\begin{array}{cccc}c & d & z\end{array}\right) \cdot \left(\begin{array}{cccc}\top & 0 & \top \\ \top & \top & \top \\ 0 & \top & 0\end{array}\right)$$

- Instructions c:=0, c:=d can be implemented into the model, as in the example
- Can introduce the undefined counter values ⊤
 this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\lim \infty = \infty$ while $\lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2,...,\infty,\top\}$, where *min* with respect to $0<1<2<...<\infty<\top$ is addition and + is multiplication

In Example 1, c = c + 1 can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} 1 & \top & \top \\ \top & 0 & \top \\ \top & \top & 0 \end{pmatrix} = \begin{pmatrix} c+1 & d & z \end{pmatrix}$$

d:=min(c,c); c:=min(z,z) can be written as:

$$\begin{pmatrix} c & d & z \end{pmatrix} := \begin{pmatrix} c & d & z \end{pmatrix} \cdot \begin{pmatrix} \top & 0 & \top \\ \top & \top & \top \\ 0 & \top & 0 \end{pmatrix} = \begin{pmatrix} z & c & z \end{pmatrix}$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Example. Min-automaton which counts *a*'s on odd positions.

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter c.

Example. Min-automaton which counts a's on odd positions. States: q_0 , q_1 , one counter c. Transitions:

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c := c + 1

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c = c + 1-saw *a* in state q_1 – go to q_0

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c = c + 1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q₀ - go to q₁; c:=c+1
-saw *a* in state q₁ - go to q₀
-saw *b* in state q₀ - go to q₁
-saw *b* in state q₁ - go to q₀

Min-automaton in matrix form with one state and two counters: c_0 , c_1 .

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q₀ - go to q₁; c:=c+1
-saw *a* in state q₁ - go to q₀
-saw *b* in state q₀ - go to q₁
-saw *b* in state q₁ - go to q₀

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

$$a:$$
 $\begin{pmatrix} c_0 & c_1 \end{pmatrix}$ $:=$ $\begin{pmatrix} c_0 & c_1 \end{pmatrix} \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}$.

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

aaabbbaab...

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

aaabbbaab... *c*₀ 0 ⊤ 1 ⊤ 2 *c*₁ ⊤ 1 ⊤ 2 ⊤

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

aaabbbaab... *c*₀ 0 ⊤ 1 ⊤ 2 ⊤ *c*₁ ⊤ 1 ⊤ 2 ⊤ 2

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

aaabbbaab... *c*₀ 0 ⊤ 1 ⊤ 2 ⊤ 2 *c*₁ ⊤ 1 ⊤ 2 ⊤ 2 ⊤

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 0 & \top \end{pmatrix}.$$

aaabbbaab... *c*₀ 0 T 1 T 2 T 2 T *c*₁ T 1 T 2 T 2 T 3

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

 $a a a b b b a a b \dots$ $c_0 \quad 0 \quad \top \quad 1 \quad \top \quad 2 \quad \top \quad 2 \quad \top \quad 3 \quad \top$ $c_1 \quad \top \quad 1 \quad \top \quad 2 \quad \top \quad 2 \quad \top \quad 3 \quad \top$

Example. Min-automaton which counts *a*'s on odd positions.

States: q_0 , q_1 , one counter *c*.

Transitions:

-saw *a* in state q_0 – go to q_1 ; c:=c+1-saw *a* in state q_1 – go to q_0 -saw *b* in state q_0 – go to q_1 -saw *b* in state q_1 – go to q_0

Min-automaton in matrix form with one state and two counters: c_0 , c_1 . The initial counter valuation is $(c_0, c_1) = (0, \top)$.

$$a: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

$$b: (c_0 c_1) := (c_0 c_1) \cdot \begin{pmatrix} \top & 0 \\ 1 & \top \end{pmatrix}.$$

a a a b b b a a b... $c_{0} 0 \top 1 \top 2 \top 2 \top 3 \top$ $c_{1} \top 1 \top 2 \top 2 \top 3 \top 3$

$$T = \{0, 1, 2, ..., \infty, \top\}$$

 $T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

 $T = \{0, 1, 2, ..., \infty, \top\}$ with operations +, min ordered by $0 < 1 < 2 < \ldots < \infty < \top$ where $\top + x = x + \top = \top$

 $T_n = \{0, 1, 2, \dots, n, \infty, \top\}$ where $n+1=\infty$

$$T = \{0, 1, 2, \dots, \infty, \top\}$$

with operations +, min
ordered by $0 < 1 < 2 < \dots < \infty < \top$
where $\top + x = x + \top = \top$

$$T_n = \{0, 1, 2, \dots, n, \infty, \top\}$$

where $n+1=\infty$
 $\pi_n: T \to T_n$

maps n+1, n+2, ... to ∞ is a homomorphism of semirings

$$T = \{0, 1, 2, \dots, \infty, \top\}$$

with operations +, min
ordered by $0 < 1 < 2 < \dots < \infty < \top$
where $\top + x = x + \top = \top$

 $T_n = \{0, 1, 2, ..., n, \infty, \top\}$ where $n+1=\infty$ $\pi_n: T \to T_n$ $\pi_n: T_m \to T_n$ for m > nmaps n+1, n+2, ... to ∞ is a homomorphism of semirings

$$T = \{0, 1, 2, \dots, \infty, \top\}$$

with operations +, min
ordered by $0 < 1 < 2 < \dots < \infty < \top$
where $\top + x = x + \top = \top$

$$T_{n} = \{0, 1, 2, \dots, n, \infty, \top\}$$
where $n+1=\infty$

$$\pi_{n}: T \rightarrow T_{n}$$

$$\pi_{n}: T_{m} \rightarrow T_{n} \text{ for } m > n$$
maps $n+1, n+2, \dots$ to ∞

is a homomorphism of semirings

$$T = \{0, 1, 2, \dots, \infty, \top\}$$

with operations +, min
ordered by $0 < 1 < 2 < \dots < \infty < \top$
where $\top + x = x + \top = \top$

 $M_k T - k by k$ matrices over T with matrix multiplication

$$T_n = \{0, 1, 2, ..., n, \infty, \top\}$$

where $n+1=\infty$
 $\pi_n: T \to T_n$
 $\pi_n: T_m \to T_n$ for $m > n$
maps $n+1, n+2, ...$ to ∞
is a homomorphism of semirings

 $M_k T_n - k \ by \ k \ \text{matrices over } T_n$ with matrix multiplication $\pi_n \colon M_k T \to M_k T_n$ $\pi_n \colon T_m \to T_n \ \text{for } m \ge n$ maps $n+1, n+2, \dots \text{ to } \infty$

is a homomorphism of semirings

$$T = \{0, 1, 2, \dots, \infty, \top\}$$
with operations +, min
ordered by $0 < 1 < 2 < \dots < \infty < \top$
where $\top + x = x + \top = \top$

 $M_k T - k by k$ matrices over T with matrix multiplication

$$T_n = \{0, 1, 2, ..., n, \infty, \top\}$$

where $n+1=\infty$
 $\pi_n: T \to T_n$
 $\pi_n: T_m \to T_n$ for $m > n$
maps $n+1, n+2, ...$ to ∞
is a homomorphism of semirings

 $M_k T_n - k by k$ matrices over T_n with matrix multiplication

 $\pi_n: M_kT \to M_kT_n$ $\pi_n: T_m \to T_n \text{ for } m > n$ $\max n + 1, n + 2, \dots \text{ to } \infty$

is a homomorphism of semirings

 $S_0 \longleftarrow S_1 \longleftarrow S_2 \longleftarrow S_3 \longleftarrow S_7 \longleftarrow S_{32} \longleftarrow S_{1000} \longleftarrow \cdots$

∞	∞	∞	∞	∞	1	∞	∞	1	3	∞	1
0	∞	∞	0	∞	1	0	∞	1	0	∞	1
∞	∞	∞	∞	∞	∞	2	∞	∞	2	∞	∞

Metric

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication

The *n*-approximation of $x \cdot y$ is the product of their *n*-approximations. we again obtain a sequence consistent with the mappings

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication

The *n*-approximation of $x \cdot y$ is the product of their *n*-approximations. we again obtain a sequence consistent with the mappings

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication *is continuous* The *n*-approximation of $x \cdot y$ is the product of their *n*-approximations.

we again obtain a sequence consistent with the mappings

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication *is continuous* The *n*-approximation of $x \cdot y$ is the product of their *n*-approximations.

we again obtain a sequence consistent with the mappings

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication *is continuous* The *n*-approximation of $x \cdot y$ is the product of their *n*-approximations.

we again obtain a sequence consistent with the mappings

preserve multiplication

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication *is continuous*

Metric

Two elements are close if only an approx. with high threshold can distinguish them Multiplication *is continuous*

Metric

Two elements are close if only an approx. with high threshold can distinguish them

Multiplication *is continuous* addition

Two elements are close if only an approx. with high threshold can distinguish them

Multiplication *is continuous* addition

Two elements are close if only an approx. with high threshold can distinguish them

Multiplication *is continuous* addition ω-power

3	50	1		3	32	1		3	8	4
0	11	1	•	0	11	1	=	3	8	4
2	7	∞		2	7	∞		5	18	3

Two elements are close if only an approx. with high threshold can distinguish them

Multiplication *is continuous* addition ω-power

Example of a min-automaton A.

Example of a min-automaton A.

Counter *c* does *not* converge to ∞ *iff exists a counter d such that* $\lim[d,d]=0$ and $\lim[d,c] < \infty$.

Theorem.

Wednesday, November 18, 2009

Simon's Factorization Theorem for semigroups with stabilization

Simon's Factorization Theorem for semigroups with stabilization

semigroup with stabilization

Simon's Factorization Theorem for semigroups with stabilization

$$(S, \cdot, \#)$$

semigroup with stabilization

•
$$(s t)^{\#} s = s (t s)^{\#}$$

•
$$(s t)^{\#} s = s (t s)^{\#}$$

•
$$S^{\#}S^{\#} = S^{\#}$$

Example 1 (infinite) ($\{0, 1, 2, ..., \infty\}, +, \omega$), $0^{\omega} = 0, \quad 1^{\omega} = 2^{\omega} = ... = \infty$

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

for semigroups with stabilization

Factorization tree of word $w \in S^+$ Use the two rules to construct tree:binary ruleidempotent rule

Example 2 (finite) ($\{0,1,\infty\}, +, \#$), 1+1=1, $0^{\#}=0, 1^{\#}=\infty^{\#}=\infty$

Theorem. For any finite stabilization semigroup *S* and word $w \in S^+$ there exists a factorization tree over *w* of height $\leq 9|S|^2$.

Thank you for your attention!