Deciding Emptiness of min-automata

Szymon Toruńczyk
joint work with
Mikołaj Bojańczyk
LSV Cachan / University of Warsaw

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z - when reading a, do $c:=c+1$
a a ababaab...
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{i}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z -when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

$$
\begin{array}{ll}
& a a a b a b a a b \ldots \\
c & 0 \\
d & 0 \\
z & 0
\end{array}
$$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lll}
& & a a a b a b a a b \ldots \\
c & 0 & 1 \\
d & 0 & 0 \\
z & 0 & 0
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lll}
& & a \\
& a & a b a b a l \\
c & 0 & 1
\end{array} 2
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\left.\begin{array}{llll}
& & a & a \\
c & a b & b & b
\end{array}\right) a b \ldots
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{lllllllllll}
& & a & a & a & b & a & b & a & a & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & \\
d & 0 & 0 & 0 & 0 & 3 &
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

$$
\begin{array}{llllllllll}
& & a & a & a & b & a & b & a & a \\
c & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & 1 \\
d & 0 & 0 & 0 & 0 & 3 & 3 \\
\\
z & 0 & 0 & 0 & 0 & 0 & 0 &
\end{array}
$$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{array}{llllllllllll}
& & a & a & a & b & a & b & a & a & b \ldots \\
c & 0 & 1 & 2 & 3 & 0 & 1 & 0 \\
c
\end{array}
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

\[

\]

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
" \mathrm{c} \text { tends to } \infty "
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\left.\right]
$$

Min-automata

deterministic automata with counters transitions invoke counter operations:

$$
\begin{gathered}
c:=c+1 \\
c:=\min (d, e)
\end{gathered}
$$

acceptance condition is a boolean combination of:

$$
\begin{gathered}
\liminf (\mathrm{c})=\infty \\
\text { "c tends to } \infty \text { " }
\end{gathered}
$$

Example. $L=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{s}} b \ldots: n_{1}, n_{2} \ldots\right.$ does not converge to $\left.\infty\right\}$
Min-automaton has one state and three counters: c, d, z
-when reading a, do $c:=c+1$
-when reading b, do $d:=\min (c, c) ; c:=\min (z, z)$

Acceptance condition: $\neg \liminf (c)=\infty \wedge \neg \liminf (d)=\infty$

$$
\begin{aligned}
& a a a b a b a a b \ldots \\
& \text { c } 012230110120 \\
& \text { d } 00000331112 \\
& z 0000000000
\end{aligned}
$$

Logic

Max-automata

Logic

Max-automata

Extension of WMSO by the quantifier

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$

which says
,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$
 which says

,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$

Logic

Max-automata

Extension of WMSO by the quantifier $U X \varphi(X)$
 which says

,,there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$
UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier $\cup X \varphi(X)$
which says
„there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata
Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
„there exist arbitrarily large (finite) sets X, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata

Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
"there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ is unbounded $\}$ UX "X is a block of a's"

Logic

Max-automata
Min-automata

Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
"there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ converges to $\left.\infty\right\}$
UX "X is a block of a's"

Logic

Max-automata
Min-automata

Extension of WMSO by the quantifier

$U X \varphi(X)$

$R X \varphi(X)$
which says
"there exist infinitely many sets X of same size, satisfying $\varphi(X)$ "

Language: $\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b \ldots: n_{1} n_{2} n_{3} \ldots\right.$ converges to $\left.\infty\right\}$
$\neg \mathrm{R} X$ " X is a block of a's"

WMSO + R

min-automata
$\mathrm{WMSO}+\mathrm{U}$

max-automata

$\mathrm{WMSO}+\mathrm{R}$

min-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.

WMSO + U

max-automata

WMSO + R

min-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$

max-automata

min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.

What if we allow both U and R ?

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$

max-automata

min-automata

Theorem. WMSO +U has the same expressive power as deterministic max-automata.
Theorem. WMSO +R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$

Boolean combinations of

 min- \& max-automataTheorem. WMSO+U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+\mathrm{U}_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

$\mathrm{WMSO}+\mathrm{U}+\mathrm{R}$

Boolean combinations of

 min- \& max-automataTheorem. WMSO+U has the same expressive power as deterministic max-automata.
Theorem. WMSO + R has the same expressive power as deterministic min-automata.
Theorem. WMSO $+U_{+} \mathrm{R}$ has the same expressive power as boolean combinations of min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything to the expressive power of WMSO.

Emptiness of min-automata

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of max-automata is decidable.

Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.
1st proof. min-automata are a special case of $\omega \mathrm{BS}$-automata (Bojańczyk, Colcombet [06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata. Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of max-automata is decidable.
Theorem. Emptiness of a boolean combination of min- and max-automata is decidable.

Simplyfying the min-automata model

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim T \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)
$$

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim T \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
\top & 0 & \top \\
\top & \top & \top \\
0 & \top & 0
\end{array}\right)
$$

Simplyfying the min-automata model

- Instructions $c:=0, c:=d$ can be implemented into the model, as in the example
- Can introduce the undefined counter values T this can be eliminated by storing in the states the info about which counters are defined
- Can introduce the counter value ∞ the difference between \top and ∞ is that $\quad \lim \infty=\infty \quad$ while $\quad \lim \top \neq \infty$
- Can introduce matrix operations on counters, which stems from the semiring structure on $\{0,1,2, \ldots, \infty, T\}$, where min with respect to $0<1<2<\ldots<\infty<T$ is addition and + is multiplication

In Example 1, $c:=c+1$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & \top & \top \\
\top & 0 & \top \\
\top & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
c+1 & d & z
\end{array}\right)
$$

$d:=\min (c, c) ; c:=\min (z, z)$ can be written as:

$$
\left(\begin{array}{lll}
c & d & z
\end{array}\right):=\left(\begin{array}{lll}
c & d & z
\end{array}\right) \cdot\left(\begin{array}{ccc}
\top & 0 & \top \\
\top & \top & \top \\
0 & \top & 0
\end{array}\right)=\left(\begin{array}{lll}
z & c & z
\end{array}\right)
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:

- saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state $q_{0}-$ go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, T)$.

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) .
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state $q_{0}-$ go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{array}{ll}
a: & \left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
b: & \left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) .
\end{array}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & T
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & T
\end{array}\right) . \\
& \quad a \mathfrak{a} a b b b a b b \ldots \\
& c_{0} \\
& c_{1}
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & \top
\end{array}\right) . \\
& a a a b b b a a b \ldots \\
& \text { co } 0 \\
& c_{1} \mathrm{~T}
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& a a a b b b a a b \ldots \\
& \text { co } 0 \mathrm{~T} \\
& c_{1} \top 1
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& a a a b b b a a b \ldots \\
& \text { co } 0 \text { T } 1 \\
& c_{1} \top 1 \text { T }
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & \top
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& c_{0} 0 \top 1 \top \\
& c_{1} \top 1 \top 2
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& \text { co } 0 \text { T1 T } 2 \\
& c_{1} \top 1 \top 2 \top
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& \text { co } 0 \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} \\
& c_{1} \top 1 \text { T2T2 }
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \mathrm{~T}
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& \text { co } 0 \text { T } 1 \mathrm{~T} 2 \mathrm{~T} 2 \\
& c_{1} \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} 2 \mathrm{~T}
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & \top
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& \text { co } 0 \text { T } 1 \mathrm{~T} 2 \mathrm{~T} 2 \mathrm{~T} \\
& c_{1} \text { Т1T2T2T3 }
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & T
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
0 & \top
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& c_{0} 0 \top 1 \mathrm{~T} \text { † } 2 \top 3 \\
& c_{1} \text { Т1T2T2T3T }
\end{aligned}
$$

Theorem. Min-automata are equivalent to min-automata in matrix form, with one state. Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a 's on odd positions.
States: q_{0}, q_{1}, one counter c.
Transitions:
-saw a in state q_{0} - go to $q_{1} ; c:=c+1$
-saw a in state q_{1} - go to q_{0}
-saw b in state q_{0} - go to q_{1}
-saw b in state q_{1} - go to q_{0}
Min-automaton in matrix form with one state and two counters: c_{0}, c_{1}.
The initial counter valuation is $\left(c_{0}, c_{l}\right)=(0, \mathrm{~T})$.

$$
\begin{aligned}
& a: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\top & 0 \\
1 & \top
\end{array}\right) . \\
& b: \quad\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right):=\left(\begin{array}{ll}
c_{0} & c_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{T} & 0 \\
0 & \mathrm{~T}
\end{array}\right) . \\
& \text { aaabbbaab... } \\
& \text { co } 0 \text { T } 1 \mathrm{~T} 2 \mathrm{~T} 2 \mathrm{~T} 3 \mathrm{~T} \\
& c_{1} \text { T1T2T2T3T3 }
\end{aligned}
$$

Figure 1: Example of a distance automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

The tropical semiring

The tropical semiring

$$
T=\{0,1,2, \ldots, \infty, \top\}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, \top\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top \\
T_{n}=\{0,1,2, \ldots, n, \infty, \top\} \\
\text { where } n+1=\infty
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, \top\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+\top=\top \\
T_{n}=\{0,1,2, \ldots, n, \infty, \top\} \\
\text { where } n+1=\infty \\
\pi_{n}: T \rightarrow T_{n} \\
\text { maps } n+1, n+2, \ldots \text { to } \infty \\
\text { is a homomorphism of semirings }
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top \\
T_{n}=\{0,1,2, \ldots, n, \infty, T\} \\
\text { where } n+1=\infty \\
\pi_{n}: T \rightarrow T_{n} \\
\pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n \\
\text { maps } n+1, n+2, \ldots \text { to } \infty \\
\text { is a homomorphism of semirings }
\end{gathered}
$$

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top \\
T_{n}=\{0,1,2, \ldots, n, \infty, T\} \\
\text { where } n+1=\infty \\
\pi_{n}: T \rightarrow T_{n} \\
\pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n \\
\operatorname{maps} n+1, n+2, \ldots \text { to } \infty
\end{gathered}
$$

is a homomorphism of semirings

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=T \\
T_{n}=\{0,1,2, \ldots, n, \infty, T\} \\
\text { where } n+1=\infty \\
\pi_{n}: T \rightarrow T_{n} \\
\pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n \\
\operatorname{maps} n+1, n+2, \ldots \text { to } \infty
\end{gathered}
$$

is a homomorphism of semirings
$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication
$\mathrm{M}_{k} T_{n}-k$ by k matrices over T_{n} with matrix multiplication

$$
\begin{aligned}
& \pi_{n}: M_{k} T \rightarrow M_{k} T_{n} \\
& \pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n \\
& \operatorname{maps} n+1, n+2, \ldots \text { to } \infty
\end{aligned}
$$

is a homomorphism of semirings

The tropical semiring

$$
\begin{gathered}
T=\{0,1,2, \ldots, \infty, T\} \\
\text { with operations }+, \min \\
\text { ordered by } 0<1<2<\ldots<\infty<\top \\
\text { where } T+x=x+T=\top
\end{gathered}
$$

$T_{n}=\{0,1,2, \ldots, n, \infty, \top\}$ where $n+1=\infty$

$$
\pi_{n}: T \rightarrow T_{n}
$$

$$
\pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n
$$

$$
\text { maps } n+1, n+2, \ldots \text { to } \infty
$$

is a homomorphism of semirings
$\mathrm{M}_{k} T-k$ by k matrices over T with matrix multiplication
$\mathrm{M}_{k} T_{n}-k$ by k matrices over T_{n} with matrix multiplication

$$
\begin{aligned}
& \pi_{n}: M_{k} T \rightarrow M_{k} T_{n} \\
& \pi_{n}: T_{m} \rightarrow T_{n} \text { for } m>n \\
& \operatorname{maps} n+1, n+2, \ldots \text { to } \infty
\end{aligned}
$$

is a homomorphism of semirings

Profinite monoid

Profinite monoid

$$
S_{0} \longleftarrow S_{1} \longleftarrow S_{2} \longleftarrow S_{3} \& \cdots S_{7} \not \cdots S_{32} \leftarrow \cdots S_{1000}<\cdots \cdots \cdots
$$

Profinite monoid

Profinite monoid

Profinite monoid

Profinite monoid

3	∞	1
0	∞	1
2	∞	∞

Profinite monoid

∞	∞	1	3	∞	1
0	∞	1			
2	∞	∞		∞	1
0	∞	∞	∞		

Profinite monoid

∞	∞	1	∞	∞	1					
0	∞	1	0	∞	1					
∞	∞	∞	2	∞	∞	$	$	3	∞	1
:---	:---	:---								
0	∞	1								
2	∞	∞								

Profinite monoid

∞	∞	∞	∞	∞	1	∞	∞	1					
0	∞	∞	0	∞	1	0	∞	1					
∞	∞	∞	∞	∞	∞	2	∞	∞	$	$	3	∞	1
:---	:---	:---											
0	∞	1											
2	∞	∞											

Profinite monoid

Profinite monoid

Profinite monoid

$$
0-a p \text { pioxinnation: } \quad \begin{array}{lll}
\infty & \infty & \infty \\
0 & \infty & \infty \\
\infty & \infty & \infty
\end{array}
$$

Profinite monoid

$$
1 \text {-approximation: } \begin{array}{ccc}
\infty & \infty & 1 \\
0 & \infty & 1 \\
\infty & \infty & \infty
\end{array}
$$

Profinite monoid

$$
2 \text {-approximation: } \begin{array}{ccc}
\infty & \infty & 1 \\
0 & \infty & 1 \\
2 & \infty & \infty
\end{array}
$$

Profinite monoid

$$
3 \text {-approximation: } \begin{array}{cccc}
3 & \infty & 1 \\
0 & \infty & 1 \\
2 & \infty & \infty
\end{array}
$$

Profinite monoid

$$
7 \text {-approximation: } \begin{array}{cccc}
3 & \infty & 1 \\
0 & \infty & 1 \\
2 & 7 & \infty
\end{array}
$$

Profinite monoid

$$
\text { 1000-approximation: } \left\lvert\, \begin{array}{ccc}
3 & 32 & 1 \\
0 & 11 & 1 \\
2 & 7 & \infty
\end{array}\right.
$$

Profinite monoid

3	32	1
0	11	1
2	7	∞

Profinite monoid

3	32	1
0	11	1
2	7	∞

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

3	50	1						
0	11	1						
2	7	∞	$	\quad	$	3	32	1
:---:	:---:	:---:						
0	11	1						
2	7	∞						

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

3	50	1						
0	11	1						
2	7	∞	$	\quad	$	3	32	1
:---:	:---:	:---:						
0	11	1						
2	7	∞						

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Profinite monoid

$\left.$| 3 | 50 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |$\quad \right\rvert\,$| 3 | 32 | 1 |
| :---: | :---: | :---: |
| 0 | 11 | 1 |
| 2 | 7 | ∞ |

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication
The n-approximation of $x \cdot y$ is the product of their n-approximations.
we again obtain a sequence consistent with the mappings

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication
The n-approximation of $x \cdot y$ is the product of their n-approximations. we again obtain a sequence consistent with the mappings

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
The n-approximation of $x \cdot y$ is the product of their n-approximations. we again obtain a sequence consistent with the mappings

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
The n-approximation of $x \cdot y$ is the product of their n-approximations. we again obtain a sequence consistent with the mappings

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
The n-approximation of $x \cdot y$ is the product of their n-approximations.
we again obtain a sequence consistent with the mappings

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them Multiplication is continuous

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them Multiplication is continuous

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
addition

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

preserve multiplication addition idempotent power (ω)

Metric
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
addition

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

Metric idempotent power (ω)
Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
addition
ω-power

Profinite monoid

3	50	1				
0	11	1				
2	7	∞	$\cdot \left\lvert\,$	3	32	1
:---:	:---:	:---:				
0	11	1				
2	7	∞	$=$	3	8	4
:---:	:---:	:---:				
3	8	4				
5	18	3	\right.			

compact space

Two elements are close if only an approx. with high threshold can distinguish them
Multiplication is continuous
addition
ω-power

Figure 1: Example of a distance automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

Figure 1: Example of a distance automaton A.
Example of a min-automaton A.

Ramsey Theorem
 for compact spaces

$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

Ramsey Theorem
 for compact spaces

Ramsey Theorem for compact spaces

Ramsey Theorem for compact spaces

Ramsey Theorem
 for compact spaces

Emptiness of min-automata

$a \quad b \quad b \quad a \quad a \quad b \quad a \quad a \quad b \quad a \quad b \quad b \quad a \quad a \quad a b a \ldots \ldots$

Emptiness of min-automata

$$
\mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x} \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \times \times \ldots
$$

Emptiness of min-automata

Emptiness of min-automata

Emptiness of min-automata

Emptiness of min-automata

Emptiness of min-automata

$$
{ }^{a} \mathbf{x}^{b} \mathbf{x}-\mathbf{x}^{a} \mathbf{x}^{a}-\mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x}^{a} \mathbf{x}^{b} \mathbf{x} \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \times \times \times \times \ldots
$$

Emptiness of min-automata

Emptiness of min-automata

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Counter c does not converge to ∞ iff exists a counter d such that $\lim [d, d]=0$ and $\lim [d, c]<\infty$.

Emptiness of min-automata

Emptiness of min-automata

Theorem.

Emptiness of min-automata

Theorem. $\quad(a, b)^{+}$

Emptiness of min-automata

Theorem. $\quad(a, b)^{\top}=$

Emptiness of min-automata

Theorem.

$$
\overline{(a, b)^{+}}=a
$$

Emptiness of min-automata

Which limits lim are possible?
$\lim \in \overline{(a, b)^{+}}$

$$
d(0, \lim)<1 / 15
$$

Theorem.

$$
\overline{(a, b)^{+}}=(a, b)^{+, \omega}
$$

Emptiness of min-automata

Which limits lim are possible?
$\lim \in \overline{(a, b)^{+}}$

$$
d(\cdot, \lim)<1 / 15
$$

Theorem.
$\overline{(a, b)^{+}}=(a, b)^{+, \omega}$
if (a), b are matrices over the ($\mathrm{min},+$)-semiring.

Simon's Factorization Theorem
 for semigroups with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

semigroup with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

$$
(S, \cdot, \#)
$$

semigroup with stabilization

Simon's Factorization Theorem

for semigroups with stabilization
semigroup with stabilization

Simon's Factorization Theorem

for semigroups with stabilization
semigroup with stabilization

Simon's Factorization Theorem
 for semigroups with stabilization

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$

Simon's Factorization Theorem

for semigroups with stabilization
semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent
$e=e^{\#} \quad$ if e is idempotent

Simon's Factorization Theorem

 for semigroups with stabilizationsemigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $\frac{e^{\#} e=e^{\#} \quad \text { if e is idempotent }}{e=e^{\#} \quad}$

Simon's Factorization Theorem

 for semigroups with stabilization

Example 1 (infinite)
$\left(\{0,1,2, \ldots, \infty\},+,{ }^{\omega}\right)$,
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$

Simon's Factorization Theorem

 for semigroups with stabilization$$
(\underbrace{S, \cdots}_{i},{ }^{*})
$$

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#}$ for $n=1,2,3, \ldots$
- $(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $\frac{e^{\#} e=e^{\#} \quad \text { if e is idempotent }}{e=e^{\#} \quad}$

Example 1 (infinite)
$\left(\{0,1,2, \ldots, \infty\},+,{ }^{\omega}\right)$,
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$

Example 2 (finite)
($\{0,1, \infty\},+,{ }^{\#}$),
$1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

 for semigroups with stabilization$$
\left(s_{s}, i, *\right)
$$

semigroup with stabilization

- $s^{\#}=\left(s^{n}\right)^{\#} \quad$ for $n=1,2,3, \ldots$
- $\quad(s t)^{\#} s=s(t s)^{\#}$
- $s^{\#} s^{\#}=s^{\#}$
- $e^{\#} e=e^{\#} \quad$ if e is idempotent $e=e^{\#} \quad$ idempotent

Example 1 (infinite)
Example 2 (finite)
$\left(\{0,1,2, \ldots, \infty\},+,{ }^{\omega}\right)$,
$1,2,3 \ldots \rightarrow 1$
$0^{\omega}=0, \quad 1^{\omega}=2^{\omega}=\ldots=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

$$
\begin{aligned}
& \text { Example } 2 \text { (finite) } \\
& (\{0,1, \infty\},+, \#), \\
& 1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty
\end{aligned}
$$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$),
$1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

0 Example 2 (fin
$\left(\{0,1, \infty\},+,{ }^{\#}\right)$, $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$),
$1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$ Use the two rules to construct tree: binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$),
$1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization

Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Example 2 (finite) ($\{0,1, \infty\},+, \#$), $1+1=1, \quad 0^{\#}=0, \quad 1^{\#}=\infty^{\#}=\infty$

Simon's Factorization Theorem

for semigroups with stabilization
Factorization tree of word $w \in S^{+}$
Use the two rules to construct tree:
binary rule idempotent rule

Theorem. For any finite stabilization semigroup S and word $w \in S^{+}$there exists a factorization tree over w of height $\leq 9|S|^{2}$.

Thank you for your attention!

