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“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞
Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

2
1
0

Wednesday, November 18, 2009



“c tends to ∞”

liminf(c) = ∞

deterministic automata with counters
transitions invoke counter operations:

c:=min(d,e)

 c:=c+1

acceptance condition is a boolean combination of:

Min-automata

Example.  L = {an1 b an2 b an3 b...: n1,n2... does not converge to ∞}
Min-automaton has one state and three counters: c,d,z
-when reading a, do c:=c+1
-when reading b, do d:=min(c,c); c:=min(z,z)

Acceptance condition: ¬ liminf(c) = ∞ ∧¬ liminf(d) = ∞

a a a  b a b a a b...
0
0
0

1
0
0

2
0
0

3
0
0

0
3
0

1
3
0

0
1
0

1
1
0

c
d
z

2
1
0

0
2
0

Wednesday, November 18, 2009



Max-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Max-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er
UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   “X is a block of a’s” 

UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   “X is a block of a’s” 

UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata Min-automata

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   “X is a block of a’s” 

UX   φ(X) 

„there exist arbitrarily large ( "nite) sets X, satisfying φ(X)”

which says

Max-automata Min-automata

RX   φ(X) 

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

Language: {an1 b an2 b an3 b... : n1 n2 n3... is unbounded}

UX   “X is a block of a’s” 

UX   φ(X) 
which says

Max-automata Min-automata

RX   φ(X) 

„there exist in"nitely many sets X of same size, satisfying φ(X)”

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er

UX   “X is a block of a’s” 

UX   φ(X) 
which says

Max-automata Min-automata

RX   φ(X) 

„there exist in"nitely many sets X of same size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

Logic

Wednesday, November 18, 2009



Extension of WMSO by the quanti$er
UX   φ(X) 

which says

Max-automata Min-automata

RX   φ(X) 

„there exist in"nitely many sets X of same size, satisfying φ(X)”

Language: {an1 b an2 b an3 b... : n1 n2 n3... converges to ∞}

¬RX   “X is a block of a’s” 

Logic

Wednesday, November 18, 2009



max-automata min-automata
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WMSO + U + R

eorem. WMSO+U has the same expressive power as deterministic max-automata.

max-automata min-automata

eorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?
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eorem. WMSO+U has the same expressive power as deterministic max-automata.

eorem. WMSO+R has the same expressive power as deterministic min-automata.

eorem. WMSO+U+R has the same expressive power as boolean combinations of 
min- and max-automata.

Boolean combinations of 
min- & max-automata

Equivalently: Nesting the quanti$ers U and R does not contribute anything 
to the expressive power of WMSO. 
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1st proof. min-automata are a special case of ωBS-automata (Bojańczyk, Colcombet 
[06]), so emptiness is decidable. is gives bad complexity, however.

Emptiness of min-automata

2nd proof. Reduction to the limitedness problem for distance-automata. 
Gives PSPACE algorithm, which is optimal.

eorem. Emptiness of max-automata is decidable.

eorem. Emptiness of a boolean combination of min- and max-automata is 
decidable.
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• Instructions c:=0, c:=d  can be implemented into the model, as in the example

• Can introduce the unde$ned counter values ⊤                                               
this can be eliminated by storing in the states the info about which counters 
are de$ned

• Can introduce the counter value ∞                                                                    
the difference between ⊤ and ∞ is that     lim ∞ = ∞      while      lim ⊤≠ ∞

• Can introduce matrix operations on counters, which stems from the semiring 
structure on {0,1,2,..., ∞, ⊤}, where min with respect to    0<1<2<...< ∞<⊤      
is addition and + is multiplication 

In Example 1, c:=c+1 can be written as:

d:=min(c,c); c:=min(z,z) can be written as:

(
c d z

)
:=

(
c d z

)
·




1 ! !
! 0 !
! ! 0





(
c d z

)
:=

(
c d z

)
·




! 0 !
! ! !
0 ! 0





=
(

c + 1 d z )

=
(

z c z )
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.
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Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
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-saw a in state q0  – go to q1; c:=c+1
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e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
.

a a a  b b b a a b...
c0

c1

Wednesday, November 18, 2009
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Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
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-saw a in state q0  – go to q1; c:=c+1
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
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:=
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).
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:=
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·
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
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1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
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a a a  b b b a a b...
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⊤
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⊤
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eorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts a’s on odd positions.
States: q0, q1, one counter c. 
Transitions: 

-saw a in state q0  – go to q1; c:=c+1
-saw a in state q1  – go to q0

-saw b in state q0  – go to q1

-saw b in state q1  – go to q0

Min-automaton in matrix form with one state and two counters: c0, c1.
e initial counter valuation is (c0, c1)=(0, ⊤).

a :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
1 !

)
.

b :
(

c0 c1

)
:=

(
c0 c1

)
·
(
! 0
0 !

)
.

a a a  b b b a a b...
0
⊤

⊤
1

1
⊤

⊤
2

2
⊤

⊤
2

2
⊤
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3
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⊤

⊤
3
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Example of a min-automaton A.
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

2 2 1

⊤ ⊤ 0

⊤ ⊤ 0
abb:
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Example of a min-automaton A.

0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

2 2 1

⊤ ⊤ 0

⊤ ⊤ 0
abb:

0 ⊤ ⊤Initial valuation:

Acceptance condition:    ¬ liminf(c3) = ∞
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

where ⊤+ x = x +⊤=⊤
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

where ⊤+ x = x +⊤=⊤
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with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

πn : T  →  Tn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

where ⊤+ x = x +⊤=⊤
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

πn : T  →  Tn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

where ⊤+ x = x +⊤=⊤

πn : Tm  →  Tn  for  m>n

MkT – k by k matrices over T
with matrix multiplication

MkTn – k by k matrices over Tn
with matrix multiplication

πn : MkT  →  MkTn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

πn : Tm  →  Tn  for  m>n
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e tropical semiring

T = {0,1,2,..., ∞, ⊤}
ordered by 0<1<2<...<∞<⊤

with operations +, min

Tn = {0,1,2,...,n, ∞, ⊤} 
where n+1=∞ 

πn : T  →  Tn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

where ⊤+ x = x +⊤=⊤

πn : Tm  →  Tn  for  m>n

MkT – k by k matrices over T
with matrix multiplication

MkTn – k by k matrices over Tn
with matrix multiplication

πn : MkT  →  MkTn

maps n+1, n+2, ...  to ∞ 

is a homomorphism of semirings

πn : Tm  →  Tn  for  m>n

3 ∞ 1
0 ∞ 1
2 ∞ ∞

3 32 1
0 11 1
2 7 ∞

∞ ∞ 1
0 ∞ 1
∞ ∞ ∞

π6 π2
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Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000
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Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication
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Pro$nite monoid
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   preserve multiplication

M3T0 M3T1 M3T2 M3T3
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   preserve multiplication

Wednesday, November 18, 2009



Pro$nite monoid

3 ∞ 1
0 ∞ 1
2 ∞ ∞

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

.
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Pro$nite monoid

∞ ∞ 1
0 ∞ 1
2 ∞ ∞

3 ∞ 1
0 ∞ 1
2 ∞ ∞

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

..
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∞ ∞ 1
0 ∞ 1
2 ∞ ∞

3 ∞ 1
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Pro$nite monoid

∞ ∞ ∞
0 ∞ ∞
∞ ∞ ∞

∞ ∞ 1
0 ∞ 1
∞ ∞ ∞

∞ ∞ 1
0 ∞ 1
2 ∞ ∞

3 ∞ 1
0 ∞ 1
2 ∞ ∞

S0 S1 S2 S3 S7 S32 S1000
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Wednesday, November 18, 2009



Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000
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Pro$nite monoid

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

.... . . .........................
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Pro$nite monoid

-approximation:0

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

.... . . .........................

∞ ∞ ∞
0 ∞ ∞
∞ ∞ ∞

Wednesday, November 18, 2009



Pro$nite monoid

-approximation:1

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication

.... . . .........................

∞ ∞ 1
0 ∞ 1
∞ ∞ ∞
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Pro$nite monoid

-approximation:2

S0 S1 S2 S3 S7 S32 S1000

   preserve multiplication
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0 ⊤ ⊤

⊤ 1 ⊤

⊤ ⊤ 0

1 1 ⊤

⊤ ⊤ 0

⊤ ⊤ 0
a: b:

∞ ∞ 1
⊤ ⊤ 0

⊤ ⊤ 0
bω:
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eorem. For any $nite stabilization semigroup S and word 
w ∈ S+ there exists a factorization tree over w of height ≤ 9|S|2. 
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