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Min-automata

deterministic automata with counters
transitions invoke counter operations:

c:=c+1

c:=min(d,e)

acceptance condition is a boolean combination of:

liminf(c) = oo
1

(46 »
c tends to oo

Example. L = {a"b a™b ab...: ni,no... does not converge to oo}
Min-automaton has one state and three counters: ¢, 4,z
-when reading 4, do ¢:=c+1

-when reading 4, do d:=min(c,c); c:=min(z,z)

Acceptance condition: - liminf(c) = co A= liminf(d) = oo
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Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

there exist arbitrarily large (finite) sets X, satisfying ¢(X)”
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Logic
Max-automata Min-automata

Extension of WMSO by the quantifier
UX p(X) RX p(X)

which says

there exist infinitely many sets X of same size, satisfying p(X)”

Language: {a" b a™b a*b... : n;nz2ns... is unbounded}
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Extension of WMSO by the quantifier
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which says

there exist infinitely many sets X of same size, satisfying p(X)”
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WMSO + U < > WMSO + R

max-automata < > min-automata
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WMSO + U + R

max-automata min-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

What if we allow both U and R?
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WMSO + U + R

Boolean combinations of
min- & max-automata

Theorem. WMSO+U has the same expressive power as deterministic max-automata.

Theorem. WMSO+R has the same expressive power as deterministic min-automata.

Theorem. WMSO+U+R has the same expressive power as boolean combinations of
min- and max-automata.

Equivalently: Nesting the quantifiers U and R does not contribute anything
to the expressive power of WMSO.
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Emptiness of min-automata

Theorem. Emptiness of min-automata is decidable.

1st proof. min-automata are a special case of wBS-automata (Bojanczyk, Colcombet
[06]), so emptiness is decidable. This gives bad complexity, however.

2nd proof. Reduction to the limitedness problem for distance-automata.
Gives PSPACE algorithm, which is optimal.

Theorem. Emptiness of max-automata is decidable.

Theorem. Emptiness of a boolean combination of min- and max-automata is

decidable.
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® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® Can introduce the undefined counter values T
this can be eliminated by storing in the states the info about which counters

are defined

® Can introduce the counter value o
the difference between T and oo is that /[im oo = = while lim T+ oo

® Can introduce matrix operations on counters, which stems from the semiring
structure on {0,1,2,..., o, T}, where min with respect to  0<1<2<...< co<T

is addition and + is multiplication

In Example 1, c:=c+1 can be written as:
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(¢ d z2) == (e d z)- | T 0 T = (c+1 d z)
T T 0

d:=min(c,c); c:=min(z,z) can be written as:
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Simplytying the min-automata model

® Instructions ¢:=0, ¢:=d can be implemented into the model, as in the example

® Can introduce the undefined counter values T
this can be eliminated by storing in the states the info about which counters

are defined

® Can introduce the counter value o
the difference between T and oo is that /[im oo = = while lim T+ oo

® Can introduce matrix operations on counters, which stems from the semiring
structure on {0,1,2,..., o, T}, where min with respect to  0<1<2<...< co<T

is addition and + is multiplication

In Example 1, c:=c+1 can be written as:

1 1T T
(¢ d z2) == (e d z)- | T 0 T = (c+1 d z)
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Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.
States: qo, 41, one counter c.

Transitions:
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Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
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-saw 4 in state gop — go to qr; c:=c+1

Wednesday, November 18, 2009



Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
Example. Min-automaton which counts &’s on odd positions.
States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o

Wednesday, November 18, 2009



Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
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Example. Min-automaton which counts &’s on odd positions.
States: qo, 41, one counter c.

Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Wednesday, November 18, 2009



Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.
States: qo, 41, one counter c.

Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).

ai (e a) = (0 cl)-(—{ Q)
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.

Proof. We eliminate states as in the following example.

Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.
Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.

Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.

Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g
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Theorem. Min-automata are equivalent to min-automata in matrix form, with one state.
Proof. We eliminate states as in the following example.
Example. Min-automaton which counts &’s on odd positions.

States: qo, 41, one counter c.

Transitions:
-saw 4 in state gop — go to qr; c:=c+1
-saw 4 In state g7 — go to 4o
-saw 4 in state ¢qp — go to g
-saw 4 in state ¢; — go to g

Min-automaton in matrix form with one state and two counters: ¢y, c;.
The initial counter valuation is (¢, c7)=(0, T).
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Figure 1 Example of a distance automaton A.

b/0

Example of a min-automaton A.
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a,/0 a/1 a/0
AT
/%) b/1>@ b/0>@
b/1 bh/0

Figure 1: Example of a distance automaton A.

Example of a min-automaton A.

T 11
1

b:

T
0
0

-

0
a: | T T T
T T T T
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a,/0 a/1 a/0
AT
/%) b/1>@ b/0>@
b/1 bh/0

Figure 1: Example of a distance automaton A.

Example of a min-automaton A.

0 T T 1 1 T
4 T 1 T bh: T T 0
T 0 T T 0

2 2
abb: T T 0
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%O %1 %O
O OO,
/Eﬂ

Figure 1: Example of a distance automaton A.

b/0

Example of a min-automaton A.

T T 1 1 T
a: 1 7T b: T T 0
T 0 T T 0

1 Initial valuation: O T T

2 2
abb: T T 0

0 Acceptance condition: -1 liminf(c3) = oo
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The tropical semiring

17'=10,1,2,..., oo, T}
with operations +, min

ordered by O<1<2<...<co<T
where T+ xX=x+1T=T
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<co<T
where T+ xX=x+T1T=T

1, =10,1,2,....,n, oo, T}

where 72+ 1 =00
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<co<T
where T+ xX=x+T1T=T

1, =10,1,2,....,n, oo, T}

where 72+ 1 =00

w,. 1 - 1,

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<co<T
where T+ xX=x+T1T=T
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where 74 1=00
., 1 - 1,

w,: 1, - 1, for m>n

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<c0<T
where T+ x=x+T=T

Tn — {O,l,Z,...,ﬂ, oo, T}
where 7+ 1=00

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<c0<T
where T+ x=x+T=T

Tn — {O,l,Z,...,ﬂ, oo, T}
where 7+ 1=00

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings

M b T — bk by k matrices over 1’

with matrix multiplication

M b Tn — k by k matrices over 7,

with matrix multiplication

TCy M,éT — M/éTﬂ
w,: 1, - 1, for m>n

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings
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The tropical semiring

17'=10,1,2,..., oo, T}

with operations +, min
ordered by O<1<2<...<c0<T
where T+ x=x+T=T

Tn — {O,l,Z,...,ﬂ, oo, T}
where 7+ 1=00

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings

M b T — bk by k matrices over 1’

with matrix multiplication

M b Tn — k by k matrices over 7,

with matrix multiplication

TCy M,éT — M/éTﬂ
w,: 1, - 1, for m>n

maps 7+1, 7+2, ... to oo

is a homomorphism of semirings

5 32 1
0 11 1

2 7 oo

T

co oo ]
1 T
1 0 o 1
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Profinite monoid

SO(_ Sl < SZ — 83 < - S7 < -- 832(.... SIOOO D U
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Profinite monoid

SO(_ Sl < SZ — 83 < - S7 < -- 832(.... SlOOO D U

~ N /

preserve multiplication
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Profinite monoid

So<—S; «— Sy «— S3 < Sy < Ssp<- Si000 <~

~ N /

preserve multiplication
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Profinite monoid

0 o 1 0 o 1
2

So<—S; «— Sy «— S3 < Sy < Ssp<- Si000 <------

~ N /

preserve multiplication
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Profinite monoid

2

So<—S; «— Sy «— S3 < Sy < Ssp<- Si000 <------

~ N /

preserve multiplication
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Profinite monoid

0 oo oo 0 o 1 0 o 1 0 o 1
2

é()(— S.l e S.Z — S; < - S7 < - 8324.... SIOOO oo

~ N /

preserve multiplication
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Profinite monoid

é()(— S.l e S.Z — S; < - S7 < - 8324.... SIOOO oo
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preserve multiplication
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Profinite monoid

So<—S; «— Sy «— S5 < Sr < Si<- S1000 < s

preserve multiplication
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Profinite monoid

oo (oo (oo

0 -approximation: 0 o o

[ oo o BN O O

SO(_ Sl < SZ — 83 < - S7 < -- 832(.... SlOOO D U

preserve multiplication
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]l -approximation: 0 o 1

[ oo o BN O O
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Profinite monoid
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2 -approximation: 0 o 1

2 co o0

é()(— S.l e SZ — 83 < - S7 < - 8324.... SIOOO oo

preserve multiplication
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Profinite monoid

3 e 1
3 -approximation: 0 o 1

2 co o0

é()(— S.l e S.Z — 83 < - S7 < - 8324.... SIOOO oo

preserve multiplication
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3 e 1
/ -approximation: 0 o 1
2 7 oo

é()(— S.l e S.Z — 83 < - S7 < - 8324.... SIOOO oo
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Profinite monoid

3 32 1
1000 -approximation: 0 11 1
2 7 oo

é()(— S.l e S.Z — 83 < - S7 < - 8324.... SIOOO oo

preserve multiplication
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Profinite monoid

3 32 1
0 11 1
2 7 e

So<—S; «— Sy «— S5 < Sr < Si<- S1000 < s

preserve multiplication

Wednesday, November 18, 2009



Profinite monoid

3 32 1
0 11 1
2 7 e

So<—S; «— Sy «— S5 < Sr < Si<- S1000 < s

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them
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Profinite monoid
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preserve multiplication

Metric
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Profinite monoid

350 1 3 32 1
0 11 1 0 11 1
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preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them
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Profinite monoid

350 1 3 32 1
0 11 1 0 11 1
2 7 oo 2 7 o

s S 8 8 s . : : : : .o : : : ..........‘..... }d = 2—32

So«— $1 \Y) S3 S7 S32 S1000

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication
The n-approximation of x-y is the product of their z-approximations.
we again obtain a sequence consistent with the mappings
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Multiplication
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we again obtain a sequence consistent with the mappings
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 0 11 1 = 3 8 4
2 7 2 7 o 5 18 3

s S 8 8 s . : : : : .o : : : ..........‘..... }d = 2—32

So«— $1 \Y) S3 S7 S32 S1000

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
The n-approximation of x-y is the product of their z-approximations.
we again obtain a sequence consistent with the mappings
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Profinite monoid
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011 1 - 0 11 1 = 3 8 4
2 7 2 7 o 5 18 3
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So«— $1 \Y) S3 S7 S32 S1000

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
The n-approximation of x-y is the product of their z-approximations.
we again obtain a sequence consistent with the mappings
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Profinite monoid
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011 1 - 0 11 1 = 3 8 4
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So«— $1 \Y) S3 S7 S32 S1000

preserve multiplication

Metric
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Multiplication s continuous
The n-approximation of x-y is the product of their z-approximations.
we again obtain a sequence consistent with the mappings
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 011 1 = 3 8 4
2 7 2 7 e 5 18 3

s S 8 8 s . : : : : : : : : ..........‘..... }d = 2—32

So<«— S \Y) S3 S7 S32 S1000

preserve multiplication

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 011 1 = 3 8 4
2 7 2 7 e 5 18 3

s S 8 8 s . : : : : : : : : ..........‘..... }d = 2—32

So<«— S \Y) S3 S7 S32 S1000

preserve multiplication
addition

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 011 1 = 3 8 4
2 7 2 7 e 5 18 3

s S 8 8 s . : : : : : : : : ..........‘..... }d = 2—32

So<«— S \Y) S3 S7 S32 S1000

preserve multiplication
addition

Metric
Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
addition
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 011 1 = 3 8 4
2 7 2 7 e 5 18 3

s s s s s o 00000 isd
So«— 51 S2 S3 57 <+ 932 351000
preserve multiplication
addition
Metric idempotent power (w)

Two elements are close if only an approx. with high threshold can distinguish them

Multiplication s continuous
addition
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Profinite monoid

350 1 3 32 1 3 8 4
011 1 - 011 1 = 3 8 4
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