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—— Abstract

We prove that, over infinite trees, satisfiability is decidable for Weak Monadic Second-Order
Logic extended by the unbounding quantifier U. We develop an automaton model, prove that it
is effectively equivalent to the logic, and that the automaton model has decidable emptiness.
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Introduction. The general topic of this paper is monadic second-order logic extended with
the unbounding quantifier. The unbounding quantifier is a kind of set quantifier, which says
that a formula ¢(X) holds for arbitrarily large finite sets X:

UXp(X) = A3Xn<[X[<o0o A p(X).

neN

The unbounding quantifier was introduced in [1], along with some rudimentary decid-
ability results. The quantifier is part of a research program, which investigates the notion of
“regular language” for infinite words and trees. The general theme of the research program
is that some features, such as the unbounding quantifier, can be added to monadic second-
order logic over infinite objects, while preserving properties one would expect from a regular
language. For instance, consider a language L of infinite words. Define a Myhill-Nerode-like
equivalence relation ~y, on finite words:

w~pw if for every finite word w and every infinite word v,

uwv € L <= uw'v € L.

One can show that if L is defined in monadic second-order logic with the unbounding quanti-
fier (MSO+U), then ~, has finitely many equivalence classes. Furthermore, each equivalence
class is a regular language of finite words. The research program is discussed in [3].

The expressive power of the logic MSO+U is still not properly understood. It is an open
problem whether satisfiability is decidable over infinite words.

So far, research has dealt with fragments of the logic. The paper [4] introduces two
classes of automata on infinite words, called wB- and wS-automata, and proves that they
correspond to fragments of MSO+U with restricted quantifier use. It is not clear if there can
be an automaton model for the whole logic MSO+U, as opposed to an automaton model
for fragments of the logic. These doubts are based on the paper [11], which proves that
MSO+U can define non-Borel languages of infinite words. This implies that there can be
no nondeterministic automaton model for MSO+U that has a Borel acceptance condition,
which excludes all known nondeterministic automata models that use counters. One has to
keep in mind that the non-Borel result still leaves room for automata; a distant analogy is
that parity automata on infinite trees recognize non-Borel sets.
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Weak MSO+U over infinite trees

The topological problems described above disappear when one considers weak monadic
second-order logic (WMSO), where set quantifiers are restricted to finite sets. In count-
able structures, such as infinite words or trees, formulas of WMSO, even extended with the
unbounding quantifier, can only define Borel languages. Over infinite words, and without
the unbounding quantifier, WMSO has the same expressive power as MSO, thanks to the
McNaughton/Safra determinization theorem. This coincidence fails when the unbounding
quantifier is introduced: WMSO+U is strictly less powerful than MSO+U. The crucial ad-
vantage of the weak logic is that it supports the classical automaton-logic connection: it
admits an automaton model, the max-automaton from [2]. The automaton-logic connec-
tion also works for other extensions of WMSO on infinite words, see [5]. The topological
complexity of WMSO+U has been studied in [6].

Content of this paper. The goal of this paper is the following theorem:
» Theorem 1. Satisfiability is decidable for WMSO-+U owver infinite trees.
We prove the theorem in three steps.

1. In Section 1, we define a new automaton model for infinite trees, called a nested lim-
sup automaton, which has the same expressive power as WMSO+U, and show effective
translations from the logic to the automaton and back again.

2. In Section 2, we define a second new automaton model for infinite trees, called a puz-
zle, which is more expressive than a nested limsup automaton, and show an effective
translation from nested limsup automata to puzzles.

3. In Section 3, we provide a decision procedure for nonemptiness of puzzles.

The proof, especially step 3, is maybe more interesting than the result itself. The general
theme is to extend concepts of automata theory from finite sets to infinite sets equipped
with compact metric topologies.

Related work. The automata models studied in this paper work on infinite objects. Two of
the models, namely the wB- and wS-automata from [4], have natural counterparts working
on finite words, called B- and S-automata. These finite word counterparts have recently
seen a lot of interest. Instead of defining boolean-valued functions, which accept or rejects
words, B- and S-automata define number-valued functions, which map words to numbers.
These number-valued functions on finite words have been studied in depth by Colcombet
in [8], under the name of regular cost functions. The theory of regular cost functions looks
very promising, see [10] and [9] for some developments.

On a technical level, this paper uses profinite words [12] to model the limit behavior of
finite words. This approach has been successfully applied in [13], as an alternative for cost
functions in the study of the limitedness problem — B- or S-automata do define boolean-
valued functions, which accept or reject profinite words.

Acknowledgement. We are very grateful to the anonymous reviewer for his detailed re-
marks.

1 WMSO+U and Nested Limsup Automata

In Section 1 and 2, when talking about a tree over an alphabet A, we mean a full infinite
binary tree with nodes labeled by A. (In Section 3, we switch to edge-labeled graphs.)



Mikotaj Bojanczyk and Szymon Torunczyk

WMSO+U. A tree is interpreted as a logical structure, with unary predicates for labels,
and two binary predicates for left and right successors. To express properties of this logical
structure, we use weak monadic second-order logic, which means that formulas can quantify
over nodes and finite sets of nodes. We use the convention where first-order variables
are denoted x,y, z and set variables are denoted X,Y, Z. Also, we allow the unbounding
quantifier U defined in the introduction.

» Running example. Consider an alphabet A = {a,b,c}. Define a b-factor in a tree ¢ to be
a connected set of nodes with label b. Being a b-factor is definable in WMSO:

bfactor(X) &f rreXANVzzeX = (<2 AVya<y<z = (ye XAby))).

Here, < denotes the ancestor relation — the transitive reflexive closure of the parent relation —
which is definable in WMSO. The running example in this paper is the tree language over A,
call it L, which contains a tree if and only if the root has label a, and for every node x:

(a) If x has label a, then its subtree has b-factors of unbounded size.
(b) If « has label b or ¢, then in its subtree, the size of b-factors is bounded.

The language L is defined by the following formula of WMSO+U

(FzVy (z<y) Aa(z)) A (Voa(z) < UX((bfactor(X)AVy (y € X =y > 2))).

Let L be the set of trees satisfying the property above. What does a tree t € L look like?
Observe first that every b-factor has to be finite, since an infinite b-factor contains finite b-
factors of unbounded size, violating condition (b). Also, a node with label b or ¢ cannot have
a descendant with label a. This is because a tree with b-factors of bounded size cannot have
a subtree with b-factors of unbounded size. It follows that all the nodes with label a form a
connected set, call it X, which contains the root. There must be b-factors of unbounded size
below every node from X, however every such b-factor must be finite, and have bounded size
b-factors in its subtree. It follows that every node from X has at least one child in X, and
the size of b-factors with parents in X is unbounded. An example is depicted in Figure 1.
In the figure, we distinguish the maximal b-factors and call them F}, F5, ..., because they
will get a lot of attention in the later analysis. The language L contains no regular tree,
because in a regular tree either b-factors have bounded size, or some b-factor is infinite. In
particular, L is not a regular language of infinite trees. Observe that in Figure 1, the only
part of the tree that behaves in a non-regular way is the b-factors Fi, Fs, .. .. |

1.1 Nested Limsup Automata

In this section, we define an automaton model which, over infinite trees, has the same ex-
pressive power as WMSO+U. The automaton is obtained by nesting two types of automata:
prefix automata and limsup automata. We begin by defining prefix automata and limsup
automata, then we show how they are nested.

Prefix automata. A prefix automaton is used to test regular properties of a finite prefix of
a tree. Typical languages recognized by this kind of automaton are reachability properties
“some node has label a”, or “there is an antichain with five labels a”. A prefiz of a tree is
an ancestor-closed set of nodes in the tree. A prefiz automaton is given by the following
ingredients:

An input alphabet A.
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Figure 1 A tree t € L. Every ¢ node has only ¢ descendants.

A finite set of states @, together with an initial state q; € Q.
A (nondeterministic) transition relation

0CRXAXQXQ.
A set of accepting states F' C Q

The automaton accepts an infinite tree if there is a finite prefix X C {0,1}* and a run
p: X — @, such that p respects the transition relation, has the initial state in the root, and
all maximal nodes of X have labels in the accepting set F'.

A prefix automaton has an existential nature: it tests if there exists a finite prefix with a
certain (regular) property. In particular, languages recognized by prefix automata are open
sets, under the usual topology over infinite trees.

Atomic limsup automata. We now define a second kind of automaton, called an atomic
limsup automaton. A typical language recognized by this kind of automaton is “for every
n € N, there is some path in the tree with at least n labels a”. Observe that this typical
language is not the same as “there is some path with infinitely many labels a”.

The general idea is that the automaton has a counter, which stores natural numbers.
The transition function chooses states in a top-down deterministic fashion. The transition
function also induces a labeling of edges in the tree by sequences of counter operations.
There are two counter operations: increment (written inc) and reset (written reset). Unlike
the model for WMSO+U on infinite words defined in [2], there is no max operation here.
The automaton accepts an input tree if the counter has unbounded values, ranging over
nodes in the tree. We give a formal definition below.

An atomic limsup automaton is given by the following ingredients:

An input alphabet A.
A finite set of states @, together with an initial state q; € Q.
A (top-down deterministic) transition function

§:Q x A — ({inc, reset}* x Q).
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Let t be a tree over the input alphabet A. Using the deterministic transition function § and
the initial state in the root, one labels in a unique way the nodes of t by states and the
edges of ¢ by sequences in {inc, reset}*. Suppose that the counter has value 0 in the root.
For any finite path 7 in ¢, by reading the operations along the path, we get a counter value.
The automaton accepts the tree ¢ if the counter value is unbounded, when ranging over all
finite paths in the tree. In other words, the automaton accepts if there are arbitrarily long
sequences of increments that are not interrupted by reset.

Nested limsup automata. We now combine the two automata above into a single model,
by using nesting. We define nested limsup automata by induction on the nesting depth.
A nested limsup automaton of nesting depth 1 is either a prefix automaton, or an atomic
limsup automaton.

An automaton of nesting depth k + 1 is defined as follows. Suppose that A;,..., A4,
are nested limsup automata of nesting depth k, over a common input alphabet A. Let B
be either a prefix automaton, or an atomic limsup automaton, with input alphabet {0, 1}".
Then the expression B[ A, ..., A,] defines a nested limsup automaton. This new automaton
has nesting depth k£ 4+ 1 and input alphabet A. When does it accept a tree t? Consider
the tree ¢ over alphabet {0,1}", where the label of a node z is a bit-vector, which has 1
on coordinate ¢ € {1,...,n} if and only if A; accepts the subtree of ¢ rooted in x. The
automaton B[Aj1,...,A,] accepts t if and only if the automaton B accepts the tree £.

Observe that nested limsup automata are closed under complementation — the comple-
ment of A is recognized by an automaton B[A], where B is a prefix automaton checking for
0 at the root.

Like all nested models of automata, nested limsup automata are something of a hybrid,
sitting between logical formulas and automata.

» Running example. We now present a nested limsup automaton which recognizes the com-
plement of the language L from the running example. Consider first an auxiliary automaton
B, a limsup automaton, which increments its counter whenever it sees a b, and resets it
whenever it sees a or c¢. Since a large b-factor must contain a long path, the automaton B
accepts a tree if and only if the tree has b-factors of unbounded size. A tree belongs to the
complement of L if and only if the root is not labeled by an a, or if there is some node z,
such that:

The label of x is a, and B rejects the subree of x; or
The label of x is either b or ¢, and B accepts the subtree of x.

Therefore, the complement of L is recognized by a limsup automaton nested inside a prefix
automaton. |

1.2 Equivalence

The model of nested limsup automata is designed to be equivalent to WMSO+U, as stated
in the following theorem.

» Theorem 2. A language of infinite trees is definable in WMSO+U if and only if it is
recognized by a nested limsup automaton. Translations both ways are effective.

The proof of this theorem is in part I of the appendix. The proof ideas are based on [2].
Recall that our goal in this paper is to decide satisfiability of WMSO-+U. The above

theorem reduces the satisfiability problem of WMSO+U to the emptiness problem for nested

limsup automata. However, due to the nesting operation, nested limsup automata are still
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too difficult to solve for emptiness. That is why, in the next section, we present a further
reduction, which removes the nesting in a nested limsup automaton.

2 Puzzles

We now turn to the second automaton model in this paper, which is called a puzzle. The
name is silly because we do not expect this model to be relevant outside this paper.

2.1 Puzzles, a denested version of nested limsup automata.
The ingredients of a puzzle are:

a finite set @ of states

a finite set C' of counters

an input alphabet A

an initial state qr € Q

a (nondeterministic) transition relation

5§ CQ x Ax ({inc, reset, cut} x C)* x Q)?

an unbounding acceptance condition ¢ € Q — U, C C, which maps each state ¢ to the
set of counters that are called unbounded in q.

a parity acceptance condition ¢ € @ — , € N, which maps each state to a natural
number, called its parity rank.

Given an input tree ¢ over the input alphabet, a run of the puzzle is an infinite binary tree
where the nodes are labeled by states, the root has the initial state, and the edges are labeled
by ({inc, reset, cut} x C)*, in a way consistent with the transition relation of the puzzle.

Observe that there is a new counter operation, called cut. The idea is that in the
acceptance condition, the limsup operation is only calculated along paths without cut.
More formally, for a sequence of counter operations

o € ({inc, reset, cut} x C)*

we define the value of o on counter ¢, denoted by val(c, ), to be the maximal number n,
such that some prefix of o without a cut on counter ¢ has n increments on counter ¢ that
are not interrupted by a reset on counter c. For example,

val(o,¢) =2 for o = inc(c)cut(d)inc(c) cut(c)ince(d)inc(c)inc(c)inc(c)reset(c).

even though there are 3 consecutive increments on ¢ after the cut on c. For a finite path =
in a run p, we define

val(p, T, ¢) def val(o, c) where o is the sequence of edge labels on 7.
Finally, for a node x in a run p, we define
val(p, x, ¢) def sup{val(p,m,c) : 7 is a finite path originating in  } € NU {o0}.
A run p is accepting if on every path, the parity acceptance condition is satisfied, and
U, ={ce C:val(p,z,c) = o0} for every node z with state g. (1)

The key differences between a puzzle and a nested limsup automaton are:
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The set of bounded counters is tested in every subtree, as defined in (1);
The model is not nested, but nondeterministic;
There is the new cut counter operation.

» Running example. We define a puzzle which recognizes the language L from the running
example (for simplicity, we ignore the condition on the root label). The states @ are qq,
and g.. There is one counter, call it d. State ¢, increments the counter, which corresponds
to counting the size of a path in a b-block, while the other states g, and ¢. reset the counter.
This behavior is captured by the following set of transitions:

{(qo, 0, (reset(d), qo), (reset(d),q1)) : o € {a,c}, q0,q1 € Q}U
{(gv, b, (inc(d), q0), (inc(d), q1)) : q0,q1 € Q}-

In this particular puzzle, the parity acceptance condition plays no role, and all states have
accepting parity rank 0. Also, this puzzle does not use the cut operation. The key role is
played by the unbounding acceptance condition, which is defined by

Uqa = {d} Uqb =0 qu =0.

In other words, any node with state g, in an accepting run must have unbounded values of
the counter in its subtree, and every other node must have bounded values of the counter
in its subtree. |

» Theorem 3. For every nested limsup automaton one can compute a puzzle that recognizes
the same language.

The proof of this theorem is in part II of the appendix. The theorem can be interpreted as
trading nesting for nondeterminism. From the point of view of deciding emptiness, this is
a good trade: nesting is cumbersome for an emptiness algorithm, while nondeterminism is
irrelevant.

The converse of Theorem 3 fails: thanks to the parity condition, puzzles recognize non-
Borel tree languages, while WMSO+U defines only Borel tree languages. Another reason is
shown in the appendix: languages recognized by puzzles are not closed under complements.

3 Emptiness for puzzles

This section is about the emptiness procedure for puzzles.
» Theorem 4. Emptiness is decidable for puzzles.

The general idea is that even though an accepting run of a puzzle is an infinite object,
there should be some way of drawing it in a finite way. This idea works for Biichi automata,
because every nonempty Biichi automaton accepts the unfolding of a lasso graph such as:

- —

This idea also works for parity tree automata, because every nonempty parity tree automaton
accepts the unfolding of some finite graphs, such as:

OO\O
U
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Runs as graphs. In the proof of Theorem 4, we will treat a run p of a puzzle as an edge-
labeled graph G,. The graph G, has the same nodes as p. It has no labels on the nodes.
An edge in the graph is labeled by the word

o € Q- ({inc, reset, cut} x C)* - Q,

which begins with the state in the source node of the edge, followed by the sequence of
counter operations on the edge, and ending with the state in target node of the edge. From
now on, when writing p, we will refer to the graph G,. The labels on the edges of G, are
words over the alphabet

AY Q U {inc, reset, cut} x C.

We fix this alphabet for the rest of this section.

» Running example. Recall the tree t from Figure 1. The puzzle in the running example
has only one run over any tree, and over ¢ the run is accepting. The part of this run that
concerns that b-factor F, is illustrated in Figure 2. In the rest of this section, we will try to
define a limit F,. <

Figure 2 The run of the puzzle inside the b-factor F,, of the tree t from Figure 1.

Factor. A factor in a tree is a connected set of nodes. Every factor has a root node, which
is the least node in the factor. A port in a factor is a node outside the factor that has its
parent in the factor. A root-to-port path in a factor is a path from the root to some port,
seen as a sequence of edges.

Signature. The signature of a (finite or infinite) path in a run is the concatenation of all
the labels on that path, which is a word over the alphabet A. We use the letters o or 7 to
denote signatures of paths.

» Running example. In Figure 2, the signature of the rightmost root-to-port path in F,, is

on S (g inc - q)" - (a - inc - g). <
For signatures of factors, we use multisets, which are sets where the number of occur-
rences an element can be in NU{oco}. Consider a finite factor F. The signature of the factor
is the multiset of path signatures, ranging over root-to-port paths in the factor. All path
signatures in this multiset have the same source state, namely the state in the root of the
factor. This state is called the root state of a factor signature. It is important that factor
signatures describe finite factors. In an infinite factor, it may be the case that a path is not
included in root-to-port paths. We use the letter % to denote factor signatures.

» Running example. The signature of the factor in Figure 2 is the multiset, call it ¥,,, which
contains all path signatures o1, ...,0,_1 once, and the path signature o,, twice. <
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3.1 Limits of signatures

The key technique in this paper is to use limits. We are mainly interested in the limits of
signatures, both signatures of paths, and signatures of factors. In this section, we establish
the notion of limit that we use. Our approach to limits of path signatures is to treat path
signatures as a special case of profinite words. Our approach to limits of factor signatures is
to use a variant of Hausdorff distance on multisets of profinite words. The definitions follow.

Profinite words. Consider the following distance on finite words over the alphabet A.

1
distance(o, 7) = max{2—n : some DFA of n states accepts o but not 7}.

It is not difficult to see that this is indeed a distance, even an ultrametric:
distance(o1, 02) < max(distance(oq, 7), distance(r, 02)) for every 01,092, 7 € A™.

A sequence of words (7). is called Cauchy if for every € > 0 there is some n such that all
the words 7, T+1, . .. lie in a ball of diameter €.

» Running example. Recall the sequence (o,,),, of signatures of rightmost paths in the factors
F,,. This sequence is not Cauchy, because even-numbered words have an even number of
increments, and odd-numbered words do not, and evenness can be tested by a DFA of
2 states. However, the sequence (0,), has several Cauchy subsequences, including the
sequences (oy1)n and (op141)n- <

Consider two Cauchy sequences (0,,), and (7,,), to be equivalent if
01,T1,02,7T2,...

is also a Cauchy sequence. This is an equivalence relation, call it ~. An equivalence class
of this relation is called a profinite word (see [12] for more on profinite words). The set of
profinite words is denoted by A*. We model signatures of paths and their limits by profinite
words. Here are the key properties of profinite words that we use:

1. It makes sense to say that a profinite word belongs or does not belong to a regular
language L C A*. Indeed, if (0,) is a Cauchy sequence, then either all but finitely many
elements belong to L, or all but finitely many elements do not belong to L. Therefore,
it makes sense to say that a Cauchy sequence belongs or does not belong to a regular
language. Also this property is preserved when going to an equivalent Cauchy sequence.
In particular, it makes sense to say that a profinite word does at least one increment on
some counter ¢, or does at least 4 increments, or begins with state ¢, because all of these
are regular properties.

2. There is a distance on profinite words, namely:

distance((op)n, (Tn)n) = lim distance(o,, 7).

n—oo
By the triangle inequality, the above limit exists for Cauchy sequences and does not
depend on the choice of a sequence in a class of ~. Equipped with this distance, the
set of profinite words is a compact metric space. This means that every sequence has a
converging subsequence. Also, for every regular language L C A*, there is some distance ¢
such that any two words at distance at most ¢ either both belong to L, or both do not
belong to L.
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3. It makes sense to concatenate profinite words. This is because the relation ~ is a con-
gruence with respect to concatenation of sequences:

(0n)n ~ (0))n and  (Tp)n ~ (7)), implies (0n  To)n ~ (o), T )n-

» Running example. Recall the Cauchy sequence (op1),. We write o, for the profinite word
represented by this sequence. This profinite word begins with letter ¢, and ends with letter
qc- Also, for every n, there are more than n increments in o,,, which is something that can
only happen in a profinite word. <

Hausdorff distance on sets. So far, we have defined a compact metric space to model path
signatures, namely the set of profinite words over A. We now want to do the same thing
for multisets of path signatures. Our approach is to use a multiset variant of the Hausdorff
distance on sets. We begin by recalling the distance on sets (not multisets), because this
definition is easier to digest. A metric on a set A (we are interested in the case when A is
the set of profinite words over A) can be lifted to a metric on closed subsets of A, using the
Hausdorff distance. For two closed subsets X,Y C A, their Hausdorff distance is defined by

distance(X,Y) o max ( sup inf distance(z,y), sup inf distance(z,y)).
zeX YEY yey z€X
This is a metric on closed subsets. This definition can be extended to so-called closed
multisets. The precise definition of closed multisets and their metric is given in the appendix.
As an example, consider multisets of real numbers. Like any finite multiset, the multiset

1 1 1
Xn:{g7ﬁ77n7}

is closed. The sequence (X,,), tends to the (closed) multiset where 0 appears infinitely often.

» Running example. Consider the signature 3, of the factor F,,. One can prove that the
sequence (1), is Cauchy. Its limit is the multiset, call it ¥, where every o,, appears once,
and every limit of a subsequence of (o,,) appears infinitely often. Among others, for every
k € N, 0,4, appears infinitely often. <

3.2 Signature graphs

We are now ready to define the key concept of this paper, which is a signature graph. A
signature graph is used to represent limits of accepting runs. A signature graph is going to
have labeled parallel edges, so it is really a multigraph. When talking about an edge labeled
multigraph, we mean a directed graph with edges labeled by some alphabet A. The edges
form a multiset, so for any label o and pair of vertices x,y, the number of edges from x to
y with label o may potentially be 0,1, ..., or countably infinite.

Definition of a signature graph. A path signature is a profinite word over A that begins
with a state (called the source state) and ends with a state (called the target state). A
factor signature is a closed multiset of path signatures, which agree on the source state.
A signature graph is a multigraph with edges labeled by path signatures, subject to the
following consistency condition. For every node x, there is some state ¢ € @, such that all
edges entering x have target state g, and all edges leaving x have source state q. This state
q is called the node label of x, although technically speaking a signature graph supplies only
edge labels, and the node labels are derived information.

In a signature graph, the labeling assigns signature paths to individual edges. However,
using the monoid structure of path signatures, we can assign a path signature to every finite
edge path, by concatenating the labels of the edges in the path.
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Fans.

Suppose that = is a node in an edge labeled graph. We define the fan of x to be

the multiset of labels of edges leaving x. If &2 is a family of multisets over A, then we say
that a graph has fans in & if the fan of each node is in &. In the proof, when dealing with
signature graphs, we are interested in two sets & of factor signatures. The first set, call it

gzﬁn

is the set of factor signatures of finite factors that appear in some run of the puzzle, not

necessarily accepting. This set depends on the transitions and counter in the puzzle. It does

not depend, however, on the acceptance conditions (boundedness and parity) in the puzzle,

because these are only used to distinguish accepting runs. The second set is the closure of
the first set, under the Hausdorff distance, in the space of closed multisets of profinite words:

Phin-

Limit accepting signature graph. Recall that thanks to the properties of the profinite
monoid, it makes sense to say that a path signature does an increment/cut/reset on some

counter. We say that a path signature has value w on counter c if for every n € N, the

path signature has value at least n on counter ¢ (recall that the value refers to the maximal
number of increments, not interrupted by a reset, before the cut). Also, one can ask about
the maximum rank, in the parity acceptance condition, of states visited by the limit path
signature. For a node « in a signature graph G, define U(G, z) to be the set of counters Ug,
where ¢ is the state in the label of .

We now present the key definition in the emptiness procedure for puzzles, the definition

of a limit accepting signature graph. The idea is that a limit accepting signature graph is

the limit of a converging sequence of accepting runs.
A signature graph G with a distinguished root node is called limit accepting if

B WN =

a.

. The root node is labeled by the initial state of the automaton,

. Every node in G is reachable from the root node,

. The parity condition is satisfied on every infinite path,

. For every node = and counter ¢, counter ¢ belongs to U(G, z) if and only if

There is an infinite path from x, such that every prefix of the path can be extended
to a finite path that does not cut ¢, and reaches a node whose fan contains an edge
with w on counter c¢; or

. There is an infinite path from z, which does not cut ¢, resets it finitely often, and

increments it infinitely often.

(g -inc - g.)!

Qo -reset - Za o o ¢ qp - inc - q.)*

H (g - inc - q.)°

T §]) Smrer—

\ g 1 R 5
3
(@ - inc - g,)» )

Figure 3 This signature graph represents the accepting run in Figure 2, in the following sense.
Node z represents all nodes with label a. The self-loop in x stands for the lefmost path in the graph
from Figure 2. Node y represents a limit of the factors F,. The fan of y is ¥, — the limit of the
fans (Xn1)n. The thick edge stands for infinitely many edges, including infinitely may with label
(qv - inc- ). Node z together with its two self-loops stands for a subtree with infinitely many c’s.
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Main technical theorem. To prove Theorem 4, we present a stronger result, Theorem 5,
which is the main technical contribution of this paper.

» Theorem 5. The following conditions are equivalent.

1.
2.
3.

There is a limit accepting signature graph with fans in Py,
There is a limit accepting signature graph with fans in P, with finitely many nodes,
The puzzle has an accepting run.

Furthermore, given a puzzle one can decide if the conditions hold.

» Running example. By Theorem 5, the puzzle from the running example should have a

limit accepting signature graph with fans in %5, with finitely many nodes. Such a graph
is illustrated in Figure 3, and has 3 nodes, but infinitely many edges. |

The proof of Theorem 5 is in part IIT of the appendix. A rough sketch is as follows.

Implication from 1 to 2. The key point is that we can design an automaton model,
closely resembling alternating automata on graphs, which recognizes limit accepting sig-
nature graphs. This automaton model shares the following property with alternating
automata on graphs: a nonempty automaton accepts a graph with finitely many nodes.
Implication from 2 to 3. The key point is to get rid of the limits, and replace them
by actual finite pieces of runs. The idea is of course to use finite pieces of runs from
a sequence approximating the limit, but the implementation of this idea requires some
technical effort. We use a notion of bisimulation that is adapted to converging sequences.
Implication from 3 to 1. The key point is to extract limits from an arbitrary accepting
run of a puzzle. For this, we use a version of Ramsey’s theorem adapted to metric spaces.
Decidability. The key point is to compute a finite representation of the set Pg,. In
the end, we reduce this to the domination problem for B-automata over finite trees [10].

We believe that the technique of limits of graphs is quite general, and can be applied to
other automaton models for trees.
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