
Foundations of Software Technology and Theoretical Computer Science (2009) Submission

Deterministic Automata and Extensions
of Weak MSO

Mikołaj Bojańczyk, Szymon Toruńczyk∗
University of Warsaw

{bojan,szymtor}@mimuw.edu.pl

ABSTRACT. We introduce a new class of automata on infinite words, called min-automata. We
prove that min-automata have the same expressive power as weak monadic second-order logic
(weak MSO) extended with a new quantifier, the recurrence quantifier. These results are dual to
a framework presented in [2], where max-automata were proved equivalent to weak MSO extended
with an unbounding quantifier. We also present a general framework, which tries to explain which
types of automata on infinite words correspond to extensions of weak MSO. As another example for
the usefulness framework, apart from min- and max-automata, we define an extension of weak MSO
with a quantifier that talks about ultimately periodic sets.

Introduction
In [2], a new class of languages of infinite words was defined. This class had two equivalent
descriptions: in terms of a deterministic counter automaton (called a max-automaton), and
in terms of an extension of weak monadic second-order logic (weak MSO). The argument
raised in [2] was that there are robust extensions of ω-regular languages, extensions that
have descriptions in terms of both automata and logic. This paper further investigates that
argument. These are the contributions:

1. We define a type of automaton dual to max-automata, called a min-automaton, and
prove that it is equivalent to a certain extension of weak MSO.

2. We show that min- and max-automata fit in a general picture, where deterministic
automata with prefix-closed acceptance conditions define extensions of weak MSO.

3. As another example of the general picture, we present an extension of weak MSO,
together with a corresponding automaton, that talks about ultimately periodic sets.

Below we describe these contributions in more detail.

Min-automata. A max-automaton, as defined in [2], works as follows. It is a deterministic
automaton, but it also has a finite set C of counters, which store natural numbers. Each
transition is decorated by a sequence of counter operations, which are from the set

Op = {c := c + 1 , c := max(d, e) : c, d, e ∈ C}.

(The toolkit of operations in [2] was slightly different, but the simpler one above is equiv-
alent.) There are two key properties of the model. First, the automaton is deterministic,
which is important for the connection with weak MSO. Second, the choice of the next state
is not influenced by the counter values, but only the current state and input letter; one can

∗Work partially funded by the Polish government grant no. N206 008 32/0810

NOT FOR DISTRIBUTION

2

somehow think of the counter operations being applied after the run is chosen. The only
place where the counters are read is the acceptance condition, which is a boolean combina-
tion of conditions

lim sup
i→∞

val(c, a1a2 . . . ai) = ∞,

where val(c, u) is the value of counter c after reading a finite prefix u of the input word.
The main contribution of [2] is that max-automata are equivalent to weak MSO ex-

tended with a quantifier, called the bounding quantifier. The unbounding quantifier binds
a set variable X in a formula ϕ(X) and is true if there are sets X of arbitrarily large finite size
that satisfy ϕ(X).

If an automaton with the max operation has a matching logic, then what about min?
What if we use lim inf instead of lim sup in the acceptance condition? In this paper we ana-
lyze such an automaton model, called a min-automaton, where min is used instead of max,
and the acceptance condition uses lim inf instead of lim sup. We show that min-automata
also have a corresponding logic. Note that there are other combinations, which we do not
study here, such as automata that use max and lim inf.

What is the logic that corresponds to min-automata? As was the case for max-automata,
this is an extension of weak MSO, where a new quantifier is added. The quantifier for min-
automata, which we introduce in this paper and call the recurrence quantifier, says: “there is
some n ∈ N such that infinitely many sets of size n satisfy ϕ(X)”. One of our main results,
Theorem 8, is that min-automata have the same expressive power as weak MSO extended
with the recurrence quantifier.

General Framework. Although we think that min-automata are interesting in their own
right, we also think that they are part of a bigger picture for deterministic automata on
infinite words. The bigger picture is that any “reasonable” acceptance condition seems to
give a robust class of languages extending weak MSO. We present some preliminary results
that attempt to formalise these ideas.

One consequence of our results is a normal form theorem: any formula of weak MSO
extended with both the unbounding quantifier (the quantifier related to max-automata) and
the recurrence quantifier (the quantifier related to min-automata) is effectively equivalent
to a boolean combination of formulas, each of which has at most one occurrence of the new
quantifiers (bounding or recurrence). In other words, mutual nesting of the new quantifiers
does not contribute to the expressive power. This normal form can be used to decide satisfi-
ability for weak MSO extended with both quantifiers, since the algorithm only needs to test
emptiness for boolean combinations of (actually, conjunctions of) max- and min-automata.

Ultimately Periodic Quantifier. As an example of the bigger picture, we consider an ex-
tension of weak MSO with the ultimately periodic quantifier. This quantifier binds a first-
order variable in a formula ϕ(x) and says that the set of word positions that satisfy ϕ(x) is
ultimately periodic. We present an equivalent automaton model, where the acceptance con-
dition says that certain states appear in an ultimately periodic way, and certain other states

FSTTCS 2008 3

do not. Using this model, and some combinatorics, we prove that satisfiability is decidable
for weak MSO with the ultimately periodic quantifier.

Background and related work. The idea of considering extensions of ω-regular languages
is not new, dating back to the sixties. One line of work has been to add new predicates, such
as a predicate square(x), which holds for positions that are square numbers. This line was
started by [7], and continued in [5, 11, 10].

More closely related to this paper is the work on the unbounding quantifier. This quan-
tifier was introduced in [3]. The satisfiability problem for full MSO (as opposed to weak
MSO, the subject of this paper) extended with the unbounding quantifier was tackled [4].
By introducing an automaton model, called a BS-automaton, [4] provided some fragments
of full MSO with the unbounding quantifier that have decidable satisfiability over infinite
words. A BS-automaton is a counter automaton with acceptance conditions as in max- and
min-automata, but, crucially, it is nondeterministic. Nondeterminism is important for full
MSO, where existential quantification over infinite sets is allowed. Nondeterminism also
increases the flexibility of the model (for instance, the max and min operations become re-
dundant). There is no free lunch, however: nondeterministic BS-automata are not closed
under complement, and it is not clear what is the correct automaton model for full MSO
with the unbounding quantifier. It is still an open problem if full MSO extended with the
unbounding quantifier has decidable satisfiability over infinite words.

BS-automata have also been considered in [1], under the name of R-automata. BS-
automata are also closely related to distance desert automata, which were used by Kirsten
to decide the star height problem [8]. A tree variant of distance desert automata was intro-
duced in [6], to decide star height for tree languages.

Acknowledgments. We would like to thank Eryk Kopczyński, Sławomir Lasota, Aymeric
Vincent and Thomas Wilke for many stimulating discussions.

1 Min-automata

In this section we introduce min-automata. The idea is that a min-automaton has a finite set
of counters that store natural numbers, and each transition is labeled by a finite sequence of
counter operations, taken from the set

OpC = {c := c + 1 , c := min(d, e) : c, d, e ∈ C}.

Formally, a deterministic min-automaton consists of:

4

A The alphabet of the automaton
Q A finite set of states of the automaton
C A finite set of counters of the automaton
δ The state transition function, δ : Q× A→ Q
γ The counter update function, γ : Q× A→ (OpC)∗

q0 The initial state, q0 ∈ Q
v0 The vector of initial counter values, v0 ∈NC

F The acceptance condition, described below.

Given a finite word w ∈ A∗, the automaton produces a unique run ρ ∈ Q∗. By applying
the counter update function γ to this run, we get a sequence π ∈ (OpC)∗ of counter opera-
tions. By applying this sequence of operations to the initial counter valuation v0, we get a
counter valuation written val(c, w).

The acceptance condition F is the only place where the counters are read. It talks about
the asymptotic† values of the counters when reading an input word a1a2 · · · ∈ Aω. It is a
boolean combination of conditions

lim inf
i→∞

val(c, a1 · · · ai) = ∞. (1)

In the automaton, the above condition is represented in the formula F by an atom c for short.
In particular, the class of languages accepted by min-automata is closed under com-

plementation, since replacing the acceptance condition F by ¬F gives an automaton recog-
nizing the complement language, thanks to determinism. Closure under alternative and
conjunction follows from the usual cartesian product construction.

If the counters would influence the states, such as by having a zero-test counter op-
eration, we would lose all the robust decidability of the model. It is crucial that as far as
choosing the states is concerned, a min-automaton behaves just like a finite deterministic
automaton.

EXAMPLE 1. With each infinite sequence of natural numbers n1, n2, n3 . . ., we may associate
an infinite word

an1 b an2 b an3 b . . .

Let L be the set of words associated with sequences where lim inf ni < ∞. Then L is recog-
nized by a deterministic min-automaton with one state, three counters c, d, z and the follow-
ing instructions.

- when reading a, do c := c + 1,
- when reading b, do d := min(c, c); c := z.

The initial valuation is (0, 0, 0). Counter c stores the size of the current a block, while counter
d stores the size of the last complete a block. Counter z always stores 0, and is used to reset
counter c when a block of a’s is finished. The acceptance condition is F = ¬c ∧ ¬d: both
counters c and d should have lim inf < ∞ (counter z is not mentioned in the acceptance
condition).

†Since the acceptance condition is insensitive to finite perturbations, the initial counter valuation does not
influence the accepted language. The initial counter valuation will play a role for automata in matrix form.

FSTTCS 2008 5

The above example shows how counter operations c := 0 and d := c can be imple-
mented in the model.

The following lower bound on the complexity of emptiness is proved in the appendix
(Appendix B), via a reduction from the universality problem for nondeterministic automata.
This is also a partial answer to a question posed in [2], which asked about the complexity of
emptiness for max-automata (the same proof works for max-automata).

THEOREM 2. Emptiness is PSPACE-hard for min-automata.

Determinism. Does determinism restrict the expressive power of min-automata? It does
for max-automata: in [2], it was shown that nondeterministic max-automata can, while
deterministic max-automata cannot, recognize the language

L = {an1 b an2 b an3 b . . . : lim inf ni < ∞}.

The reason why a nondeterministic max-automaton can recognize L is that a sequence has
lim inf < ∞ if and only if it has a subsequence of lim sup < ∞, and the subsequence can
be nondeterministically guessed. The reason why deterministic max-automata cannot rec-
ognize this language is that L is on level Σ3 of the Borel hierarchy, while deterministic max-
automata can only recognize languages that are boolean combinations of Σ2 languages.

For min-automata, we show in the appendix (Appendix C) that nondeterministic min-
automata can, while deterministic min-automata cannot, recognize the language

K = {an1 b an2 b an3 b . . . : lim sup ni = ∞}.

The reason why a nondeterministic min-automaton can recognize K is the same as in the
counterexample for max-automata. However, how does one prove that a deterministic min-
automaton cannot recognize K? The topological argument no longer works, since K is on
level Π2 of the Borel hierarchy, while deterministic min-automata can recognize even Σ3

languages, such as the language L. One idea would be to change the topology, to one where
min-automata would be simpler than max-automata, but we could not find such a topology.
The solution we present in the appendix uses pumping arguments.

Relationship with BS-automata. In this section we talk about translating min- and max-
automata into BS-automata, as defined in [4]. BS-automata are like min- or max-automata,
with three differences: (i) they are nondeterministic; (ii) they do not have the min and max
counter operations, only increment and reset; and (iii) the acceptance condition can speak
of both lim inf and lim sup. In [2] it was shown how to convert a max-automaton to a
nondeterministic BS-automaton. The same technique works for min-automata, so we get:

THEOREM 3. Every max-automaton is effectively equivalent to a nondeterministic BS-
automaton. The same holds for min-automata.

6

COROLLARY 4. Emptiness is decidable for boolean combinations of max- and min-automata.

PROOF. Since max- and min-automata are closed under boolean operations, the problem
is equivalent to testing emptiness for positive boolean combinations. Since BS-automata
are closed under positive boolean combinations, every boolean combination of max- and
min-automata is effectively equivalent to a BS-automaton. Emptiness of BS-automata is
decidable by [4].

The complexity of the above procedure is quite high, especially due to the high cost of
translating a max-automaton into a BS-automaton (the current algorithm is nonelementary).
It would be nice to get an upper bound that is closer to the PSPACE lower bound from
Theorem 2.

BS-automata do not have the min operation, and yet they are still able to capture min-
automata. The translation from min-automata to BS-automata introduces nondeterminism.
One might ask: is the min counter operation necessary in a deterministic min-automaton?
(After removing the min-operation, we add a substitution operation c := d and a reset oper-
ation c := 0, and we still keep the acceptance condition that talks about lim inf.) Notice how
the automaton in Example 1 does not really use the min operation, only the substitution. In
preliminary work, we have proved that min-automata without min are less expressive.

Below we describe the separating example. The alphabet is a, b, c, d. Let

w = an1 ban2 b · · · ank b

be a word in (a∗b)+. For σ ∈ {c, d} we define wσ to be min(n1, . . . , nk) if σ = c and ∞
otherwise. The separating language is

{w1σ1w2σ2 . . . ∈ ((a∗b)+(c + d))ω : lim inf wiσi = ∞}

It is easy to define a min-automaton that recognizes the above language. The proof that an
automaton without min cannot recognize this language requires a pumping argument, and
will be given in a full version of this paper.

A matrix representation. In this section we represent the automata by matrices.
We extend slightly the definition of min-automata and allow an additional value >,

called the undefined value. As far as the min operation is concerned, the values are ordered
0 < 1 < . . . < >. We extend addition to the new counter values by setting:

>+ x = x +> = > for all x.

We write T for the extended set {0, 1, 2, . . . ,>} of counter values. Together with the two
operations above T forms a semiring, where the addition operation is min and the multipli-
cation operation is +. This semiring is called the tropical semiring, or (min, +) semiring, see
e.g. [9].

The new counter values can be eliminated, by storing in the states the information
about which counters are >. The undefined counter value > will become important in the
matrix representation, where it will be used to eliminate states from the automaton.

FSTTCS 2008 7

Let MCT denote the semiring of C × C matrices with entries from T . Suppose that
M ∈ MCT . We can treat M as a counter operation, which changes a counter valuation,
treated as a vector v ∈ T C, to v · M ∈ T C. This type of operation can be implemented
by a min-automaton, possibly after introducing auxiliary counters (see Appendix A.2 for
details).

EXAMPLE 5. Let us return to the automaton from Example 1. When reading a letter a, the
automaton would perform the operations c := c + 1. In matrix form, this is written as

(
c d z

)
:=

(
c d z

)
·

 1 > >
> 0 >
> > 0

 .

When reading b, the automaton would do d := min(c, c); c := z. In matrix form, this is

(
c d z

)
:=

(
c d z

)
·

 > 0 >
> > >
0 > 0

 .

In the appendix we will show Proposition 6, which says that every automaton can be
modified into a matrix form as in the above example. In matrix form, the counter operations
are implemented by matrices, and the choice of the matrix only depends on the last letter
seen (so there is no state). Such an automaton is given by an initial vector and a matrix for
each letter of the input alphabet, so it is a tuple

〈A, C, γ : A→MCT , v0 ∈ T C, F〉.

After reading a word a1 · · · an, the counter valuation is

v0 · γ(a1) · γ(a2) · · · γ(an).

We call this a min-automaton in matrix form.

PROPOSITION 6. Every min-automaton can be transformed into an equivalent min-automaton
in matrix form. If the input automaton has n states and m counters, the resulting automaton
has (m + 1)× n counters.

PROOF. [sketch] By storing the state information in the counters which use the value >.
Each counter has one copy corresponding to each of the automaton states, and all but one
of the copies are undefined at any moment. The details are in Appendix A.2.

What is the point of the matrix representation? One advantage is that it underlies the
close connection with existing work on distance automata and formal power series, where
matrices over the tropical semiring play an important role. We would like to further inves-
tigate this connection, especially how the PSPACE upper bound on the limitedness problem
for distance automata can be used for testing emptiness of min automata.

Another advantage is that we can eliminate states from the automaton. This is more
an advantage of the > counter value. Having a stateless automaton enormously simplifies
combinatorics, for instance in the proof from Appendix C, which shows that min-automata
cannot be determinized.

8

2 Weak MSO with the recurrence quantifier

In [2], max-automata were proved to have the same expressive power as weak MSO ex-
tended with a new quantifier, called the unbounding quantifier (denoted U). For min-
automata, the situation is the same, only a different quantifier is needed. Before introducing
the new quantifier, we recall the definition of weak MSO. In weak MSO over infinite words
we may:

- quantify over finite sets of positions (the ∃finX quantifier) and single positions (the ∃x
quantifier),

- verify that a position belongs to a set of positions (x ∈ X),
- verify that one position comes before another (x ≤ y),
- check the label standing on a position (a(x) for each label a ∈ A),
- use boolean operations (∧,∨,¬).

Weak MSO corresponds to deterministic Muller automata over infinite words, which, thanks
to the McNaughton theorem, define all ω-regular languages. The goal of this section is to
show this correspondence for min-automata, by adding a new quantifier, called the recur-
rence quantifier.

The recurrence quantifier The recurrence quantifier, written R, binds a set variable X in
a formula ϕ(X) and is true if there are infinitely many sets X of bounded size that satisfy
ϕ(X). More precisely, RX.φ(X) is satisfied in a word w if there exists a number N ∈ N and
infinitely many sets X of size N such that φ(X) is satisfied in w.

EXAMPLE 7. Let φ be a formula with a free set-variable X which says that X is connected
and has at least two b’s. Formally,

φ(X) = ∧
{
∀x∀y∀z x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z ⇒ y ∈ X
∃x∃y x < y ∧ b(x) ∧ b(y) ∧ x ∈ X ∧ y ∈ X

A word an1 ban2 b . . . satisfies RX.φ(X) if and only if lim inf ni < ∞. Therefore, the set of
words with infinitely many b’s that satisfy RX.φ(X) is the language L from Example 1.

THEOREM 8. Weak MSO logic with the recurrence quantifier recognizes the same class of
languages as min-automata.

This theorem is a special case of Theorem 11, stated in the next section.

3 General framework

In the previous section, we defined min-automata and proved that they are equivalent
to weak MSO with the recurrence quantifier. This is analogous to the situation for max-
automata, where the appropriate quantifier is the unbounding quantifier. The proof in this
paper and in [2] share some similarities. In this section, we would like to bring out these
similarities, by introducing a more abstract framework.

FSTTCS 2008 9

The automaton side The control structure of deterministic min-automata, max-automata,
Büchi automata, etc. is always the same, it is only the mode of acceptance that changes. We
give an abstract definition below, by modeling an acceptance condition as a language F ⊆
Bω. The definition uses the notion of a letter to letter transducer, by which we understand
a finite deterministic automaton with input alphabet A, whose transitions are labelled by
letters of an output alphabet B. This transducer maps every word in A∗ to a word in B∗

of same length. We will use a transducer on infinite words, where it will give a function
Aω → Bω. Note that the transducers have no acceptance condition.

DEFINITION 9. An automaton with acceptance condition F ⊆ Bω (or simply F-automaton)
A is a deterministic letter-to-letter transducer with input alphabet A and output alphabet B.
We say that A accepts an input word w ∈ Aω if the output word belongs to F. Languages
accepted by F-automata are called F-regular.

One example of this definition is a Büchi automaton. In this case, the acceptance condi-
tion is any language of the form (B∗C)ω ⊆ Bω, for C ⊆ B. In a similar way we can encode
Muller or parity automata.

For min- or max-automata, the same can be done. In this case, the alphabet of the ac-
ceptance condition consists of words over the set of counter operations, and the acceptance
condition contains those infinite sequences of counter operations where the appropriate
limits are ∞.

We are mainly interested in prefix-independent acceptance conditions, namely languages
F ⊆ Bω that satisfy if F = B∗F. All the examples mentioned above are prefix-independent.
(In the case of min- or max-automata, to get prefix-independence we should not use the
matrix form of automata, but the original definition, where the counters have values in N.)

The logic side Let us call a locus any family X of finite sets of positions. Let a given input
word be fixed. A formula φ(X) with a free set-type variable X defines its locus Xφ as the
family of finite sets of positions X which satisfy φ. A locus property Q is any set of loci. If Q

is a locus property, then we write QX.ϕ(X) if Xϕ ∈ Q. The quantifiers ∃fin, U, R, P (defined
in the next section) all arise in this fashion. For instance, for a locus X , X ∈ ∃fin if it is
nonempty, while X ∈ U if it contains arbitrarily large sets.

For two loci X and Y , we write X ' Y if X and Y differ by a finite number of sets.
We call Q finitely invariant if Q is invariant under ', i.e. if X ∈ Q and X ' Y , then Y ∈ Q.
Examples of finitely invariant locus properties are U, R, P. On the other hand, ∃fin is not
finitely invariant.

A Q-formula is a formula QX.ϕ(X) where ϕ(X) is a formula of WMSO with only one
free variable, namely X. An open Q-formula is a Q-formula where ϕ is open in the following
sense: if a word w together with a set X satisfies ϕ(X), then there is some finite prefix of
w such that changing the word w on positions outside the prefix does not affect the truth
value of ϕ(X).

Quantifier elimination Here we present our main result, which shows how quantifiers
can be denested in the scope of a formula of WMSO. Since the theorem talks about automata
and languages, a quantifier is viewed as an operation on languages, which takes a language

10

over an alphabet A× {0, 1} and returns a language over an alphabet A. In the following,
for a word w over alphabet A and a set of positions X, we write w⊗ X for the word over
alphabet A × {0, 1} that has the labels of w on the first coordinate and the characteristic
function of X on the second coordinate.

THEOREM 10. Let F be a prefix-independent acceptance condition and let Q be a locus
quantifier. If L is an F-regular language over the alphabet A× {0, 1}, then the language

QL = {w ∈ Aω : QX.[w⊗ X ∈ L]}

is a boolean combination of F-regular languages, ω-regular languages, and Q-formulas.
Moreover, if Q is finitely invariant, then the Q-formulas are open.

Here is an important corollary of the above result.

THEOREM 11. Weak MSO extended by both the recurrence quantifier R and the unbound-
ing quantifier U defines the same langauges as boolean combinations of max-automata and
min-automata. If the formula does not use R, then min-automata are not used in the combi-
nation, likewise for U and max-automata.

The above theorem also gives a normal form for weak MSO with the quantifiers R and
U. Take a formula ϕ of the logic, compile it into a boolean combination of automata as in
the above corollary, and then compile each of those automata back into a formula. What we
end up with is a boolean combination of formulas of the form RX.φ(X) or UX.φ(X), where
φ(X) is a formula of weak MSO without R or U. In other words, nesting the quantifiers R

and U does not contribute anything to the expressive power of weak MSO.

4 Ultimately Periodic Quantifier
In this section we present another extension of weak MSO, and use the general framework
to show that its emptiness problem is decidable.

The ultimately periodic quantifier, written P, is used to say that a set of positions is ulti-
mately periodic. Specifically, if ϕ is a formula, and x is a first-order variable free in ϕ, then
Px.ϕ(x) is true in a word if the set of positions x that satisfy ϕ is ultimately periodic (the
variable x gets bound by the quantifier).

We now use the framework from the previous section to present an automaton model
that captures weak MSO extended with the ultimately periodic quantifier. For L ⊆ Aω and
a word a1a2 . . . ∈ Aω, we write

suffixL(a1a2 . . .) = {i ∈N : aiai+1 . . . ∈ L}

We define PSL to be the set of words w ∈ Aω where suffixL(w) is ultimately periodic. Any
language of the form PSL is called an ultimately periodic acceptance condition.

COROLLARY 12. Weak MSO extended with the ultimately periodic quantifier has the same
expressive power as boolean combinations of deterministic automata with Büchi and ulti-
mately periodic acceptance conditions.

PROOF. The nontrivial translation, from logic to automata, follows from Theorem 10.

FSTTCS 2008 11

THEOREM 13. Satisfiability is decidable for weak MSO extended with the ultimately peri-
odic quantifier.

PROOF. By Corollary 12, it suffices to decide emptiness for a boolean combination of de-
terministic automata with Büchi and ultimately periodic acceptance conditions. (The trans-
lations between formulas and automata are effective.) Since the acceptance conditions con-
cerned are closed under homomorphic images, we may assume that the same transducer
f : Aω → Bω is used by all automata. We may also assume that the boolean combination
is in DNF form, and as far as emptiness is concerned, has only one disjunct (which is a
conjunction of, possibly negated, acceptance conditions). Finally, by collapsing the Büchi
languages into a single ω-regular language, we may assume one conjunct is ω-regular, and
all others involve ultimately periodic acceptance conditions.

Summing up: we want to decide if the transducer f can output a word in an inter-
section K ∩ K1 ∩ · · · ∩ Kn, where K is ω-regular and each Ki is either a language PSLi or its
complement, for some ω-regular language Li. It is not difficult to see that the following
language over alphabet {0, 1}n is ω-regular:

M = {X1 ⊗ · · · ⊗ Xn : exists w ∈ f (Aω) ∩ K such that Xi = suffixLi(w) for all i = 1, . . . , n}

(here ⊗ combines characteristic functions of sets into a word over the product alphabet).

The emptiness problem boils down to testing if the set M above contains a word, whose
projection onto coordinates i corresponding to languages PSLi is an ultimately periodic
word, and whose projection onto coordinates i corresponding to complements of languages
PSLi is not ultimately periodic. This way we have reduced our satisfiability problem to the
following combinatorial result, which is solved in the appendix.

THEOREM 14. The following problem is decidable
• Input: An ω-regular language L ⊆ Bω, letter-to-letter homomorphisms πi : Bω → Bω

i
for i = 1, . . . , n, and a set F ⊆ {1, . . . , n}.
• Question: Is there some w ∈ L such that F = {i : πi(w) is ultimately periodic}.

We could go even further, and consider an extension of weak MSO where all the new
quantifiers mentioned in this work are allowed: the bounding quantifier, the recurrence
quantifier, and the ultimately periodic quantifier. As previously, the automaton model
would simply be boolean combinations of the three automata models: min-automata, max-
automata, and automata with ultimately periodic acceptance condition. The emptiness
problem would require solving a variant of Theorem 14 where the language L is not ω-
regular, but recognized by a nondeterministic BS-automaton (since these are strong enough
to capture both max- and min-automata).

5 Conclusions
In this paper we presented several new classes of languages of infinite words. These classes
are robust: they have good closure properties, they admit logical and automaton charac-
terizations, they have decidable emptiness. We hope that the examples from this paper,
together with the max-automata from [2], offer convincing proof that there are interesting

12

generalizations of the concept of ω-regular language. The general theme is to look at de-
terministic automata with conditions that talk about asymptotic behavior, conditions more
subtle than the usual “state q appears infinitely often”.

One direction of future research is investigating the exact relationship between min-
automata and the existing theory of distance automata and formal power series. We hope
that such an investigation would result in an upper bound for the emptiness of min- and
max- automata, hopefully PSPACE.

Finally, we intend to investigate a similar theory for tree languages.

References
[1] P. A. Abdulla, P. Krcál, and W. Yi. R-automata. In CONCUR, pages 67–81, 2008.
[2] M. Bojańczyk. Weak MSO with the unbounding quantifier. submitted.
[3] M. Bojańczyk. A bounding quantifier. In Computer Science Logic, volume 3210 of Lecture

Notes in Computer Science, pages 41–55, 2004.
[4] M. Bojańczyk and T. Colcombet. Omega-regular expressions with bounds. In Logic in

Computer Science, pages 285–296, 2006.
[5] O. Carton and W. Thomas. The monadic theory of morphic infinite words and general-

izations. In Mathematical Foundations of Computer Science, volume 1893 of Lecture Notes
in Computer Science, pages 275–284, 2000.

[6] T. Colcombet and C. Löding. The nesting-depth of disjunctive mu-calculus for tree
languages and the limitedness problem. In Computer Science Logic, volume 5213 of
Lecture Notes in Computer Science, 2008.

[7] C. C. Elgot and M. O. Rabin. Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. Journal of Symbolic Logic, 31:169–181,
1966.

[8] D. Kirsten. Distance desert automata and the star height problem. Theoretical Informatics
and Applications, 39(3):455–511, 2005.

[9] J.-É. Pin. Tropical semirings. In Idempotency, pages 50–69. Cambridge University Press,
1998.

[10] A. Rabinovich. On decidability of monadic logic of order over the naturals extended
by monadic predicates. Inf. Comput., 205(6):870–889, 2007.

[11] A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural numbers
with unary predicates. In CSL, pages 562–574, 2006.

FSTTCS 2008 13

Appendices

A Min-automata
A.1 Eliminating > from min-automata

LEMMA 15. Min-automata with counter values in {0, 1, . . .} recognize the same languages
as min-automata with counter values in {0, 1, . . . ,>}. In other words, an automatonAwith
>-values can be converted into an equivalent automaton A′ without >-values.

PROOF. By storing the information about >-valued counters in the state.
Let Q denote the states of A and C denote its counters. A state of A′ is a pair (q, C>),

where q ∈ Q corresponds to the state ofA and C> ⊆ C shows which counters have value>.
The first component of the state (q, C>) is modified accordingly to the state transformation
function of A. The second component, can be updated basing on the counter update func-
tion of A (as it does not need to know the actual counter values, but only the C> from the
previous step). A′ is equipped with the same counters as A. The counter update function
of A′ differs, however, since we must get rid of the >-assignments.
A′ must ignore all the increments done to a counter c ∈ C>. This is to ensure that the

counter does not converge to ∞ while it represents > (but actually stores some finite value).
This way, by equipping A′ with the same acceptance condition as A, we obtain an

automaton which recognizes the same language.

Remarks: The above translation results in a growth of the state space by a factor exponential
in the number of counters.

In fact, it can be shown that this blowup is inevitable in some cases, so >-valued coun-
ters allow a more succinct description of a min-automaton. On the other hand, for a min-
automaton without >-valued counters, the vector of initial counter values is of no signif-
icance, since a finite change of the initial values does not affect the acceptance of a word.
Thus, we may omit this information in such an automaton, while in an automaton with
>-valued counters, the initial information about which counters are finite and which are
defined might affect the acceptance of a word.

A.2 Equivalence of min-automata with min-automata in matrix form

In this section we will show that each min-automaton can be converted into a min-automaton
in matrix form which recognizes the same language, and vice-versa. Let A be a min-
automaton.

First, let us transform A into an automaton of an intermediate form, which assigns a
counter transition matrix with each state transition. In other words, we convert the update
function, γ : Q× A→ (OpC)∗ into a function γ : Q× A→MCT which results in the same
counter operations. We will call such an automaton a multi-state min-automaton in matrix
form.

The counter operation
c := c + 1

14

is equivalent to applying the matrix Mc:=c+1, defined by:

Mc:=c+1[c, c] = 1
Mc:=c+1[d, d] = 0 for d 6= c
Mc:=c+1[d, e] = > for d, e 6= c

The counter operation
c := min(d, e)

is equivalent to applying the matrix Mc:=min(d,e), such that

Mc:=min(d,e)[d, c] = 0
Mc:=min(d,e)[e, c] = 0
Mc:=min(d,e)[f , f] = 0 for f 6= c
Mc:=min(d,e)[f , g] = > for remaining positions [f , g]

A sequence of operations o1; o2; . . . ; on corresponds to the composition of the matrices
Mo1 ·Mo2 · · ·Mon . To prove the result below, which was stated in the main part of the paper,
it only remains to remove states.

Proposition 6. Every min-automaton can be transformed into an equivalent min-automaton
in matrix form. If the input automaton has n states and m counters, the resulting automaton has
(m + 1)× n counters.

PROOF. LetA be a multi-state min-automaton in matrix form, with states Q and counters
C. Let γ : Q× A→MCT be its counter update function and δ : Q× A→ Q be its state
transition function.

Let us consider an automaton A′ whose counters C′ are the disjoint union of (Q× C)
and C, and whose counter update function γ′ : A→MC′T is defined as follows. For (q1, c1)
and (q2, c2) in Q× C ⊆ C′,

γ′(a)[(q1, c1), (q2, c2)] =
{
> if δ(q1, a) 6= q2

γ(q1, a)[c1, c2] if δ(q1, a) = q2

Let us ignore the counters C ⊆ C′ for the moment.
The interpretation of the above construction is such that after reading a finite word w,

a counter (q, c) of A′ is defined and has value k iff A′ is in state q and its counter c has value
k. In other words, each counter of A has one copy (q, c) corresponding to each state q of A,
and only one of those copies (the one corresponding to the active state of A) is defined at
any moment. To make this description accurate, we need to define the initial counter values
of A′, so that (q, c) is set to > if q is not an initial state of A, otherwise its initial value is the
same as of counter c in A.

In this way, we ensure that the counters ofA′ simulate the states and the counter values
of A. However, we still need to define a corresponding acceptance condition for A′. Note
that, for a counter c of A, its value is swapped among the corresponding counters (q, c) of
A′, so we cannot determine the asymptotic behavior of c by looking at any particular counter
(q, c) of A′. In order to do that, we need an extra counter of A′, which will keep the actual

FSTTCS 2008 15

value of the counter c, which is also stored in one of the counters (q, c) (but we don’t know
which one). That’s what we need the counters C ⊆ C′ for. Each counter c ∈ C ⊆ C′ will be
an output-only counter (so that it does not influence other counters). The update function
function is defined as follows.

γ′(a)[(q1, c1), c2] = γ(q1, a)[c1, c2]

This way, each of the counters c of A′ will store exactly the same value as the same counter
c o A. Therefore, we may simply equip A′ with the acceptance condition of A.

The following proposition describes the conversion in the other way around.

PROPOSITION 16. A min-automaton in matrix form can be converted into an equivalent
min-automaton.

PROOF. Let C be the set of counters of the min-automaton A in matrix form (recall that
such an automaton has no state). A matrix of counter transformations M transforms a
counter c ∈ C in the following way.

c := min
d
{d + M[c, d]}

One problem is that all those counter operations should be performed simultaneously, i.e.
the counter d on the right-hand side represents the “old” counter value, while the counter c
on the left-hand side represents the “new” counter value. To ensure simultaneity, we need
to introduce some auxiliary counters (which temporarily store the copies of the old counter
values). Let us introduce a counter tc,d per each pair of counters c, d ∈ C. To simulate the
matrix operation M, we first set tc,d to be equal to d, afterwards we increase it M[c, d] times.
Finally, we set c to be equal to mind tc,d. This operation can be sequentially simulated by the
operations of the form c := min(d, e).

The obtained automaton is a min-automaton with possibly>-valued counters, and one
state. To get rid of the >-valued counters, apply Lemma 15.

COROLLARY 17. A min-automaton with>-valued counters can be converted into an equiv-
alent min-automaton with >-valued counters, which uses only one state.

PROOF. In course of the translation described above, we obtained a min-automaton with
>-valued counters, which uses only one state.

A.3 Diagrams of min-automata in matrix form

Just as it is convenient to display a nondeterministic finite automaton as a labeled graph,
we can depict min-automata in matrix forms using similar diagrams.

Let A be a min-automaton in matrix form with counters C and counter transformation
function γ : A→MCT .

We represent the automaton A as a graph with vertices C and an edge with label a ∈ A
from vertex c to vertex d if

γ(a)[c, d] < >.

16

We say that this edge is incrementing by γ(a)[c, d]. Usually, it only matters whether it is
incrementing by 0 or a finite nonzero number. Edges incrementing by a nonzero number
will be simply called incrementing edges. For a path in the diagram, we will say that it has N
increments if it contains N incrementing edges.

We will describe the counters with finite initial values as initial counters.
Let u be an input word. The condition that during the run ofA on the word u = a1a2 . . .,

lim inf
i→∞

val(c, a1 . . . ai) < ∞

is equivalent to writing:

There exists a bound N such that for arbitrarily long prefixes w of u, there exists
a path in the diagram of A labeled by w, which starts in an initial counter and
ends in counter c and has N increments.

EXAMPLE 18. The automaton from Example 5 is depicted in the diagram below. The
increasing edge is marked with the symbol inc. We want the input word u to have prefixes

b

a++

bc dz

a a

b

labeling arbitrarily long paths in the diagram, having a bounded number of increments and
ending in d. Such paths must stay in z for a long time and when approaching a short block
ba∗b, move to c and finally to d.

B Complexity
In this appendix, we prove

Theorem 2. Emptiness is PSPACE-hard for min-automata.

The theorem is proved by reducing the universality problem for nondeterministic finite
automata to the emptiness problem.
PROOF. Let A be a nondeterministic automaton over the alphabet A. We will construct a
deterministic min-automaton A′ over an extended alphabet A ∪ {$} such that universality
of A (over finite words) is equivalent to universality of A′ (over infinite words).

We will constructA′ by constructing its diagram as of a min-automaton in matrix form.
This automaton, however, will not use >-valued counters, so conversion of A′ to a min-
automaton can be done in linear time.

Let us consider the diagram of the automaton A. The diagram of A′ will have the
same vertices as the diagram of A, i.e. A′ has counters corresponding to the states of A.

FSTTCS 2008 17

We will draw an edge from a c to d with label a and with no increment if there is an edge
with label a between the corresponding states in A. Otherwise, we draw an edge with an
increment. Thus, the diagram contains all possible edges, but some incrementing and some
not. Now we will draw the edges corresponding to the special letter $. We draw such an
edge with no increment between any counter corresponding to a final state and any counter
corresponding to an initial state.

We also add another counter, not mentioned before, which counts the number of occur-
rences of the letter $. All counters are initiated to 0.

The acceptance condition requires either of the counters not to converge to ∞.

LEMMA 19. The nondeterministic automaton A is universal if and only if the deterministic
min-automaton in matrix form A′ is universal.

PROOF. Let us assume that A is universal. We want to show that A′ is universal. Let
u ∈ (A ∪ {$})ω be an infinite input word. If u has finitely many $’s, then u is accepted by
A′, since the counter which counts $’s does not converge to ∞. So let us assume that u has
infinitely many $’s, so that it is of the form

u = w1$w2$w3$

For each n, since A accepts the word wn, there is a path πn labeled by wn in the diagram of
A′ which contains no increments, starts in a counter corresponding to an initial state, and
ends in a counter corresponding to a final state. We may connect the paths π1, π2, . . . into
one infinite path labeled by u and with no increments, thanks to the edges which join the
“final” counters with the “initial” counters. This infinite path visits some counter infinitely
often, proving that this counter does not converge to ∞. Thus, u is accepted by A′.

Now let us assume that the automaton A′ is universal. Let w ∈ A∗ be a finite input
word. Consider the infinite word u = www$ This word u is accepted by A′. Since
u contains infinitely many $’s, this means that some counter c corresponding to a state of
A does not converge to ∞. Therefore, there exists a bound N and arbitrarily long paths π

which end in counter c, are labeled by a prefix of u and have less than N increments. Let us
consider such a path of length at least N × |w + 2|. This path must contain some sub-path
labeled by w, which contains no increments. Therefore, that path delineates an accepting
run of A over the word w.

By negating the acceptance condition of the automaton constructed in the lemma, we
obtain a reduction of the universality problem for nondeterministic automata to the empti-
ness problem for min-automata in matrix form. As noted before, since the constructed au-
tomaton does not use >-valued counters, the described reduction is done in linear-time.

C Nondeterministic min-automata
In the definition of a deterministic min-automaton, by relaxing the requirement on the tran-
sition δ to be a function and allowing it to be a relation, we obtain the notion of a nonde-
terministic min-automaton. The acceptance condition then may require the existence of a run
which satisfies the acceptance condition.

18

Let us consider the language K mentioned in Section 1, which was defined as follows.

K = {an1 b an2 b an3 b . . . : lim sup ni = ∞}.

The language K is recognized by a nondeterministic min-automaton. The nondetermin-
istic min-automaton does not even use the min operation. The automaton has two states, p
and q, and three counters, c, d and z.

The transitions of the automaton are described as follows.
In each state, the automaton may nondeterministically choose to move either to state p

or to state q. In any state, the letter a increases the counter c. In state p, the letter b resets the
counter c by copying z to c and in state q, the letter b first copies the counter c to d and then
resets it. The acceptance condition requires that counter d converges to infinity. It is easy to
see that this automaton recognizes the language K.

The language K is not recognized by any deterministic min-automaton. It is more diffi-
cult, as usual, to show the inexpressivity result. The rest of Section C is devoted to this. Let
us assume, by contradiction, that some deterministic min-automaton in matrix form with
counters C recognizes K.

Let α1 be the surjection of the tropical semiring obtained by glueing together all num-
bers 1, 2, 3, . . . (this relation is a semiring congruence) and let T1 denote the quotient semir-
ing, and 0, 1,> denote its elements (note that 1 + 1 = 1 in T1). This surjection gives rise to
a surjection α1 from the semiring MCT of n × n matrices over the tropical semiring onto
the finite semiring MCT1 of n× n matrices over T1. Let ω be the idempotent power for the
multiplicative semigroup of MCT1.

Let γ : A→MCT denote the counter transition function, and let us consider its exten-
sion γ : A∗ →MCT to a semigroup homomorphism. This function is defined by its values
on the generators a and b.

By defining

γ′(a) = γ(aω)
γ′(b) = γ

(
(aωbωaω)ω)

)
we obtain another automaton A′ which recognizes the same language K. This is because
the substitution φ defined by a 7→ aω, b 7→ (aωbωaω)ω preserves the language K, i.e. w ∈ L
iff φ(w) ∈ K.

Moreover, the two projections of the generator matrices, â = α1(γ′(a)) and b̂ = α1(γ′(b))
satisfy the equations:

â = â2

b̂ = b̂2 = âb̂ = b̂â. (∗)

The above equations can be viewed in terms of paths in the diagram of the automaton
A′. For example, equation (∗) implies that if there exists a path from counter c to counter d
with at least one edge labeled b, then there exists a single edge with label b from counter c to

FSTTCS 2008 19

counter whose d. Moreover, if the original path made no increments, then the edge makes
no increment either.

We will show that in this case, the language recognized by A′ cannot distinguish be-
tween any two words with infinitely many b’s. This is clearly a contradiction, since the word
bω does not belong to K, while the word a b a2b a3b . . . does.

LEMMA 20. Let A be an min-automaton over the alphabet a, b, with transition function γ

defined by matrices whose projections â and b̂ under α1 satisfy the equation (∗). Then A
either both accepts, or rejects any two words u, v with infinitely many b’s.

PROOF. Let u and v be two words having infinitely many b’s. We will prove that if the
counter c does not converge to ∞ while reading the word u, then it does not converge to ∞
while reading the word v either. From symmetry, we will deduce that the set of counters
which converge to ∞ is the same for either word. Therefore, either both words are accepted,
or both are rejected, ending the proof of the lemma.

Assuming that counter c does not converge to ∞, there exists a bound N and a sequence
of paths π1, π2 . . . in the diagram of A, labeled with arbitrarily long prefixes of u, ending in
counter c and having a at most N increments. Without loss of generality, we may assume
that this sequence of paths converges to an infinite path π∞ labeled by u (a sequence of finite
words converges to an infinite word, if any prefix of the infinite word is shared with almost
all of the finite words). This infinite path has at most N increments. Although this path not
necessarily visits the counter c, arbitrarily long prefixes of π∞ may be terminated in order
to obtain a path visiting the counter c and having in total no more than N increments.

Since the path π∞ is infinite, it necessarily visits some counter d infinitely many times.
Therefore, there exists some loop in the diagram ofA from d to d during which no increment
is performed. Moreover, since there are infinitely many b’s in the input word, the loop may
be chosen so that at least one of its edges has label b. From equation (∗) we deduce that in
this case, for any finite word containing a letter b, there exists a loop from d to d labeled by
that word an having no increments.

Moreover, the equation (∗) tells us that if there is a path from d to c labeled by any word
over the alphabet {a, b}, then there is an edge from d to c with label b.

Putting those two observations together, we conclude that since the word v contains
infinitely many b’s, for arbitrarily large i we can construct a path which loops in d with-
out incrementing the counter before reading the i-th letter b and finishes in c immediately
afterwards.

This sequence of paths proves that counter c does not converge to ∞ whenA′ reads the
word v. As noted before, this ends the proof of the lemma.

Therefore, we have shown by contradiction, that no min-automaton can recognize the
language K.

COROLLARY 21. The class of languages recognized by deterministic min-automata is not
closed under the second order monadic quantifier ∃.

D Proof of Theorem 10
An important ingredient of the proof is the construction described below.

20

The tape construction Let B be a finite automaton (or transducer) with input alphabet A.
A partial run in an infinite word w is a run that begins in any position of the word

(not necessarily the first position) and in any state (not necessarily the initial one). In other
words, this is a word in ⊥∗δω ∪ ⊥ω, where δ is the set of transitions of B, that is consistent
with the word w on those positions where it is defined (i.e. where it is not ⊥). Since the au-
tomaton is deterministic, a partial run is uniquely specified by giving the first configuration
where it is defined, this is called the seed configuration. (There is also the undefined partial
run ⊥ω, which has no seed configuration.) Here, a configuration is a pair (q, x), where q is
a state and x is a word position.

We say that two partial runs converge if they agree from some position on. Equivalently,
they converge if they share some configuration, or both are undefined. From a partial run,
we can deduce the output of B. Since the acceptance condition is prefix independent, two
runs that converge are either both accepting or rejecting.

We say a set of partial runs spans a word w if every partial run over w converges with
some run from the set. Usually, we will be interested in finite sets of spanning runs.

We now describe how the spanning partial runs will be encoded in the output of a
transducer. When speaking of spanning partial runs, we mean spanning partial runs of the
automaton B. A single partial run can be encoded as an infinite word over the alphabet
δ×{0, 1}. The idea is that {0, 1} is used as a marker, with 0 meaning “ignore the prefix until
this position”, and 1 meaning “do not ignore”. Formally, an infinite word

(t1, a1)(t2, a2), . . . ∈ (δ× {0, 1})ω

is interpreted as the partial run which on position i has ⊥ if aj = 0 for some j ≥ i, otherwise
it has transition ti. Note that if the word above has infinitely many positions j with aj = 0,
then the partial run is nowhere defined, i.e. it is ⊥∞. If we want to encode n partial runs, we
use n parallel word sequences, encoded as a single sequence over the product alphabet

(δ× {0, 1})n .

The following lemma was shown in [2]:

LEMMA 22. Let n = |δ|. There is a transducer

f : Aω →
(
(δ× {0, 1})n)ω

such that for any word w, the output f (w) encodes n spanning partial runs.

We are now ready to prove:
Theorem 10. Let F be a prefix-independent acceptance condition and let Q be a locus quantifier. If
L is an F-regular language over the alphabet A× {0, 1}, then the language

QL = {w ∈ Aω : QX.[w⊗ X ∈ L]}

is a boolean combination of F-regular languages, ω-regular languages, and Q-formulas. Moreover,
if Q is finitely invariant, then the Q-formulas are open.

FSTTCS 2008 21

PROOF. Fix a deterministic F-automaton B that recognizes L, with state space Q. To
simplify the proof, we assume that the transducer B simply outputs its states, and hence its
acceptance condition is a subset F ⊆ Qω. The proof also works in the general case.

Let B0 be a transducer obtained from B by changing the input alphabet from A×{0, 1}
to A. The automaton B0, when reading a letter a ∈ A, behaves the same way as B does
when reading a letter (a, 0) ∈ A× {0, 1}. Let us apply Lemma 22 to the automaton B0, thus
producing a transducer

f0 : Aω →
(
(δ× {0, 1})n)ω

Fix a word w ∈ Aω. Let us run the transducer f0 on this word. Let π1, . . . , πn be
spanning runs of the automaton B0 that are output by this transducer f . By construction of
the automaton B0, any run of B on a word w⊗X, with X finite, will converge with some run
from πi ∈ {π1, . . . , πn}. Since the acceptance condition of B is prefix-indepndent, the word
w ⊗ X is accepted by B if and only if the partial run πi satisfies the acceptance condition
of B.

It is not difficult to show that the word w ∈ Aω belongs to the language of the theorem
if and only if there is some subset I ⊆ {1, . . . , n} such that

(A) The following property holds for i ∈ I, and does not hold for i /∈ I:
The run πi is defined (i.e. its encoding does not contain infinitely many 0’s)
and satisfies the accepting condition of B.

(B) Q contains the family of sets X that satisfy
(*) The run of B on w⊗ X converges with some πi with i ∈ I.

Property (A) is a finite boolean combination of F-regular and ω-regular conditions. Property
(B) a Q-formula. Choosing the set I is part of the boolean combination.

This completes the first part of the theorem. We now proceed to the “Moreover...”
part, where an open formula is required. We will show that the Q-formula can be made
open, assuming that the Q is closed under finite changes. Suppose that (q, x) ∈ Q×N is
a configuration. For i ∈ {1, . . . , n}, we say that (q, x) is the i-th tape if state q is used by
the i-th transition on position x in the output f0(w). Consider now the following variant of
property (B), which is an open Q-formula:
(OB) Q contains the family of sets X that satisfy

(O*) For some finite prefix u of w, with X ⊆ {1, . . . , |u|}, and some q ∈ Q,
the state of B after reading u⊗ X is q, and the configuration (q, |u|) is on
the i-th tape, with i ∈ I.

We claim that if condition (A) is satisfied, then (B) and (OB) are equivalent. In particular,
if we replace (B) by (OB) in the boolean combination, we do not change the langauge. In
order to prove equivalence of (B) and (OB), we will show that the loci defined by (*) and
(O*) differ by a finite number of sets. Since any set satisfying (*) satisfies (O*), it suffices to
show that there are finitely many sets that satisfy (O*) but not (*). The reason is that the runs
πi, for i ∈ I, are all defined after some point x ∈ N. In particular, the only sets that satisfy
(O*) and not (*) must contained in {1, . . . , x}, and there are finitely many such sets.

22

E Proof of Theorem 11
In this appendix we prove
Theorem 11. Weak MSO extended by both the recurrence quantifier R and the unbounding
quantifier U defines the same langauges as boolean combinations of max-automata and min-automata.
If the formula does not use R, then min-automata are not used in the combination, likewise for U and
max-automata.

From logic to automata LEMMA 23. Any open U-formula can be recognized by a max-
automaton. Any open R-formula can be recognized by a min-automaton.

PROOF. [rough sketch] We only look at the case for R, since the case of U was done in [2].
An open formula RX.ϕ(X) can be seen as a regular language L of finite words over

alphabet A× {0, 1}. The formula holds in a word w ∈ Aω if there is some finite size n and
infinitely many sets X of size n such that u⊗ X ∈ L for some finite prefix u.

The key property is the following: let A be a deterministic automaton over alphabet
A×{0, 1}with states Q. There is a min-automaton, with counters Q, such that after reading
a word w ∈ A∗, the counter q contains the smallest size of a set X such that w⊗ X takes A
to state q.

We do not spell out all the details of this construction, they are similar to the one for U

in [2].

Thanks to the above lemma, any boolean combination of Q-formulas, for Q ∈ U, R, and
languages recognized by min- and max-automata is actually a boolean combination of min-
and max-automata. We can now apply Theorem 10 to prove, by induction on formula size,
that any formula of weak MSO with U and R is equivalent to a boolean combination of min-
and max-automata. In the step for weak existential quantification we do not have finite
invariance (this does not hold for the weak existential quantifier), but we do have finite
invariance in the step for U and R.

From automata to logic The translation from a max-automaton to a U-formula was de-
cribed in the paper on max-automata. The translation from a min-automaton to a R-formula
is very similar. Let A be a min-automaton in matrix form. The acceptance condition of A is
a boolean combination of formulas of the form

lim inf
i→∞

val(c, a1 · · · ai) = ∞.

For a given infinite input word u = a1a2 . . ., the run of A on the word u satisfies the
negation of the above formula if and only if (see Appendix A.3) the following formula αc is
holds in u:

There exists a bound N such that for arbitrarily long prefixes w of u, there exists
a path in the diagram of A labeled by w, which starts in an initial counter and
ends in counter c and has N increments.

FSTTCS 2008 23

Since the logic is closed under boolean combinations, we only need to take care of the
case when the acceptance condition of A is the single atomic formula αc.

Let the counters of A be C = {c1, c2, . . . , cn}. We will need an auxiliary formula
φ(X, X1, . . . , Xn) with n + 1 free variables ranging over finite sets. The formula φ(X, X1, . . . , Xn)
verifies that the sets X1, . . . , Xn form a partition of some finite prefix of the input word,
which we interpret as a path in the diagram of A – if position i is in set Xk the path visits
counter ck in step i – and then checks that this run is a valid path in the diagram ofA, having
increments precisely at the positions belonging to X, and that the path begins in an initial
counter and ends in state c. The formula φ can be defined using first order quantification.

Then, the formula αc is equivalent to

RX. ∃finX1 . . . ∃finXn. φ(X, X1, . . . , Xn).

Therefore, A accepts the word u if and only if it satisfies the above formula of weak MSO
with the recurrence quantifier. Note that the resulting formula is of a very specific form.

F Ultimately Periodic Quantifier

In this part of the appendix, we prove

Theorem 14. The following problem is decidable
• Input: An ω-regular language L ⊆ Bω, letter-to-letter homomorphisms πi : Bω → Bω

i for
i = 1, . . . , n, and a set F ⊆ {1, . . . , n}.

• Question: Is there some w ∈ L such that F = {i : πi(w) is ultimately periodic}.

We assume that the language L is given by a nondeterministic Büchi automaton A.
A component in the automaton is a maximal set of mutually reachable states.

LEMMA 24. Without loss of generality we may assume that all states in the automaton are
in a single component, and that F = {1}.

PROOF. For a Büchi automaton A, a component automaton is simply the automaton ob-
tained from A by picking some component, and removing all states and transitions that do
not use this component. The initial state is chosen inside the component, in any way. Since
the condition to be decided in Theorem 14 is ultimately periodic, it holds for an automaton
A iff it holds for one of its (finitely many) component automata.

To ensure F = {1} we can combine all the projections πi : Bω → Bω
i for i ∈ F into a

single homomorphism π : B → Πi∈FBω
i . (This construction does not work correctly for the

coordinates i 6∈ F, so we need many homomorphisms for the indexes that are not ultimately
periodic.)

Proposition 14 follows from two lemmas. The first, Lemma 25, gives equivalent de-
scriptions of the property that we want to decide in Proposition 14. The second, Lemma 26,
says that one of these equivalent descriptions is decidable. Both lemmas use the assump-
tions on automaton A from Lemma 24.

Before we state Lemma 14, we need two more definitions.

24

The period of a connected component P is the largest common multiple of the lengths of
loops in P. A prime component is a component with period 1. In a prime component there is
a threshold k ∈N such that any two states can be connected by paths of lengths k, k + 1,

For u ∈ B∗1 we define an automaton Au. The states and accepting states are the same as
in A. The difference is in the input alphabet, which is

{v ∈ B|u| : π1(v) = u}

and in the transitions, which are triples (p, v, q) such that in the automaton B there is a run
from p to q that reads the word v. Note that even though A is connected, the automaton Au
might not be connected.

LEMMA 25. The following three conditions are equivalent
1. There is some w ∈ L such that π1(w) is ultimately periodic, but not π2(w), . . . , πn(w).
2. For some u ∈ B∗1 , in the automaton Au there exists a prime connected component

P ⊆ Q, such that for each i = 2, . . . , n there is a pair of transitions

(pi,1, ui,1, qi,1), (pi,2, ui,2, qi,2) such that πi(u1) 6= πi(u2) and pi,1, qi,1, pi,2, qi,2 ∈ P

3. There is a state p and words u1, u2 ∈ B∗ of same length that label a loop in p such that

π1(u1) = π1(u2) and πi(u1) 6= πi(u2) for i = 2, . . . , n.

PROOF.

Implication from 1 to 2. Suppose that w ∈ Bω is as in 1. From the assumption that π1(w)
is periodic, let v ∈ B∗1 be such that π1(w) = uω. Let us decompose w as w1w2 · · · where
w1, w2, . . . are all words in B|u|. In the accepting run ofA over w, let qi be the state reached af-
ter reading the prefix w1 · · ·wi. It is not difficult to see that for each i, the triple (qi, wi+1, qi+1)
is a transition in Au. Without loss of generality we may assume that the length of u is di-
visible by all periods of components in A, which guarantees that all components in Av are
prime. Let P be the connected component of Au that contains all states from q0, q1, . . . that
appear infinitely often. For i = 2, . . . , n the two transitions required by 2 are obtained from
the fact that πi(w) is not ultimately periodic, and hence there are at least two different words
that appear infinitely often in the sequence πi(w1), πi(w2),

Implication from 2 to 3. Let u ∈ B∗1 and P ⊆ Q be as in condition 2. Let p be any state in
P. Since P is prime, for any states q1, q2 ∈ P there are two words u1, u2 ∈ (B|u|)∗ of the same
length that label paths, in the automatonAu, from q1 to p and q2 to p, respectively. Likewise
for paths from p to q1, q2. Using this observation, we can use the property in condition 2 to
show that for each 2 = 1, . . . , n there is a pair of words vi,1, vi,2 ∈ (B|u|)∗ of same length such
that: a) both vi,1, vi,2 label loops in state p in the automaton Au; and b) πi(vi,1) 6= πi(vi,2).
The words u1, u2 required by condition 3 are obtained by concatenating these words:

u1 = v1,1 · · · vn,1 u2 = v1,2 · · · vn,2

FSTTCS 2008 25

Implication from 3 to 1. Let u1, u2 be words as in 3. Without loss of generality we assume
that that both the loops in p that label u1, u2 involve an accepting state. Otherwise, we
concatenate to both u1, u2 any word u that labels a loop in p which passes an accepting
state. Such a word u must exist by assumption on the automaton being connected. Let u0

be a word which labels a path from the initial state to state p. Our assumption guarantees
that any word w ∈ u0(u1 + u2)ω is accepted by the automaton. By assumption 3, for any
two words w1 6= w2 ∈ u0(u1 + u2)ω, we have

π1(w1) = π1(w2) = π1(u0(u1)ω) and πi(w) 6= πi(w′) for i = 2, . . . , n.

By the first part, the projections under π1 of all words in u0(u1 + u2)ω are ultimately pe-
riodic. By the second part, the projections under π2, . . . , πn of all words in u0(u1 + u2)ω

are distinct. Since there are countably many ultimately periodic words, the uncountable set
u0(u1 + u2)ω must contain a word such that all its projections π2, . . . , πn are not ultimately
periodic.

LEMMA 26. One can decide if condition 3 of Lemma 25 holds.

PROOF. Standard automata techniques.

