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Abstract—First-order definable structures with atoms are infi-
nite, but exhibit enough symmetry to be effectively manipulated.
We study Constraint Satisfaction Problems (CSPs) where both
the instance and the template are definable structures with atoms.
As an initial step, we consider locally finite templates, which
contain potentially infinitely many finite relations. We argue that
such templates occur naturally in Descriptive Complexity Theory.

We study CSPs over such templates for both finite and infinite,
definable instances. In the latter case even decidability is not
obvious, and to prove it we apply results from topological
dynamics. For finite instances, we show that some central results
from the classical algebraic theory of CSPs still hold: the
complexity is determined by polymorphisms of the template,
and the existence of certain polymorphisms, such as majority or
Maltsev polymorphisms, guarantees the correctness of classical
algorithms for solving finite CSP instances.

Index Terms—Sets with atoms; Constraint Satisfaction Prob-
lems

Once and for all, fix a countably infinite set A =
{1, 2, 3, . . .}, whose elements we call atoms.

I. INTRODUCTION

Example 1. Here is an easy puzzle: consider an (infinite)
graph G with ordered pairs of distinct atoms as vertices (here
we denote such a pair simply by ab, for a 6= b ∈ A), and with
an undirected edge ab—bc whenever a and c are distinct. Is
this graph 3-colorable?

The answer is negative, as G contains the subgraph:
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which, as can be checked by hand, is not 3-colorable. We
do not know whether this is the smallest non-3-colorable
subgraph of G, but we could not find a smaller one, and it is
rather interesting to see how big a graph we needed to check.

This motivates a harder puzzle: consider graphs with n-
tuples of distinct atoms as vertices, and edges defined by
quantifier-free (or even first order) formulas with equality, and
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with 2n variables that range over atoms; for G above, n = 2
and the set of edges is:{
{ab, dc} | a, b, c, d ∈ A, (b = d)∧(a 6= b)∧(c 6= d)∧(a 6= c)

}
.

Now the question is whether the 3-colorability of a graph
represented by a number n and a formula is decidable at all?
It is a standard exercise in logical compactness that a graph
is 3-colorable iff all its finite subgraphs are, but it may not be
clear whether there is a computable bound on the size of finite
subgraphs that need to be checked to ensure the colorability
of the entire graph.

Example 2. Systems of linear equations over the two-element
field Z2 can be augmented with atoms just as graphs can.
Consider n-tuples of distinct atoms as variable names, and let
a system of equations be defined by a formula similarly to
Example 1, for example (with n = 2):{
ab+ bc+ ca = 0 | a, b, c ∈ A, (a 6= b)∧ (b 6= c)∧ (a 6= c)

}
.

This system has a trivial solution where all variables have
value 0. To disallow that solution one may e.g. extend the
system by one more equation:

12 + 21 = 1.

Does the extended system have a solution? It turns out that it
does not, but a finite subsystem with no solutions again turns
out curiously bulky. Here is the smallest one that we have
managed to find:

12 + 21 = 1
12 + 23 + 31 = 0

21 + 13 + 32 = 0
23 + 34 + 42 = 0

31 + 15 + 53 = 0
13 + 34 + 41 = 0

32 + 25 + 53 = 0
42 + 25 + 54 = 0

15 + 54 + 41 = 0
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 1

Again, a question appears whether the solvability of equation
systems given by formulas over atoms is decidable, and if so,
what its complexity is.

The above are examples of so-called Constraint Satisfac-
tion Problems (CSPs). An instance I of a CSP is a set
of variables together with a set of constraints of the form



(
(x1, . . . , xn), R

)
, where the xi are variables and R is an n-

ary relation belonging to a fixed family of relations R over a
domain T ; the pair T = (T,R) is called a template for I.

For example, 3-colorability is a CSP for a template with
three elements (colors) equipped with a single binary inequal-
ity relation 6=. To see a graph as an instance, one considers
its vertices as variables, and adds a constraint

(
(x, y), 6=

)
whenever x and y are adjacent. An equation system E over
Z2, assuming that every equation is of the form x+y+z = 0
or x+ y = 1, can be seen as an instance over a template with
two elements 0 and 1, equipped with two relations:

Z = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},
S = {(0, 1), (1, 0)}.

To construct an instance, one picks constraints:(
(x, y, z), Z

)
for each x+ y + z = 0 in E,(

(x, y), S
)

for each x+ y = 1 in E.

A solution of an instance is an assignment f which maps ev-
ery variable to a template element, so that for every constraint(
(x1, . . . , xn), R

)
, the tuple of values

(
f(x1, ), . . . , f(xn)

)
belongs to the relation R. It is useful to view a template
T = (T,R) as a relational structure with universe1 T , over
the signature R, with the tautological interpretation mapping.
A CSP instance I over the template T can then be viewed as a
relational structure, whose universe consists of its variables I ,
and the interpretation of a relation R ∈ R of arity n is the set
of those tuples x̄ ∈ In for which (x̄, R) is a constraint. Then
solutions of I correspond to homomorphisms of relational
structures from I to T.

The classical theory of CSPs tries to classify the com-
putational complexity of the following decision problem,
parametrized by a template T, with finite instances.

Problem: CSP(T)
Input: A finite instance I over T
Decide: Does I have a solution?

The algebraic approach to this end is particularly successful.
It is based on the observation that the complexity of CSP(T)
entirely depends on the algebra of polymorphisms (a multi-
variate generalization of the notion of an endomorphism) of
the template T [1]. For example, the fact that finite systems
of equations over Z2 can be solved in polynomial time can
be inferred from the fact that the relevant template has a so-
called Maltsev polymorphism [2], and the NP-completeness of
graph 3-coloring follows from the fact that the corresponding
template has no so-called cyclic polymorphisms [3]–[5].

Our Examples 1 and 2 do not fit the mainstream develop-
ment of CSP theory, since our instances are infinite. They are,
however, definable via first order expressions, in a sense made
precise in Section II. The aim of this paper is to formulate the
rudiments of CSP theory for definable structures. We define
and study the complexity of the following decision problem.

1In this paper, we adapt the convention that the universe of a relational
structure A is denoted with the corresponding italic letter A.

Problem: CSP-Inf(T)
Input: An expression defining an instance I over T
Decide: Does I have a solution?

We show that, for any fixed finite template T, this problem is
decidable, and specify tight complexity bounds. In particular,
the following result is a consequence of the results proved in
Section III.

Theorem 3. Let T be a finite template such that CSP(T) is
complete for a complexity class C under logarithmic space
reductions. Then CSP-Inf(T) is decidable and complete for the
complexity class exp(C) under logarithmic space reductions.

The general definition of the class exp(C) is given
in Section III-B; here we just mention that exp(L) =
PSPACE, exp(P) = EXP, exp(NP) = NEXP, etc.

Interestingly, our key technical tool for proving the upper
bound comes from topological dynamics, in the following
theorem due to Pestov:

Theorem 4 ( [6]). Every continuous action of the topological
group Aut(Q,≤) on a compact space has a fixpoint.

This theorem is strongly related with Ramsey’s theorem
(see [7] for a generalization of this theorem, linking it to
Ramsey theory). In fact, the upper bound in Theorem 3 could
be proved directly with the use of Ramsey’s theorem.

In Section IV, we reverse the situation and consider finite
instances over infinite templates. We allow the templates to
have an infinite set of relations, but we assume them to be
locally finite, i.e., every relation is finite. Examples of such
CSPs appear in various contexts:

Example 5. Consider the following graph coloring problem.
Fix a positive integer k. Let G = (V,E) be a finite graph,
together with a labeling l : V →

(A
k

)
, where elements of A

are interpreted as colors.
The problem is to decide whether one can find a coloring

c : V → A such that c(v) ∈ l(v) for every v ∈ V and
c(v) 6= c(w) whenever v and w are adjacent in G.

This problem can be understood as a CSP over a (definable)
template whose domain is A, with a relation

RC,D = C ×D −∆

for every pair C,D ∈
(A
k

)
, where ∆ ⊆ A2 is the binary

diagonal relation. The instance corresponding to a graph has
V as the set of variables, and a constraint

(
(v, w), Rl(v),l(w)

)
for each pair of adjacent vertices v, w.

Note that while every finite instance over an infinite, lo-
cally finite template is trivially an instance over its finite
subtemplate, there may be no single finite subtemplate that
immediately fits all instances of interest. Since templates in
CSP theory are means of grouping large classes of similar
instances, it may sometimes be useful to consider infinite,
locally finite templates.

Situations where the set of admissible values for variables
is not fixed for all instances sometimes arise naturally. For



example, consider the cycle cover problem: given a directed
graph G, decide whether it contains a set of directed cycles
so that every vertex belongs to exactly one cycle. This is
equivalent to checking whether one can choose an outgoing
edge from every vertex so that no two chosen edges have the
same target. In other words, one wants to color every vertex
with one of its out-neighbours so that no two vertices get the
same color. Assuming a bound k on the out-degree of the
vertices of G, and labeling vertices of G with atoms in an
arbitrary way, this can be seen as a CSP instance over the
template from Example 5. Here graph vertices play the role
of colors, therefore the set of possible colors depends on the
instance.

Another example is that of Cai-Fürer-Immerman (CFI)
graphs [8] considered in Descriptive Complexity Theory:

Example 6. Consider a template with atoms as elements
and, for every triple of pairs of distinct atoms β =
((a, a′), (b, b′), (c, c′)), a ternary relation:

Rβ =
{

(a, b, c), (a, b′, c′), (a′, b, c′), (a′, b′, c)
}
.

To construct an interesting instance over this template, start
with a 3-regular graph G and label each edge e with a set
{a, a′} ⊆ A of two distinct atoms, so that labels of distinct
edges do not intersect. Let the edges of G be the variables of
the instance. For each vertex v adjacent to some edges e1, e2

and e3 add exactly one constraint(
(e1, e2, e3), Rβ

)
,

where β =
(
(a, a′), (b, b′), (c, c′)

)
arises from some ordering

of the unordered labels {a, a′}, {b, b′}, {c, c′} of the edges
e1, e2, e3. Note that even though there are eight possible
orderings, there are only two possible resulting relations Rβ .

Graphically, this can be seen as replacing every edge with
two nodes, and every vertex with one of two little hypergraphs:
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Such an instance has a solution if and only if one can
choose one of the two nodes for each edge of G so that for
each vertex v of G, the three nodes chosen for the adjacent
edges are connected by a hyperedge in the hypergraph for v.
Checking whether a given instance has a solution is called a
CFI query, and is the core of the Cai-Fürer-Immerman theorem
from Descriptive Complexity (see Section V for more on this
topic).

In Section IV we lift some central results from classical CSP
theory to the setting of locally finite templates. First, we prove
that the cornerstone result of the algebraic approach to CSP
still holds: the complexity of the CSP problem over a template
depends only on the set of polymorphisms over that template.
We also show that the important notion of a core template has
the expected properties, and that a definable template can be
effectively converted to its core.

Furthermore, we show that a locally finite template admits
a family of polymorphisms defined by a specified set of
linear identities iff each of its finite subtemplates admit such
polymorphisms. This proves a series of results analogous to
finite CSP theory: for example, if a locally finite template
T has a majority polymorphism or a Maltsev polymorphism
then specific polynomial time algorithms correctly solve finite
instances over T. Moreover, by the results of Section III, we
can effectively decide whether a given definable, locally finite
template T admits polymorphisms which satisfy a specified
set of linear identities. This allows us to prove statements
such as the one below, which follows from Corollary 35 and
Proposition 31 in Section IV, and characterizes those templates
for which the CSP problem can be solved by a certain well-
known bounded width algorithm.

Theorem 7. Let T be a definable, locally finite template. It is
decidable whether T has bounded width.

Coming back to Example 5, one may notice that not only
every particular instance there is over a finite template: in
fact, the entire graph coloring problem can be presented as a
CSP over a single finite template. To do this, impose a total
order on A; this defines a bijection from each l(v) to the set
[k] = {1, 2, . . . , k}. One can then consider a template of k
elements, with a relation

Ri,j = [k]× [k]− {(i, j)}

for each i, j ∈ [k], and translate a graph to be colored to an
instance over that finite template. In Section IV-C, we show
how this can be generalized: for any definable, locally finite
template T there is a finite template T̂, and a polynomial
time reduction of instances over T to equivalent instances
over T̂. This shows that CSP(T) is not computationally harder
then CSP(T̂). Moreover, if T̂ admits polymorphisms satisfying
some linear identities, then so does T. By the algebraic results
proved earlier in Section IV, and by results very recently
announced by Barto and Pinsker [9], this says that CSP(T̂)
is not harder than CSP(T).

Finally, in Section V we show how locally finite templates
streamline the (previously unpleasantly technical) proof of the
main result in [10], a characterization of those linearly patched
structures over which the least fixpoint logic LFP captures
polynomial time computations.

Related work

CSP for certain infinite instances were studied in [11]. All
instances there are periodic, i.e., invariant under an action of
a subgroup of finite index of the automorphism group of the
total order of integers. This is similar to our approach, as our
definable instances are also invariant under certain groups,
in particular the automorphism group of rational numbers.
However, the choice of a group makes a big difference: thanks
to model-theoretic properties of rationals we are able to prove
decidability results that do not hold in the setting of [11].
Indeed, one of the main points of that paper was to show



that for periodic instances, 3-colorability is undecidable. Proof
techniques used there are also quite different from ours.

The line of research started in [11] was continued in [12],
and certain infinite instances were studied also in [13]. In [12],
[13] it is argued that infinite periodic instances naturally
arise when studying large – perhaps of unknown size or
infinite – constraint networks whose constraints possess a high
degree of regularity or symmetry. We believe that relaxing the
periodicity assumption might be natural in many cases, and,
as we show, leads to a drastic improvement in the complexity
(in the case of 3-colorability, from undecidable by [11] to EXP
by Theorem 3). It would be interesting to look for a common
generalisation of these developments and ours.

More attention has been devoted to the study of finite
instances over infinite templates. In contrast to our work, the
templates there usually consist of only finitely many infinite
relations. In the most well-behaved case of ω-categorical
templates, central results of finite CSP still hold [14]–[16].
In particular, the complexity of templates depend only on
their polymorphisms, which gives complexity classifications
for large classes of ω-categorical templates [17]–[19]. Connec-
tions to Ramsey theory were studied in [20]. Our section IV
shows that some of these results hold for locally finite tem-
plates as well.

Sets with atoms are also known in Computer Science as
nominal sets [21]. In fact, our notion of definable set is almost
the same as the notion of orbit-finite set considered there: every
definable set is orbit-finite, and every orbit-finite nominal set
is isomorphic to a definable one [22]. We choose to define
our sets by first order formulas, but all results we show here
could be reformulated in terms of group actions, orbit-finite
sets and finite supports, studied in [21]. In fact, we used that
terminology in most previous work on computation theory
over sets with atoms [10], [23], [24], of which the present
paper is a natural continuation.

II. SETS WITH ATOMS

A. Definable sets

We introduce definable sets with atoms as follows. An
expression is either a variable ranging over atoms, or a finite
tuple of expressions, or a formal finite union of expressions,
or an integer, or a set-builder expression, which is a variable
binding construct of the form

{ e | v1, . . . , vn ∈ A, φ},

where e is an expression, v1, . . . , vn are bound variables, and
φ is a first order formula with equality as the only predicate,
whose free variables are contained in the free variables of e.
A quantifier-free expression is an expression which uses only
quantifier-free formulas, on every level, recursively.

If an expression e has free variables V , then any valuation
val : V → A defines in an obvious way the value X = e[val],
which is either a set, an atom, a tuple, or an integer.2 We say

2Tuples and integers could be encoded by standard set-theoretic tricks, but
to improve readability we refrain from that. To interpret unions of non-sets
we may treat the latter as singleton sets.

that X is a definable set with atoms and that it is defined by
e with valuation val. Note that the same set X can be defined
by many different expressions. We denote by D the set of all
definable sets. Observe that any element of a definable set is
definable.

Example 8. Examples of definable sets with atoms include:
• any atom, such as 1, as defined by the expression v, with

valuation v 7→ 1.
• any pair of atoms, such as (1, 2), as defined by the

expression (v, w), with valuation v 7→ 1, w 7→ 2.
• the set A of atoms itself, as defined by the expression
{v | v ∈ A}.

• for any n ∈ N, the set An of all n-tuples and A(n) of non-
repeating n-tuples of atoms, as defined by the expression

{(v1, . . . , vn) | v1, . . . , vn ∈ A, φ},

where φ is > in the case of An and
∧

1≤i<j≤n(vi 6= vj)

in the case of A(n).
An example of a definable function is the swapping function
s : A2 → A2, s(a, b) = (b, a), whose graph is defined by the
expression {((v, w), (w, v)) | v, w ∈ A}.

For any mathematical object (a relation, a function, a logical
structure, etc.), it makes sense to ask whether it is definable.
E.g., a definable relation on X,Y is a relation R ⊆ X × Y
which is a definable set. As a side remark, definable structures
over a finite signature correspond, up to isomorphism, to
structures which interpret in A (a notion from logic).

As a particular case of the above definition, a definable
instance is an instance I = (V,C) such that the set of vari-
ables V and the set of constraints C are definable. Definable
instances are represented by expressions, which are used as
inputs for the problem CSP-Inf(T) described in the Introduc-
tion.

Example 9. We show an expression describing the instance
from Example 1. Consider the following expressions.

R :
{

(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)
}

V :
{

(a, b) | a, b ∈ A, a 6= b
}

C :
{(

((a, b), (b, c)), R
)
| a, b, c ∈ A, a 6= b ∧ b 6= c ∧ a 6= c

}
I : (V,C)

They define, respectively, the inequality relation on the set
of integers {0, 1, 2}, the variables and the constraints of the
instance described in Example 1, and finally the instance itself.
In general, a definable instance may use parameters.

B. Group actions, equivariant sets and orbits

Recall that a group G acts on a set U if a mapping G×U →
U is provided, denoted (π, u) 7→ π ·u, such that 1 ·u = u and
(π · σ) · u = π · (σ · u), for all π, σ ∈ G, u ∈ U , and 1 the
identity element in G. An orbit under this action is any set of
the form {π · u : π ∈ G}, where u ∈ U .

Let Aut(A) denote the group of atom permutations, i.e.,
bijections π : A → A. If Aut(A) acts on a set U , then we



say that U is equivariant. Note that every equivariant set is
the disjoint union of its orbits.

The group Aut(A) naturally acts on the set D of definable
sets. Indeed, if π ∈ Aut(A) and X is a set defined by an
expression e and valuation val, then let

π ·X = π · e[val]
def
= e[val;π],

where val;π denotes function composition (i.e., (val;π)(v) =
π(val(v))). This is well defined: it is easy to prove by induc-
tion on expressions that e[val] = e′[val′] implies e[val;π] =
e′[val′;π]. For example, if π(1) = 2 and π(2) = 3, then
π · (1, 2) = (2, 3) and π · A2 = A2.

As a result, the group Aut(A) acts on D. Moreover, x ∈ X
implies π · x ∈ π ·X , for any π ∈ Aut(A) and definable sets
x,X . We say that a definable set X is equivariant if π ·X =
X for all π ∈ Aut(A). This is consistent with the previous
definition of equivariance, since Aut(A) then acts on X . The
orbits of X are its orbits under the action of Aut(A). We say
that X is orbit-finite if X has finitely many orbits.

The sets A, An and A(n), and the function s in Example 8
are equivariant. All sets in Example 9 are equivariant.

We will use the following results describing the action
of Aut(A) on definable sets. All these results follow, using
standard model-theoretic techniques (see e.g. [25]), from the
evident fact the structure A = (A,=) is homogeneous, i.e., ev-
ery isomorphism between two finite substructures of A extends
to an automorphism of A. In particular, it admits quantifier-
elimination, i.e., every first-order formula is equivalent to a
quantifier-free formula.

Theorem 10. Let X be a set definable by an expression
without free variables. Then:

1) X is equivariant.
2) X is definable by a quantifier-free expression which can

be computed in polynomial space from any expression
defining X .

3) X is orbit-finite, and each of its orbits is definable by a
quantifier-free expression.

4) If Y is an equivariant subset of X , then Y is definable
by a quantifier-free expression.

Proof: see Appendix A1.

Proposition 11. For definable sets X and Y , it is decidable
in polynomial space whether X ∈ Y , X ⊆ Y , X = Y .

Proof: see Appendix A2.
A system of orbit representatives of X is a set R which

contains exactly one element of each orbit of X .

Lemma 12. One can compute, in polynomial space, a system
of orbit representatives of a definable set X .

Proof: see Appendix A3.

C. Order-definable sets

We will sometimes find it advantageous to have a total
order < on A, isomorphic to the ordering of the rational

numbers. The development in Section II-A can be extended
to this setting, by the use of the total order relation < in first-
order formulas that define sets with atoms. Sets and functions
defined this way will be called order-definable. Clearly, any
definable set is also order-definable. When we want to make
clear that we do not allow the total order in the formulas, we
can speak about equality-definable sets.

Example 13. The total order relation < ⊆ A2 is order-defined
by the expression

{(a, b) | a, b ∈ A, a < b}.

In contrast, no total ordering on A is equality-definable.

Let Aut(A, <) be the group of monotone atom permu-
tations, i.e., automorphisms of the total order on A. The
notions of action, equivariance and orbits, can be developed as
previously, with Aut(A) replaced by Aut(A, <) throughout,
and definable sets replaced by order definable sets. (This is a
special case of a construction from [23], where various “atom
symmetries” are considered, which is itself a special case of
permutation models studied in set theory.) To distinguish from
previous notions, we shall speak of monotone-equivariant sets
and functions.

Note that the restriction to monotone permutations may
cause the number of orbits in a set to grow. For example,
the set A(n), a single-orbit set under the action of Aut(A),
decomposes into n! orbits under the action of Aut(A, <).
However, an orbit-finite set remains orbit-finite under the
action of monotone atom permutations.

All results from Section II-B hold for order-definable sets
as well. For this, it is crucial that the structure (Q, <) is
homogeneous. Indeed, for a different order such as that of
natural or integer numbers, most of those results would fail.

III. INFINITE INSTANCES

In this section we study the decidability and complexity of
solving definable CSP instances with atoms, i.e., the decision
problem CSP-Inf(T) described in the Introduction. Examples 1
and 2 only concern finite templates; we prove decidability for
the more general case of locally finite templates, where every
relation is finite.

In Section III-A the main result is Theorem 19, which states
that the existence of a solution of a definable instance over a
locally finite template can be decided. The key technical step
towards it, Theorem 17, will also be of use in further sections.
In Section III-B we focus on the case when the template T
is finite, and prove matching lower and upper bounds on the
complexity of the problem CSP-Inf(T).

Before we begin, observe that for an equivariant instance,
the existence of a solution does not imply the existence of an
equivariant solution.

Example 14. Consider an instance I with A(2) as the set of
variables, and with the set of constraints:{(

((a, b), (b, a)), R
)
| a, b ∈ A, a 6= b

}
,



where R = {(0, 1), (1, 0)} is the inequality relation on the
finite domain {0, 1}. It is easy to see that I has a solution.
Indeed, for any distinct atoms a and b, one can arbitrarily
assign a value 0 or 1 to the variable (a, b), and then assign
the other value to (b, a). However, it is impossible to do so
in a way that would be invariant with respect to all atom
permutations, therefore no equivariant solution exists.

On the other hand, there exists a monotone-equivariant
solution, namely the assignment

f(a, b) =

{
0 if a < b
1 otherwise.

This anticipates Theorem 17.

A. General decidability

For any instance I over a template T, let hom(I,T) denote
the set of solutions of I. It is a subset of the set T I of all
functions from I to T . The latter set is equipped with the
product topology, i.e., where basic open neighborhoods of a
function f : I → T are of the form:

BJ(f) =
{
g : I → T | g(x) = f(x) for all x ∈ J

}
(1)

for finite subsets J ⊆ I . This topology is also called the
topology of pointwise convergence (where T is discrete), since
a sequence of mappings f1, f2, . . . converges in this topology
if and only if the sequence f1(v), f2(v), . . . stabilizes for every
v ∈ I .

The following lemma extracts a crucial property of locally
finite templates. We say that an instance is constrained if every
variable in it appears in some constraint.

Lemma 15. For any locally finite template T, and any
constrained instance I over T, hom(I,T) is a compact subset
of T I .

Proof: see Appendix B1.
Similarly as above, the group Aut(A) of atom permutations

inherits the structure of a topological space (in fact, a topo-
logical group, which is not even locally compact), as a subset
of AA with the product topology.

Lemma 16. For any definable, equivariant, constrained in-
stance I over an equivariant template T, Aut(A) acts contin-
uously on hom(I,T).

Proof: see Appendix B2.
By definition, fixpoints of the action of Aut(A) on

hom(I,T) are exactly equivariant solutions. Example 14
shows that the action may have no fixpoints. This changes
if we assume A to be ordered and restrict to monotone atom
permutations, as described in Section II-C. Indeed:

Theorem 17. For any definable, equivariant, constrained
instance I over an equivariant, locally finite template T, if
I has a solution than it has a monotone-equivariant solution.

Proof. Note that Aut(A, <) is isomorphic to the automor-
phism group of the total order of rational numbers. It is also
a subgroup of Aut(A), so by Lemma 16 it acts continuously

on hom(I,T). By definition, the fixpoints of this action are
exactly monotone-equivariant solutions. Now apply Pestov’s
theorem (Theorem 4) using Lemma 15.

The last missing part for the decidability of CSP-Inf(T) is
the following lemma, whose proof follows general principles
of equivariant computation on orbit-finite structures for arbi-
trary atom symmetries, studied in [22], [26].

Lemma 18. For any equivariant, locally finite template T, it is
decidable whether a given definable, constrained, equivariant
instance I over T has a monotone-equivariant solution.

Proof: see Appendix B3.
Finally, we are ready to prove the main result of this section:

Theorem 19. For any equivariant, locally finite template T,
it is decidable whether a given definable, equivariant I over
T has a solution.

Proof. Remove the variables of I which are not constrained
and apply Theorem 17 and Lemma 18.

Remark 20. The careful reader may notice that Example 2
from the Introduction does not quite fit the development
presented so far. Indeed, the instance (i.e. the equation system)
considered there is not equivariant, or definable by an expres-
sion without free variables: atoms 1 and 2 are singled out in
it. However, it is definable by an expression with two free
variables, say v1, v2, with a valuation val that maps them to 1
and 2 respectively. In terminology of [21], [23], the instance
is supported by the set {1, 2}.

With a little effort, the results of this section can be
generalized to all definable instances and templates, dropping
the equivariance assumption. Indeed, let both I and T be
definable by expressions with free variables and valuations,
with other assumptions as before. Let a1, . . . , an ∈ A be
the (finite) set of all atoms taken as values by either of the
valuations. Lemma 15 holds with no change. Lemma 16 holds
as well, with Aut(A) replaced by Aut(A, a1, . . . , an), the
group of those atom permutations that fix all the ai.

Consider the group Aut(A, <, a1, . . . , an) of those mono-
tone atom permutations that fix all the ai; by analogy to the
equivariant case, this group acts continuously on solutions of I,
and its fixpoints are monotone solutions invariant with respect
to all permutations in that group.

To re-prove Theorem 17, notice that Aut(A, <, a1, . . . , an)
is an open subgroup of Aut(A, <) therefore, by [27, Lemma
13], Theorem 4 works for it as well. Finally, Lemma 18 and
Theorem 19 are proved entirely analogously for all definable
structures.

A more substantial generalization is also possible, where
one replaces a mere set A by a homogeneous relational
structure of atoms, along the lines of [23]. Supposing that A
is a reduct of a so-called Ramsey structure with enough decid-
ability properties, the above development can be repeated, with
Pestov’s theorem replaced by its generalization due to Kechris,
Pestov and Todorcevic [7]. A more detailed description of this
is deferred to a full version of this paper.



B. Finite templates

Consider now a classical, finite template T, without atoms,
such as in Examples 1 and 2. The algorithm for solving
definable instances over T that arises from a general proof of
Lemma 18 is double exponential. However, for finite templates
this complexity can be lowered using the following PSPACE
reduction to CSP(T):

Proposition 21. For every equivariant, definable instance I
over a finite template T one can compute (in polynomial space)
a finite instance I∗ of size exponential in the size of the set
expression that defines I, and such that I has a solution if and
only if I∗ has a solution.

Proof. By Theorem 17, I has a solution if and only if it
has a monotone-equivariant solution. We construct a finite in-
stance I∗ whose solutions correspond bijectively to monotone-
equivariant solutions of I. In the rest of the proof, by orbits
we mean orbits with respect to monotone atom permutations.

Let e be the set expression that defines the instance I.
The set I∗ of variables of I∗ consists of the orbits of the
set I of variables of I. Their number is at most exponential
in the size of e and they can be enumerated in polynomial
space, by scanning all quantifier-free types of formulas with n
free variables, where n is the number of variables in the
expression e.

For every constraint
(
(x1, . . . , xk), R

)
of I we take the

orbits O1, . . . , Ok of the variables x1, . . . , xk, respectively,
and add a constraint

(
(O1, . . . , Ok), R

)
to I∗. The number

of constraints is also at most exponential in the size of e.
Every monotone-equivariant function from I to T is con-

stant on the orbits of I . Hence, it is easy to see that there
is a bijective correspondence between solutions of I∗ and
monotone-equivariant solutions of I.

By analogy to Remark 20, the above result can be gen-
eralized to all definable instances, and hence gives an upper
complexity bound of solving definable instances for each finite
template T: if CSP(T) is in a complexity class C such that
L ⊆ C, then CSP-Inf(T) is in the “exponentially larger” class
exp(C), defined by:

exp(C) =
⋃
k∈N
{L : padk(L) ∈ C}

where, for a language L, the language padk(L) consists of
words from L of any length m padded with arbitrary letters
to the length 2m

k

. For example, exp(L) = PSPACE and
exp(NP) = NEXP.

As it turns out, this upper bound is tight:

Theorem 22. For any C such that L ⊆ C, if CSP(T) is C-
hard then CSP-Inf(T) is exp(C)-hard, under logarithmic space
reductions.

Proof: see Appendix B4.
Together with Proposition 21, this proves Theorem 3. As

examples, 3-colorability of finite graphs is NP-complete, so
the same problem for definable graphs (see Example 1) is

NEXP-complete; solving finite systems of linear equations
over Zk is MODkL-complete [28], so the same problem for
definable systems of equations (see Example 2) is complete for
the class exp(MODkL) = MODkPSPACE of those languages
L for which there exists a nondeterministic polynomial space
Turing machine ML such that w ∈ L if and only if the number
of accepting runs of ML on input w is divisible by k.

Remark 23. Our proof of Theorem 22 actually works already
if CSP(T) is C-complete under poly-logarithmic space reduc-
tions; completeness of C under logarithmic space reductions
is not necessary. Note that it is an open problem whether the
class of poly-log space algorithms is contained in PTIME.

In a proof of Theorem 22 one must construct definable in-
stances of CSP-Inf(T) from words in a language L ∈ exp(C).
In our general proof, set expressions that define these instances
use the full power of first order logic, including quantification
over atoms. However, for all standard examples of templates
T, e.g. those that correspond to the 3-colorability problem,
Boolean 3-satisfiability, solving linear equations over Zk or
Boolean Horn-satisfiability, we have found reductions that use
the simplest possible formulas over atoms: comparing two
atoms for equality. We are unable to find a general proof which
would only use so simple set expressions.

IV. FINITE INSTANCES

In this section we study the complexity of the problem
CSP(T), where T is a fixed locally finite template. Recall that
instances of this problem are finite structures. We demonstrate
that many results known from the classical setting, where
the templates are finite, lift to the locally finite setting. In
Section IV-A we show that polymorphisms of T determine the
complexity of CSP(T). In Section IV-B we present a general
method of lifting results concerning finite templates to locally
finite templates, and we show a few applications. Finally,
in Section IV-C, we show that for a locally finite, definable
template T, the problem CSP(T) reduces (in polynomial time)
to the problem CSP(T̂) for a finite template T̂. Moreover,
if T admits polymorphisms satisfying some linear identities,
then so does T̂, which in many cases gives an upper bound
on the complexity of CSP(T). To prove these results, we
are sometimes forced to consider infinite templates T as
CSP instances over other templates, and there the results of
Section III come handy.

A. Algebraic foundations

We now generalize, to locally finite templates, several clas-
sical theorems concerning the relationship between the set of
polymorphisms of a template, its set of pp-definable relations
and its complexity, and constructions of core templates. Most
of the proofs are standard, but they require a few tweaks and
nontrivial observations.

1) Pp-formulas: A primitive positive formula (or pp-
formula) is a first-order formula, possibly with free variables,
which uses only existential quantification (no universal quanti-
fiers), conjunctions (no disjunctions nor negations), and atomic



formulas (no negations of atomic formulas), which might
include equalities among variables. A typical pp-formula is

φ(x, z, t) = ∃y.R(x, y) ∧ S(y, z) ∧ z = t.

If T is a relational structure and φ is a pp-formula over the
signature of T with free variables x1, . . . , xn, then we denote
by φ(T) ⊆ Tn the set of those tuples (t1, . . . , tn) which satisfy
φ in T. Any relation of the form φ(T), where φ is some pp-
formula, is said to be a pp-definable relation of T. By ppDef T
we denote the family of all finite pp-definable relations of T.

A generalized pp-formula Φ is a pair (I, α), where I is
an instance (equivalently, a relational structure) and α :
{x1, . . . , xn} → I is a function from a finite set of free
variables of Φ. We say that Φ is finite if the instance I has
finitely many variables and finitely many constraints. If T is a
relational structure over the same signature as I, then Φ defines
a relation on T of arity n:

φ(T)
def
=
{(
f(x1), . . . , f(xn)

)
| f ∈ hom(I,T)

}
.

It is a standard result that finite generalized pp-formulas define
the same relations as pp-formulas. The following lemma shows
that for finite relations and locally finite templates, arbitrary
generalized pp-formulas do not define anything more:

Lemma 24. Let T be a locally finite template. The following
conditions are equivalent for a finite relation R ⊆ Tn

1) There is a pp-formula φ such that φ(T) = R,
2) There is a finite generalized pp-formula Φ such that

Φ(T) = R.
3) There is a generalized pp-formula Φ such that

Φ(T) = R.

Proof: see Appendix C1.

Lemma 24 relies on the following lemma, which is a
variation of the compactness argument used in Lemma 15 (the
union of structures is taken vertex-wise and edge-wise).

Lemma 25. For any structure I and an ascending sequence
I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ I of substructures such that

⋃
i Ii = I,

and for any locally finite structure T, there is a homomorphism
f : I → T if and only if for each n ≥ 0 there is a
homomorphism fn : In → T. If all the fn extend a single
homomorphism f0 : I0 → T, then so does f .

Proof: see Appendix C2.

Proposition 26. Let B and C be locally finite, definable tem-
plates over the same domain B. If ppDef B ⊆ ppDef C then
CSP(B) reduces to CSP(C), via a polynomial-time reduction.

Proof: see Appendix C3.

2) The Inv-Pol connection: An operation on T is a function
f : T k → T , for some number k (the arity). We say that the
operation f preserves a relation R of arity n on T if for any
k tuples in R:

(x11, . . . , x1n), (x21, . . . , x2n), . . . , (xk1, . . . , xkn) ∈ R,

the tuple obtained from them by applying f componentwise:(
f(x11, . . . , xk1), f(x12, . . . , xk2), . . . , f(x1n, . . . , xkn)

)
belongs to R as well. We also say that R is invariant under
the operation f .

If F is a family of operations of T , then by InvF we denote
the set of relations which are invariant under every operation
in F . Dually, if R is a family of relations on T , then by PolR
we denote the set of those operations that preserve all relations
in R. If T is a relational structure, then PolT is defined as
PolR, where R is the set of relations of T, and elements of
PolT are called polymorphisms of T.

A polymorphism of T of arity n can be equivalently defined
as follows. Equip Tn with the cartesian product structure, i.e.,
for a relation R of T of arity k and a k-tuple of n-tuples of T,

R
(
(x11, . . . , x1n), (x21, . . . , x2n), . . . , (xk1, . . . , xkn)

)
holds in Tn if and only if each i = 1, . . . , n, the relation
R(x1i, x2i, . . . , xki) holds in T. It is easy to see that a mapping
f : Tn → T is a polymorphism if and only if it is a
homomorphism from Tn to T.

Proposition 27. For any locally finite template T, and any
finite relation R over T , R ∈ ppDef T if and only of R ∈
Inv PolT.

Proof: see Appendix C4.

Proposition 27 is analogous to a fundamental theorem of
algebraic finite CSP theory [1]. In the proof of the “only if”
part, we define an invariant relation using a generalized pp-
formula, and apply Lemma 24.

Theorem 28. For any two locally finite, definable templates
B and C over the same domain B, if PolC ⊆ PolB then
CSP(B) reduces to CSP(C) via a polynomial-time reduction.

Proof. If PolC ⊆ PolB then Inv Pol(C) ⊇ Inv Pol(B), hence
ppDef(C) ⊇ ppDef(B). Conclude using Proposition 26.

Corollary 29. If PolB = PolC then CSP(B) and CSP(C) are
equivalent, up to polynomial time reductions.

3) Core structures: We say that a structure T is a core
if every endomorphism of T is a monomorphism. If T is a
structure and A is a finite subset of its domain, then by T|A
we denote the template with domain A, whose relations are
the restrictions to A of all relations R ∈ ppDef T. In the proof
of the implication (2→1), again we invoke Pestov’s theorem
(Theorem 4).

Proposition 30. Let T be a monotone-equivariant, locally
finite structure without isolated nodes. Then the following
conditions are equivalent:

1) T is a core.
2) Every monotone-equivariant endomorphism of T is a

monomorphism.
3) For any finite set A ⊆ T , the structure T|A is a finite

core.



Proof: see Appendix C5.

By analogy to the development in Section III, thanks to
Proposition 30 template cores are computable:

Proposition 31. Given a definable, equivariant, locally finite
template T, one can effectively test whether T is a core, and
effectively construct a core which is a retract of T.

Proof (sketch). A retraction of T is an endomorphism r whose
twofold composition r; r is equal to r.

Test all monotone-equivariant retractions of T. If there is
such a retraction r which is not onto, then T is not a core. In
this case, replace T by the image of r and repeat.

B. From finite to locally finite templates

In this section, we present a general method of lifting
results concerning finite templates to locally finite ones. This
is achieved by observing that T can be covered by a family F
of finite subtemplates (defined below), such that the question
whether T admits polymorphisms satisfying a set of linear
equations boils down to the question whether each finite
template in F admits such polymorphisms.

Important classes of polymorphisms are defined using sets
of identities that they satisfy; usually, those identities are of a
specific shape. Formally, let Γ be a functional signature, i.e.,
a set of function names with associated finite arities. A linear
identity is an expression of the form r ≈ s, where r and
s are either variables or Γ-terms with exactly one function
symbol. A Γ-algebra satisfies an identity r ≈ s if for any
valuation of the variables in r and s, both sides have the
same value. For a set E of linear identities, we say that a
template T admits E-polymorphisms if there is a Γ-algebra
with universe T , whose operations are polymorphisms of T
and which satisfies all identities in E.

For example, a majority polymorphism is a ternary poly-
morphism t that satisfies linear identities:

t(x, y, y) ≈ t(y, x, y) ≈ t(x, y, y) ≈ y,

and a Maltsev polymorphism is a ternary one that satisfies
linear identities:

t(x, y, y) ≈ t(y, y, x) ≈ x.

Other polymorphism classes defined by linear identities will
be considered below.

Let T = (T,R) be a template and let R0 ⊆ R be some
family of relations. The subtemplate of T induced by R0 is
the template T0 = (T0,R0) whose domain T0 consists of all
those x ∈ T which appear in some tuple that belongs to any
of the relations in R0. We define a union T1 ∪ T2 of two
subtemplates T1 = (T1,R1) and T2 = (T2,R2) of T to be
the template (T1 ∪ T2,R1 ∪R2), and analogously for unions
of larger families of subtemplates.

Theorem 32. Let T be a locally finite template and let T1 ⊆
T2 ⊆ . . . be an ascending sequence of subtemplates of T such
that

⋃
i Ti = T. If E is a set of linear identities then T admits

E-polymorphisms if and only if for each i, the template Ti
admits E-polymorphisms.

Proof. The left-to-right implication is obvious, since any poly-
morphism of T is a polymorphism of all its subtemplates.
To show the other implication we use a standard construction
which allows to express a polymorphism of a template T as a
solution of a CSP instance. Let E be a set of identities using
function symbols from a functional signature Γ. We assume
that there are no identities of the form x ≈ y where both
x, y are either variables or constants, as the general case can
be easily reduced to this one. For a template T, define an
instance FE(T) as a disjoint union of instances as follows:

FE(T) =
∐
g∈Γ

Tg,

where Tg is the n-fold cartesian product of T, for n the arity
of g. Furthermore, extend FE(T) by constraints as described
below. For each identity in E, consider two possibilities:
• If the identity is of the form g(x̄) ≈ g′(ȳ), with
g, g′ ∈ Γ, then for every valuation val : V → T of the
variables V in the tuples x̄ and ȳ, add a binary constraint(
(x̄[val], ȳ[val]),=

)
, where x̄[val] ∈ Tg and ȳ[val] ∈ Tg′ .

• If the identity is of the form g(x̄) ≈ u or u ≈ g(x̄),
with g ∈ Γ and u a variable or a constant, then for each
valuation val : V → T of the variables V in x̄ and u,
add a unary constraint

(
x̄[val], {u[val]}

)
.

Let T be the structure T equipped additionally with the
singleton unary relations and the relation =. The instance
FE(T) is over T, and it has a solution if and only if T admits
E-polymorphisms.

Suppose now that T is locally finite and let T1 ⊆ T2 ⊆ . . .
be an ascending sequence of subtemplates of T such that⋃
i Ti = T, and for each i the template Ti admits E-

polymorphisms. This means that for every i there exists a
solution of the instance FE(Ti) (which can be seen as an
instance over T). The corresponding sequence of instances
(FE(Ti))i is ascending and satisfies

⋃
FE(Ti) = FE(T). It

follows from Lemma 25 that there exists a solution of the
instance FE(T). Hence T admits E-polymorphisms.

Remark 33. Note that if E is a finite set of linear identities
and the template T is definable, then so is FE(T). By Theo-
rem 19, it can be decided whether T admits E-polymorphisms.

In the literature, there are two general algorithmic principles
for solving CSP(T) in polynomial time for wide classes of
finite templates T. Theorem 32 lets us translate algebraic
characterizations of those classes to the setting of locally finite
templates.

The first algorithm can be seen as a generalization of
Gaussian elimination, and it is based on the fact that for every
finite instance I over T the set of solutions has a “small”
representing set. For a finite structure A let sA(n) denote the
logarithm, base 2, of the number of all different pp-definable
relations of arity n in A. We say that a template T has few
subpowers if there is a natural number k such that for every



finite subtemplate B of T we have that sB(n) is bounded from
above by a polynomial of degree k. It is known [29], [30] that
a finite template T has few subpowers if and only if T admits
a k-edge polymorphism, where a k-edge polymorphism e is a
k + 1-ary polymorphism that satisfies the identities

e(x, x, y, y, y, . . . , y, y) ≈ e(x, y, x, y, y, . . . , y, y) ≈ y
and

e(y, y, y, x, y, . . . , y, y) ≈ e(y, y, y, y, x, . . . , y, y) ≈ . . .
. . . ≈ e(y, y, y, y, y, . . . , x, y) ≈ e(y, y, y, y, y, . . . , y, x) ≈ y.

Corollary 34. A locally finite template T has few subpowers if
and only if T admits a k-edge polymorphism for some k > 0.

Moreover, k-edge polymorphisms characterize in some
sense (see [29]) all locally finite templates that can by solved
in polynomial time by a “Gaussian-like” algorithm.

The second algorithm determines whether a solution of a
given instance exists by looking at subinstances of bounded
size and checking if there is a consistent set of local solutions.
A template of bounded-width is a template for which such an
algorithm, called the local consistency algorithm, is correct.
It follows from the results of [31]–[33] that a core finite
template T has bounded width if and only if T admits weak
near unanimity polymorphisms v of arity 3 and w of arity
4 that satisfy v(y, x, x) ≈ w(y, x, x, x), where a weak near
unanimity polymorphism t is one that satisfies the identities

t(x, x, . . . , x) ≈ x and
t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ . . . ≈ t(x, x, . . . , x, y).

Corollary 35. A core, locally finite template T has bounded
width if and only if T admits weak near unanimity polymor-
phisms v of arity 3 and w of arity 4 that satisfy v(y, x, x) ≈
w(y, x, x, x). Moreover, it can be decided whether a definable,
locally finite template T has bounded width.

Proof (sketch). We show the harder “only if” part. Suppose
that T has bounded width. Consider a finite set A ⊆ T . By
Proposition 30, T|A is a finite core and has bounded width.
By the results of finite CSP theory, T|A admits polymorphisms
vA, wA satisfying the required linear identities. Since A is ar-
bitrary, we may apply Theorem 32, obtaining polymorphisms
v, w of T, which also satisfy the required identities.

The last part of the statement of the corollary follows from
Proposition 31 and Remark 33.

Purely algebraic results, which show for instance that the
existence of polymorphisms of some kind ensures a finite
template T to admit some other polymorphisms can also be
translated to the locally finite setting using Proposition 32. The
following is an easy consequence of Lemma 9 of [34]:

Corollary 36. If a core, locally finite template T has a Maltsev
polymorphism and has bounded width, then it has a majority
polymorphism.

Many other results can be proved following the same
pattern.

C. From locally finite to finite templates

This section is a proof of the following theorem:

Theorem 37. For every equivariant, definable, locally finite
template T there is a finite template T̂ such that:

• for every finite instance I over T there is a finite instance
Î over T̂:

– computable from I in polynomial time, and
– such that I has a solution if and only if Î has a

solution,
• for every set of linear identities E, if T admits E-

polymorphisms then T̂ admits E-polymorphisms.

We assume atoms to be totally ordered as described in
Section II-C. By i we denote the atom that corresponds to
the rational number i. All orbits below are considered with
respect to monotone atom permutations.

Fix any order-definable set x = e[val], where e is an
expression and val : V → A a valuation. There is a unique
order-preserving bijection f between the range of val and the
set {1, . . . , n}, where n is the number of elements in the range
of val. By [x] we denote the set defined by e[val; f ]. Note that
[x] = [y] if and only if they are in the same orbit. The set [x]
can therefore be seen as a representative of this orbit.

Assume without loss of generality that all instances are
constrained. For any instance I over T and a variable x ∈ I ,
let Ix be the largest constrained subinstance of I such that x
belongs to the tuple of variables in every constraint of Ix. By
U(I,x) we denote the unary predicate over T defined by the
generalized pp-formula (Ix, αx), where αx : {x} → Ix is the
inclusion mapping (we write simply Ux whenever the instance
I is clear from the context). Observe that if f : I → T is a
solution of the instance I then f(x) ∈ U(I,x). We say that an
assignment f : I → T is feasible if it maps every x to an
element of U(I,x). To decide whether I has a solution, it is
enough to consider feasible assignments.

Fix a constrained instance I over T. For each variable x ∈ I ,
let gx be a monotone atom permutation that maps Ux to [Ux].
We define an instance Î as follows:

• the variables of Î are the variables of I,
• for every constraint

(
(x1, . . . , xn), R

)
in I there is a

constraint
(
(x1, . . . , xn), R̂

)
in Î, where

R̂ = g
(
R ∩ (Ux1 × . . .× Uxn)

)
,

g(t1, . . . tn) = (gx1(t1), . . . , gxn(tn)).

Note that R̂ ⊆ [Ux1
]× . . .× [Uxn

].

It is immediate from the above construction that for any
instance I, there is a bijective correspondence between fea-
sible assignments for I and assignments for Î: if a feasible
assignment f for I maps a variable x to some t ∈ Ux, then
the corresponding assignment for Î maps x to gx(t) ∈ [Ux].
Moreover, a feasible assignment for I is a solution if and only
if the corresponding assignment for Î is a solution. It follows
that I has a solution if and only if Î has a solution.



We now define a finite template T̂ such that for any instance
I over T, the instance Î is over T̂. The domain of T̂ is the
union:

T̂ =
⋃

(I,x)

[U(I,x)],

where (I, x) ranges over all constrained instances I over T,
and their variables x. The relations of T̂ are all the relations
which appear in the constraints of all instances of the form
Î. Notice that if the T is definable then the template T̂ is
finite. Indeed, since T has finitely many orbits, the number of
elements in the unary predicates U(I,x) is bounded, and hence
they form an orbit-finite set. The domain T̂ is the sum of their
representatives, so it is finite. Finally, the arity of relations in
T̂ is bounded by the maximal arity of a relation in T, so there
are finitely many possible relations.
This proves half of Theorem 37; we now prove the second half.

Lemma 38. Let E be a set of linear identities. An equivariant,
definable, locally finite template T admits E-polymorphisms if
and only if it admits monotone-equivariant E-polymorphisms.

Proof. In the proof of Theorem 32, an instance FE(T) is
constructed whose solutions correspond to E-polymorphisms
of T. Let I be its largest constrained subinstance. By Theo-
rem 17, if I has a solution then it has a monotone-equivariant
solution f . Since the domain of FE(T) is a disjoint union
of sets of the form Tn, it is possible to extend this solution
to a monotone-equivariant solution of FE(T), for example
by defining f(x) to be the projection to the first coordinate
whenever x 6∈ I. This solution corresponds to a monotone-
equivariant E-polymorphism of T.

We now finish the proof of Theorem 37. For any set of
linear identities E, let A be an algebra with universe T , whose
operations are polymorphisms of T, and such that A satisfies
the identities in E. By Lemma 38 we can assume that the op-
erations of A are monotone-equivariant. We define an algebra
Â with universe T̂ , whose operations are polymorphisms of
T̂, and such that Â satisfies the identities in E. Observe that
the universe T̂ is a subset of the universe T . Let r : T → T̂
be a function which is the identity on T̂ , and maps all the
other elements of T to some fixed element t of T̂ . For every
operation f of A, define the corresponding operation f̂ of Â
by f̂ = f ; r. Since all identities in E are linear, it is easy to
see that Â satisfies them.

It remains to show that every f̂ is a polymorphism of T̂. To
this end, pick an n-ary relation R̂ of T̂. It follows from the
construction of the template T̂ that there exists a pp-definable
relation R in T such that R̂ = F (R), where F : An → An
is a tuple of monotone atom permutations. The relation R is
invariant under the monotone-equivariant f , hence it is easy
to see that so is R̂. Moreover, since R is a subset of T̂n, it
follows that it is invariant under f̂ .

V. ORDER-INVARIANT LOGICS

In a previous paper [10], we studied the expressive power
of various logics over a certain class of structures, which we

now recall in a slightly simplified version. As an application
of the methods developed in this paper, we briefly say how
the main result of [10] can be re-developed in the setting of
locally finite CSPs, showing the key ideas of the proof much
more clearly and clearing them from a clutter of technicalities.

For a fixed, finite graph p, a linearly p-patched structure
is a finite graph G, together with a linearly ordered family
p1 < . . . < pn of subgraphs of G (called patches), each of
which is isomorphic to p, and which cover G, i.e.,

G = p1 ∪ . . . ∪ pn.

For example, if p is the 2-clique, then a linearly p-patched
structure is the same as a graph together with a linear ordering
of its edges.

First order formulas can be evaluated on linearly p-patched
structures, allowing quantification ∀v,∃v over the vertices,
∀q,∃q over the patches, comparison q < q′ of the patches with
respect to their linear ordering, and tests p |= E(v, w) for each
patch p and vertices v, w (where E denotes the edge predicate).
Various extensions of first order logic can be also evaluated
over linearly p-patched structures, in particular the Least Fix
Point logic (LFP), a well studied extension of first order logic
by a fixpoint operation [8], [35]. It turns out that over linearly
p-patched structures, LFP is equivalent to LFP+C (a further
extension by a counting mechanism) and to polynomial time
Turing Machines with Atoms – an analogue of Turing machines
in the realms of sets with atoms [10], [24].

On the other hand, classical Turing machines can be evalu-
ated on linearly p-patched structures, using standard bit-string
encodings of relational structures. We say that LFP is equally
expressive as PTIME over a class of structures C, if every
property of structures in C which is decidable in polynomial
time, can be expressed by a formula of LFP.

The famous Immerman-Vardi [36], [37] and Cai-Fürer-
Immerman [8] theorems can be reformulated as follows.

Theorem 39. If p is the 2-clique, then LFP is equally
expressive as PTIME over linearly p-patched structures.

Theorem 40. There is a graph p, namely the disjoint union of
two 3-cliques, such that LFP+C is less expressive than PTIME
over linearly p-patched structures.

A corollary of the main result of [10] is the following.

Theorem 41. Given a graph p, it can be effectively decided
whether LFP is equally expressive as PTIME over linearly p-
patched structures.

The proof of the theorem proceeds in several steps, and
starts with the following observation.

Lemma 42. LFP is equally expressive as PTIME over linearly
p-patched structures if and only if it can test their isomor-
phism.

Consider a pair of linearly p-patched structures G,G′,
whose vertices are atoms, both with n patches denoted
p1 < . . . < pn and q1 < . . . < qn, respectively. An



isomorphism from G to G′ must map each pi isomorphically
to qi, for i = 1, . . . , n. Define a finite instance I with variables
1, 2, . . . , n, and for each 1 ≤ i, j ≤ n, a binary constraint

((i, j), Cp,p′

r,r′ ),

such that Cp,p′

r,r′ is the set of pairs (α, β) where α : pi →
qi, β : pj → qj are isomorphisms which are consistent, i.e.,
α(v) = β(v) for all v such that both v ∈ pi and v ∈ pj .

Clearly, there is an isomorphism of linearly p-patched
structures from G to G′ iff the instance I has a solution.

It is useful to consider a single template Tp such that any
instance I obtained from two linearly p-patched structures
G,G′ as above, is over Tp. The domain of Tp consists of
isomorphisms α : q → q′ between graphs isomorphic to p,
whose vertices are atoms. For each quadruple q, q′, r, r′, there
is the binary relation Cp,p′

r,r′ defined above. Tp is equivariant
and, since every such relation is finite, it is locally finite. It is
also not difficult to see that this structure is definable.

The next lemma follows from the results in [10].

Lemma 43. LFP can test isomorphism of linearly p-patched
structures if and only if the template Tp has bounded width.

In [10], the proof of Theorem 41 then proceeds by construct-
ing a finite template which corresponds to Tp, in an ad-hoc
way roughly similar to the one described in Section IV-C, and
then further studying its properties. Since the construction of
this finite template is technical, its study becomes obfuscated.
Instead, using the results from the present paper, we can now
work directly with the template Tp, as sketched below.

By Corollary 35, it can be effectively tested whether Tp has
bounded width. However, a more effective test is possible, due
to the straightforward observation that the template Tp has a
Maltsev polymorphism, defined by

M(α, β, γ) =


α · β−1 · γ if α, β, γ : q→ q′ for some

q, q′ isomorphic to p,
α otherwise.

The following characterization then follows from Corollary 36.

Lemma 44. The template Tp has bounded width if and only
if it has a majority polymorphism.

By Theorem 19, this last condition can be effectively tested.
Lemmas 42, 43, 44 prove Theorem 41.

We believe that definable locally finite templates might
arise naturally in other applications to Descriptive Complexity:
although any such template is computationally equivalent to
a finite one by Theorem 37, the presented reduction heavily
relies on the ordering of the universe, and therefore cannot be
mimicked by order-invariant logics, such as LFP.
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[8] J. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the
number of variables for graph identifications,” Combinatorica, vol. 12,
no. 4, pp. 389–410, 1992.

[9] L. Barto and M. Pinsker, “The basic CSP reductions revisited,”
announced Nov. 2014. [Online]. Available: http://www.karlin.mff.cuni.
cz/∼barto/Articles/Banff Barto.pdf

[10] B. Klin, S. Lasota, J. Ochremiak, and S. Toruńczyk, “Turing machines
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APPENDIX

A. Proofs from Section II

1) Proof of Theorem 10: The statement (1) follows from
the observation that if X is defined by an expression e without
free variables, then π · X = X by definition. As mentioned,
this implies that Aut(A) acts on X , since π · x ∈ π ·X = X
for π ∈ Aut(A), x ∈ X .

In the rest of the proof, the following notion will be useful.
The quantifier-free type of a valuation val : V → A is the
formula

τval =
∧

v,w∈V :
val(v)=val(w)

(v = w) ∧
∧

v,w∈V :
val(v) 6=val(w)

(v 6= w).

(In general, the quantifier-free type of a valuation val : V → A
in a relational structure A is the conjunction of all literals l
with free variables contained in V such that A, val |= l. Here,
A is the structure (A,=).)

Note that for a given finite set V , each quantifier-free type
is of a polynomially bounded size with respect to |V |. In
particular, there are finitely many quantifier-free formulas with
free variables V , and the set {τval : val : V → A} is finite and
computable.

The statement (2) is an immediate consequence of the
following result, which is known as quantifier-elimination
among model theorists.

Fact 45. Every first order formula φ can be translated in
polynomial space into a quantifier-free formula φ′, such that
φ and φ′ are equivalent in the structure (A,=).

Proof. The proof proceeds by induction on the size of a first
order formula φ. If φ is quantifier-free, we are done. In the
inductive step, it is enough to consider the case when φ is of
the form ∃x.ψ and ψ is already quantifier-free; the other case
when φ is a boolean combination of quantifier-free formulas
is trivial.

Let V be the set of free variables of the formula ψ. By
homogeneity of (A,=), the formula φ = ∃x.ψ is equivalent
to the formula

φ′ =
∨
τ

ψτ ,

where τ ranges over all (finitely many) quantifier-free types of
valuations val : V → A, and ψτ is the formula ψ, with every
predicate x = v replaced by > or ⊥, depending on whether
τ |= (x = v) or not.

We prove the statement (3). The interesting case is when X
is defined by an expression of the form

{e | a1, . . . , an ∈ A, φ}

(no valuation is needed, since by assumption, the entire
expression has no free variables).

Let V denote the set of free variables of the expression e,
i.e.,

V = {a1, . . . , an}.



It follows from homogeneity of (A,=) that if val1, val2 : V →
A are two valuations with the same quantifier-free type (i.e.,
τval1 = τval2 ), then e[val1] and e[val2] are in the same orbit
with respect to Aut(A). It follows that each orbit of X is
defined by an expression of the form

{e | a1, . . . , an ∈ A, φ ∧ τ},

where τ is a quantifier-free type of valuations val : V → A.
Moreover, there are only finitely many orbits.

This yields the third statement, and also the last one, since
if Y is equivariant, then it is a union of orbits of X under the
action of Aut(A).

2) Proof of Proposition 11: Given expressions e, d, one
can compute first order formulas τ∈e,d, τ⊆e,d and τ=

e,d such that
for any valuation val,
• τ∈e,d[val] holds iff e[val] ∈ d[val],
• τ⊆e,d[val] holds iff e[val] ⊆ d[val],
• τ=

e,d[val] holds iff e[val] = d[val].
These formulas are computed by mutual recursion. The most
interesting case is where both e and d are set-builder expres-
sions, say:

e = {e′ | v1, . . . , vn ∈ A, φ}
d = {d′ | w1, . . . , wm ∈ A, ψ},

where we define:

τ∈e,d = ∃w1. · · · ∃wm.(ψ ∧ τ=
e,d′)

τ⊆e,d = ∀v1. · · · ∀vn.(φ→ τ∈e′,d)

τ=
e,d = τ⊆e,d ∧ τ

⊆
d,e.

By quantifier elimination, these formulas are decidable in
polynomial space.

3) Proof of Lemma 12: Let X1, . . . , Xn denote the orbits of
X . It follows from the proof of Theorem 10 that the sequence
X1, . . . , Xn can be effectively computed (possibly with rep-
etitions), and from Proposition 11 it follows that repetitions
can be removed. Moreover, each orbit Xi is represented by an
expression of the form

{e : a1, . . . , an ∈ A, τ},

where τ is a satisfiable quantifier-free type. As a repre-
sentative of the orbit Xi, pick the element e[val], where
val : {a1, . . . , an} → {1, . . . , n} is any assignment satisfy-
ing τ .

B. Proofs from Section III

1) Proof of Lemma 15: Here we do not assume I or T to
be definable or equivariant.

For any x ∈ I , let V (x) ⊆ T be the set of possible values of
x in all solutions of I. Since I is constrained and T is locally
finite, every V (x) is finite.

The set of functions:

F (I,T) = {f : I → T | f(x) ∈ V (x) for x ∈ I}

equipped with the product topology inherited from T I , is a
topological product of discrete finite spaces:

F (I,T) =
∏
x∈I

V (x)

therefore (by Tychonoff’s theorem) it is compact. Note that
hom(I,T) ⊆ F (I,T).

Consider any f ∈ F (I,T) that is not a solution of I. This
means that there is a constraint ((x1, . . . , xn), R) in I such
that (f(x1), . . . , f(xn)) 6∈ R. Then, for J = {x1, . . . , xn},
we have

BJ(f) ∩ hom(I,T) = ∅.

As a result, hom(I,T) is a closed subspace of the compact
F (I,T), hence it is itself compact.

2) Proof of Lemma 16: Atom permutations π ∈ Aut(A)
act on functions f : I → T by:

(π · f)(x) = π · (f(π−1 · x)).

We want to show that if f is a solution of I then so is π ·f . To
this end, consider any constraint (x̄, R) in I, with x̄ of length
n. Since I is equivariant,

(π−1 · x̄, π−1 ·R)

is also a constraint in I. Then, since f is a solution of I:

fn(π−1 · x̄) ∈ π−1 ·R

and finally:
(π · fn)(x̄) ∈ R.

This proves that Aut(A) acts on hom(I,T). We will now
check that this action is continuous.

To this end, consider any solution f of I and its basic open
neighbourhood BJ(f) as in (1). The inverse image of BJ(f)
along the action is:

←−−−
BJ(f) = {(π, g) | ∀x ∈ J. π · f(x) = g(π · x)}

and we need to show that it is open in Aut(A)× hom(I,T).
To this end, recall that I is defined by a set expression.

This means that each variable x ∈ I is also defined by an
expression e with a valuation val; let Sx ⊆fin A be the range
of val. Note that Sx supports x, i.e., for any atom permutation
π, the value π · x depends only on how π acts on Sx.

Moreover, since I is constrained and f is a solution, the
element f(x) ∈ T appears in the definition of I, therefore it
is also definable, hence supported by some finite Sf(x) ⊆ A.

Now pick any (π, g) ∈
←−−−
BJ(f) and define:

S =
⋃
x∈J

Sx ∪ Sf(x) ⊆fin A

K = {π · x | x ∈ J} ⊆fin I.

Then, for any σ ∈ BS(π) and h ∈ BK(g), we have:

σ · f(x) = π · f(x) = g(π · x) = h(π · x) = h(σ · x)

therefore (σ, h) ∈
←−−−
BJ(f). As a result:

BS(π)× BK(g) ⊆
←−−−
BJ(f)



therefore
←−−−
BJ(f) is indeed open and the action is continuous.

3) Proof of Lemma 18: Assume that I is defined by a set
expression e as explained in Section II-A. By Lemma 12 it is
possible to compute a system of representatives of the orbits of
I with respect to monotone atom permutations. Note that every
monotone-equivariant function from I to T is fully determined
by its values on the representatives.

Since T is locally finite and I is constrained, for any variable
x ∈ I there are only finitely many elements in T that can be
values of x in a solution of I. Moreover, all these elements
can be effectively enumerated, given a definiton of I.

Altogether, this means that there are finitely many candi-
dates for monotone-equivariant solutions of I and that they
can be effectively enumerated.

Finally, given a monotone-equivariant function f : I → T , it
can be effectively checked whether it is a solution of I. To this
end, one computes representatives of the orbits of constraints
in I; it is enough to check that all representative constraints
are satisfied, and for a given constraint it is straightforward to
check whether f satisfies it.

4) Proof of Theorem 22: For simplicity, we will assume
that all languages are over B = {0, 1}, and all complexity
classes concern languages over B.

Let L ∈ exp(C). We have to show how to reduce L to
CSP-Inf(T). By the definition of exp(C), there is a natural
number k such that padk(L) ∈ C. Since CSP(T) is C-hard,
there is a logspace (for the proof to work it is enough to
assume polylogspace) Turing machine M which, given a word
w ∈ B∗, produces an instance I(w) of CSP(T) such that I(w)
is satisfiable iff w ∈ padk(L). Without loss of generality, we
can assume that each variable in I(w) is indexed by p(n)
bits, where p is a fixed polynomial, and n is the logarithm of
the length of w (so that positions in w can be addressed by
elements of Bn).

We can assume that M , instead of producing an instance,
receives an input (i, b1, . . . , bri , w), where ri is the arity of
Ri and b1, . . . , bri are words of length p(n), and accepts iff
the instance I(w) includes the constraint

(
(xb1 , . . . , xbri ), Ri

)
.

Furthermore, we can also change M so that w is not given
as an input, but via an oracle. The machine M has a question
tape where it can write an address j ∈ Bn, and the oracle
answers whether wj = 1.

Such a machine M runs in space polynomial in its input
(not counting the oracle). Recall that a classical PSPACE-
complete problem is QBF [38]. We can encode the working
of M on words of length n using a QBF formula φ of length
polynomial in n, which additionally has an access to i, all
the bits of b1, . . . , bri , and an additional logical operation
Input(x1, . . . , xn) which is true iff w contains 1 at the position
addressed by the sequence of bits (x1, . . . , xn). The instance
I(w) can be defined in terms of this formula thus:{(

(xb1 , . . . , xbri ), Ri
)

: φ[w](b
1, . . . , bri)

}
,

where φ[w] is the formula φ where every occurrence of
Input(x1, . . . , xn) is resolved to 0 or 1 according to w.

Indeed, we can transform M running in PSPACE into one
running in alternating polynomial time (the usual proof of
PSPACE = AP proceeds with no change in the presence of
an oracle), and then transform the alternating time machine
running in time t(n) and space s(n) (both polynomial) into a
formula by listing all the t(n) configurations of length s(n),
using universal and existential quantifiers for alternations, and
binary connectives to check whether the run is correct.

Now, let v ∈ Bm. Let n = mk be the logarithm of the
length of padk(v). We have to construct an instance I∗(v)
of CSP-Inf(T) such that v ∈ L iff I∗(v) is satisfiable. We
construct I∗(v) as follows: for each relation Ri ∈ T, we take
the constraint

{(
(xa,a11...a1p(n)

, . . . , xa,ari1 ,...a
ri
p(n)

), Ri
)

: [φ](a, a1
1, . . . , a

ri
p(n))

}
where the first order formula with equality [φ] is obtained from
φ and w recursively in the following way:
• [bij ] = (a = aij)
• [∃xψ] = ∃ax[ψ], [∀xψ] = ∀ax[ψ]
• [x] = (a = ax)
• [ψ1 ∨ψ2] = [ψ1]∨ [ψ2], [ψ1 ∧ψ2] = [ψ1]∧ [ψ2], [¬ψ1] =
¬[ψ1]

• [Input(x1, . . . , xn)] is the formula ρ(a, ax1
, . . . , axn

)
which is true iff the (b1 . . . bn)-th symbol of padk(v)
is 1, where bi = 1 iff axi = a. It is straightforward to
construct such ρ of size polynomial in m; indeed, we just
have to take a disjunction of m clauses of form

b1 = j1 ∧ b2 = j2 ∧ . . . ∧ blogm = jlogm

for the (j1, . . . , jlogm) such that wj = 1.
The following conditions are then equivalent:
• v ∈ L,
• padk(v) ∈ padk(L),
• I(padk(v)) is satisfiable,
• I∗(v) is satisfiable,

which completes the proof.

C. Proofs from Section IV

1) Proof of Lemma 24: The equivalence (1↔2) is standard,
so we omit it. The implication (2→3) is obvious, so it remains
to show the opposite implication.

Let R = Φ(T) for some generalized pp-formula Φ = (I, α),
with some α : X → I, where X = {x1, . . . , xn} is the set
of free variables. Assume that for each x ∈ X , the element
α(x) is not isolated in I (i.e., appears in some constraint), as
the general case reduces to this case easily.

Let c0, c1, . . . , be a sequence of all the constraints in I, and
let In the subinstance of I induced by the constraints ci with
i < n, and containing the variables α(x), for x ∈ X i.e.,
• the variables of In are the variables which appear in

any of the constraints c0, c1, . . . , cn−1, together with all
variables α(x) for x ∈ X ,

• the constraints of In are c0, . . . , cn−1.
Let Φn be the generalized pp-formula (In, α), for i = 1, 2, . . ..



By assumption that for each x ∈ X the variable α(x) is not
isolated, and since X is finite, there is a number m0 such that
each α(x) appears in a constraint ci with i < m0.

By local finiteness of T, it follows that the relation Φm0
(T)

is finite. Therefore, the sequence Φm(T), for m > m0, is a
descending sequence of finite relations, so it stabilizes at some
point m1, i.e., Φm(T) = Φm1(T) for m1 > m.

The following equation

Φ(T) =

∞⋂
n=1

Φn(T) (2)

then implies that R = Φ(T) = Φm1
(T), so R is defined by a

finite generalized pp-definition.
It remains to prove equation (2). The left-to-right inclusion

is clear, since every homomorphism from I to T induces a
homomorphism from In to T. For the right-to-left inclusion,
suppose that (t1, . . . , tn) ∈ Φn(T) for all n. Let f0 : I0 → T
be defined by f0(α(xi)) = ti for i = 1, . . . , n. Then for each n
there is a homomorphism fn : In → T extending f0 : I0 → T.
Applying Lemma 25 yields a homomorphism f extending f0,
which is a witness of (t1, . . . , tn) ∈ Φ(T).

2) Proof of Lemma 25: We show the right-to-left implica-
tion, as the other one is obvious. We assume that the structure
I is constrained, i.e., it does not have isolated nodes, and that
the substructures In are finite (the general case reduces to this
case easily).

Take any element x ∈ I . Since I is constrained, x appears
on the j-th coordinate of some tuple t constrained to some
relation R from T. Let Ux be the projection of R on the j-
th coordinate. It is not difficult to see that if there exists a
homomorphism from In to T then there exists one that, for
every x ∈ In, maps x to an element of Ux.

Consider the compact subspace
∏
x∈I Ux of T I . For every

In let Sn be the set of all those mappings f ∈
∏
x∈I Ux

for which f |In is a homomorphisms from In to T. Every
Si is a nonempty, closed subset of

∏
x∈I Ux. Therefore,

the descending sequence S1 ⊇ S2 ⊇ . . . has a nonempty
intersection. Since

⋃
n In = I, every mapping f : I → T

which belongs to this intersection is a homomorphism from I
to T.

3) Proof of Proposition 26: Let R be the family of
relations of B. Since the set R is definable, it is orbit-
finite with respect to the action of monotone permutations.
Let R1, . . . , Rn be representatives of the orbits of R. By
assumption, R1, . . . , Rn ∈ ppDef C. For i = 1, . . . , n, let
Φi = (Ii, αi) be a finite generalized pp-formula such that
Φi(C) = Ri.

We may assume that the domains of Ii are pairwise disjoint,
and that their elements are indexed by integers. Since each
constraint in Ii uses a finite relation in C, these constraints
are definable sets with atoms, and, in effect, Φi is a definable
set with atoms.

We now describe how to convert a finite instance I = (I, C)
over B to an instance I′ = (I ′, C ′) over C.

For each constraint c = ((x1, . . . , xn), R) in I, choose
Ri which is in the same orbit as R, and any monotone-

permutation πc which maps Ri to R (such a permutation
can be computed as a piecewise-linear monotone bijection of
the rational numbers). Apply πc to the finite generalized pp-
formula Φi, yielding a finite generalized pp-formula

Φc = πc · Φi
(recall that Φi is a definable set with atoms). By equivariance
of C,

Φc(C) = (πc · Φi)(C) = πc · Φi(C) = πc ·Ri = R.

To summarize, for each constraint c = ((x1, . . . , xn), R)
of I, there is a finite generalized pp-formula Φc = (Ic, αc)
such that R = Φc(C). Moreover, the pp-formula Φc can be
computed in polynomial time from c.

The rest of the construction is standard. We define the
structure J as the disjoint union

J = I ∪
∐
c∈C

Ic,

where I is treated as a set with no relations. Define I′ as the
quotient J/ ∼, where ∼ is the smallest equivalence relation
such that v ∼ x iff v ∈ I and there is a constraint c =
((x1, . . . , xn), R) in I and i ∈ {1, . . . , n} where
• v = xi, and
• x is the i-th free variable of the generalized pp-formula

Φc.
The structure I′ can be computed in polynomial time from I.
It is easy to check that I maps to B if and only if I′ maps to
C.

4) Proof of Proposition 27: In this abstract proof, it will
be convenient to use the following conventions. If X is a set
and f : A → B is a function then by fX : AX → BX we
denote the function defined by fX(α) = α; f . For each x ∈ X
the projection πx : AX → A is defined by πx(f) = f(x). In
the case when X = {1, . . . , n} for some natural number then
AX and fX are denoted by An and fn, respectively. For a
function f : Y → AX , by f [ : X → AY we denote its
transpose, defined by f [(x)(y) = f(y)(x) for x ∈ X, y ∈ Y .

In this proof, relations and functions have set-arities which
are finite sets, rather than natural numbers. Formally, if A is
set and X is finite set, then by a relation with set-arity X
on A is a subset of AX , and a function (or operation) with
set-arity X on A is a function f : AX → A.

If n is a natural number, then identifying An with A{1,...,n}

allows to interpret relations of arity n on A as relations with
set-arity {1, . . . , n} (and similarly for operations). Conversely,
to view a relations with set-arities as normal relations, fix for
every finite set X a bijection from X to {1, . . . , n} where
n = |X|, thus identifying AX with An.

We now proceed to the proof of Proposition 27. Let Y be
the set-arity of R, i.e. R ⊆ AY .

For the left-to-right implication, let Φ = (I, α) be a
generalized pp-formula with variables Y such that R = Φ(T).
We show that R is invariant under every polymorphism of
T. Let g : TX → T be a polymorphism. Consider any X-
tuple of tuples in R, i.e., a function u : X → R ⊆ TY . Let



u[ : Y → TX be the transpose of u. We need to show that
the composition (u[; g) : Y → T belongs to R = Φ(T), i.e.
is of the form α; k for some homomorphism k : I→ T.

For every x ∈ X , u(x) is a tuple in R = Φ(T), i.e. is of the
form α;h for some homomorphism h ∈ hom(I,T). Using the
axiom of finite choice, there is a function f : X → hom(I,T)
such that u(x) = α; f(x) for all x ∈ X . Its transpose is
a homomorphism f [ : I → TX such that u[ = α; f [. The
composition k = (f [; g) : I → T is again a homomorphism,
so u[; g = α; k indeed belongs to Φ(T) = R.

For the right-to-left implication, suppose that R is invariant
under the polymorphisms of T. We show that

R = {i[; f | f : TR → T is a polymorphism},

where i : R → TY is the inclusion mapping. The above
equation immediately implies that R is definable by the
generalized pp-formula Ψ = (TR, i[). Lemma 24 then implies
that R is pp-definable. It therefore remains to prove the above
equation.

For the right-to-left inclusion, observe that if f : TR → T is
a polymorphism, then by our assumption f preserves R, so in
particular (i[; f) ∈ R. The left-to-right inclusion is also clear,
since for any r ∈ R, we have r = i[;πr where πr : TR → T
is the projection polymorphism defined by πr(t) = t(r).

5) Proof of Proposition 30: We separately show the equiv-
alences (1↔3) and (1↔2).

(1→3). Let f : T|A → T|A be an endomorphism; we
show that it is mono. It suffices to show that f extends to
an endomorphism f̂ of T. Indeed, by the the assumption (1),
the mapping f̂ is a monomorphism, so its restriction f must
be mono as well.

Consider the generalized pp-definition Φ = (T, α), where
α : A → T is the inclusion. Let R = Φ(T) ⊆ TA. The
relation R is finite, as there are no isolated nodes in T, so R ∈
ppDef(T), by Lemma 24. By definition of T|A, the restriction
R|A of R to A is a relation of T|A, and therefore is preserved
by f . Clearly, the identity mapping idA belongs to R|A, and
since f preserves R|A, it follows that f = f ; idA ∈ R|A. This
means that f extends to an endomorphism of f̂ of T. This
proves the implication (1→3).

(3→1). Let f be an endomorphism of T, and let x, y be
two distinct elements of T. We show that f(x) 6= f(y). Since
T has no isolated vertices, there are finite, pp-definable unary
predicates U, V ∈ ppDef T such that x ∈ U and y ∈ V . Then
T|U∪V is a core by (3), and f induces its endomorphism; in
particular f(x) 6= f(y).

We now proceed to the proof of the equivalence (1↔2).
The left-to-right implication is immediate. To prove other
the implication, assume that f is an endomorphism which is
not mono. We prove that there exists a monotone-equivariant
endomorphism h which is not mono. The proof invokes
Pestov’s theorem, as described below.

Let x, y ∈ T be distinct elements such that f(x) = f(y).
By assumption that T does not have isolated nodes, there is a
(finite) relation R of T, such that x appears on some coordinate
of some tuple in R. By taking the appropriate projection of R,

we obtain a finite unary relation U ∈ ppDef T which contains
x. Similarly, there is finite, unary relation V ∈ ppDef T which
contains y. We claim that, without loss of generality, we may
assume that U = V .

Indeed, if x ∈ V , then we can simply replace U by V .
Assume now that x 6∈ V . Since f is an endomorphism, f(x) ∈
U and f(y) ∈ V , so f(x) = f(y) ∈ U ∩ V . Because U ∩ V
is finite and preserved by f , there is a finite number n such
that fn is idempotent on U ∩ V , i.e., f2n(v) = fn(v) for
v ∈ U ∩ V . Take y′ = fn(x), we have:
• y′ ∈ U ∩ V ⊆ U because f(x) ∈ U ∩ V and f preserves
U ∩ V

• x 6= y′ because x 6∈ U ∩ V ,
• fn(x) = fn(y′) because fn is idempotent on U ∩ V .

Replacing f by fn, y by y′ and V by U , we get that f(x) =
f(y), x 6= y and x, y ∈ U , where U is a finite, unary relation
in ppDef T.

Let G = Aut(A, <) denote the group of monotone atom
permutations. By equivariance of T under the action of G, the
orbit of U , i.e.,

G · U def
= {π · U | π ∈ G},

is a family of unary predicates which is contained in ppDef T.

Claim 46. There is an endomorphism g whose restriction to
Ui is not mono, for all V ∈ G · U .

Let us choose a sequence π1, π2, . . . ∈ G of monotone
permutations such that G · U = {πn · U : n = 1, 2, . . .}.
For n = 1, 2, . . ., let Un = π ·U . We define fn inductively for
n = 0, 1, 2, . . ., so that fn is an endomorphism of T whose
restriction to Ui is not mono, for i = 1, 2, . . . , n. Let f0 = f .
Assuming that fn is already defined, fn+1 is defined as the
composition (πn+1 · f); fn. Then fn+1 satisfies the required
property.

By Lemma 15, the sequence of mappings f0, f1, f2, . . .
contains a convergent subsequence, whose limit is an endo-
morphism g whose restriction to any unary predicate V ∈ G·U
is not mono. This proves the claim.

Claim 47. There is a monotone-equivariant endomorphism h
which is not mono.

Consider the G-orbit G · g of the mapping g. Note that
all mappings in this set are not mono when restricted to U .
The topological closure G · g of the orbit G ·g is a monotone-
equivariant, closed set of endomorphisms, and all mappings in
this set are also not mono when restricted to U – this follows
from the fact that not being mono when restricted to U is a
closed property, as U is finite. By Pestov’s theorem, there is a
monotone-equivariant endomorphism h ∈ G · g. This mapping
is not mono, since its restriction to U is not mono.

Reassuming, if there exists an endomorphism f of T which
is not mono, then there also a monotone-equivariant one. This
finishes the proof of the implication (2→1). of Proposition 30.
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