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Abstract
We investigate several variants of the homomorphism problem:
given two relational structures, do they admit a homomorphism?
The input structures are possibly infinite, but definable by first-
order interpretations in a fixed structure. The signatures can be
either finite, or infinite, but definable. The homomorphisms can be
either arbitrary, or definable with parameters, or definable without
parameters. For each of these variants, we determine its decidability
status.

Categories and Subject Descriptors F.4.1 [Mathematical logic
and formal languages]: Mathematical logic—Model theory; F.4.3
[Mathematical logic and formal languages]: Formal languages—
Decision problems

Keywords Sets with atoms, first-order interpretations, homomor-
phism problem

1. Introduction
First-order definable sets, although often infinite, can be finitely
described and are therefore amenable to algorithmic manipulation.
Definable sets (we drop the qualifier first-order in what follows) are
parametrized by a fixed underlying relational structure A whose
elements are called atoms. We shall most often assume that the
first-order theory of A is decidable. For simplicity, unless stated
otherwise, letA be a countable set {1, 2, 3, . . .} of atoms equipped
with the equality relation only.

Example 1. Let

V = { {a, b} | a, b ∈ A, a 6= b} ,
E = { ({a, b}, {c, d}) | a, b, c, d ∈ A, φ} ,

where φ is the quantifier-free formula expressing that a, b, c, d are
pairwise distinct. Both V and E are definable sets (over A), as
they are constructed from A using (possibly nested) set-builder
expressions with first-order guards ranging over A. In general, we
also allow finite unions in the definitions; finite tuples (as above) are
allowed for notational convenience. Precise definitions are given in
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Section 2. The pair G = (V,E) is also a definable set, in fact, a
definable graph. It is an infinite Kneser graph (a generalization of
the Petersen graph): its vertices are all two-element subsets of A,
and two such subsets are adjacent iff they are disjoint.

The graph G is ∅-definable: its definition does not refer to any
particular elements ofA. In general, one may refer to a finite set of
parameters S ⊆ A to describe an S-definable set. For instance, the
set { a | a ∈ A, a 6= 1 ∧ a 6= 2} is {1, 2}-definable. Definable sets
are those which are S-definable, for some finite S ⊆ A.

Although definable sets correspond to first-order interpretations
well-known from logic and model theory, we prefer to use a dif-
ferent definition, as standard set-theoretic notions directly translate
into this setting. For example, a definable function f : X → Y
is simply a function whose domain X , codomain Y , and graph
Γ(f) ⊆ X×Y are definable sets. A relational structure is definable
if its universe, signature, and interpretation function that maps each
relation symbol to a relation on the universe, are definable. Finally,
a definable homomorphism between definable structures over the
same signature is a definable mapping between their universes that
is a homomorphism, i.e., preserves every relation in the signature.
Note that definable sets strictly generalize hereditarily finite sets
(finite sets, whose elements are finite, and so on, recursively).

In this paper, we consider the homomorphism problem for defin-
able structures: given two definable structures A,B, does there exist
a homomorphism from A to B? Note that definable structures have
finite descriptions, using set-builder notation and first-order formu-
las in the language of A, and possibly finitely many parameters
fromA. We remark that in the pure set, every first-order formula is
effectively equivalent to a quantifier-free formula, so over this un-
derlying structure, it is sufficient to consider such formulas, if we
ignore complexity issues and care only for decidability.

Example 2. The graph G from Example 1 does not map homo-
morphically to the three-clique, which corresponds to the fact that
G is not three-colorable. In fact, G does not map homomorphi-
cally to any finite clique (the finite subgraph ofG using only atoms
1, . . . , n has chromatic number n − 2, by Lovasz’ theorem [21]).
However, G maps homomorphically to the infinite clique K on A
(which is a definable graph), by any injective mapping from V to
A. Note that no such homomorphism is definable, as there is no
definable function from V to A, even with parameters.

We consider several variants of the homomorphism problem:

• Finite vs. infinite signature. In the most general form, we allow
the signature of input structures to be infinite, but definable. In
a restricted variant, the signature is required to be finite.

• Finite vs. infinite structures. In general, both input structures
can be infinite, definable. In other variants, one of the two input
structures may be required to be finite.
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• Definability of homomorphisms. In the general setting, we ask
the question whether there exists an arbitrary homomorphism
between the input structures. In other variants, the homomor-
phism is required to be definable, or to be ∅-definable.

• Restrictions on homomorphisms. Most often we ask about any
homomorphism, but one may also ask about existence of a
homomorphism that is injective, strong, or an embedding.

• Fixing one structure. In the uniform variant, both the source
and the target structures are given on input. We also consider
non-uniform variants, when one of the two structures is fixed.

• Structured atoms. In the basic setting, the underlying structure
A is the pure set, i.e., has no structure other than equality. One
can also consider sets which are definable over other structures.
For instance, if the underlying structure is (Q,≤), the defini-
tions of definable sets can refer to the relation ≤.

For most combinations of these choices, we determine the decid-
ability status of the homomorphism problem. The decidability bor-
der turns out to be quite subtle and sometimes counterintuitive. The
following theorem samples some of the opposing results proved in
this paper:

Theorem 3. Let A be the pure set. Given two definable structures
A,B over a finite signature,

(1) it is decidable if there is a ∅-definable homomorphism from A
to B,

(2) it is undecidable (but recursively enumerable) if there is a
definable homomorphism from A to B,

(3) it is decidable if there is a homomorphism from A to B,
(4) it is undecidable (but co-recursively enumerable) if a given ∅-

definable partial mapping between the universes of A and B
extends to a homomorphism.

Related work
Some of the variants considered in this paper are closely related to,
or have been considered in previous work.

The classical homomorphism problem is the problem of deter-
mining whether there exists a homomorphism from a given finite
source structure A to a given finite target structure B. This is also
known as the Constraint Satisfaction Problem, and is clearly de-
cidable (and NP-complete). The precise computational complexity
has been widely studied in the literature in many variants. The case
when the target structure is fixed (and is called a template), is of
particular interest to theoretical computer science, as it expresses
many natural computational problems (such as k-colorability, 3-
SAT, solving systems of linear equations over a finite field). The
famous Feder-Vardi conjecture states that for every fixed template
B, the resulting constraint satisfaction problem is either solvable in
polynomial time or NP-complete [15].

Bodirsky, Pinsker and coauthors [2, 6, 8] consider fixed infinite
templates over finite signatures, and finite source structures given
on input. Moreover, they usually consider the template B to be a
reduct of a fixed structure A with good properties, in particular,
with a decidable first-order theory. Reducts are special cases of
definable structures: a structure B is a reduct of A if B is ∅-
definable over A and both have the same domains. In general,
if the template B is definable over a structure A with decidable
first-order theory, then B itself has decidable first-order theory. It
follows that the existence of a homomorphism from a given finite
source structure A is trivially decidable, as it can be expressed as
an existential formula evaluated in B. In this case, the interesting
problem is to analyse the precise complexity bounds. Templates for
which a complete complexity classification was obtained (modulo
the Feder-Vardi conjecture) include all reducts of (N,=) [3], of

(Q,≤) [4], of the Rado graph [7], and of the integers with the
successor function (Z,+1) [5]. One of the key tools used in these
results is the notion of a canonical mapping, which we use here.
The construction of a canonical mapping relies on Ramsey theory,
most conveniently applied through the use of the result of Kechris,
Pestov, Todorcevic concerning extremely amenable groups [18].

One of the results (cf. (3) of Theorem 3) stated in this paper
says that the homomorphism problem is decidable in the case when
both A and B are over a finite signature and are definable over
the pure set or over (Q,≤). The result is implicit in, and can be
easily derived from [9]. Canonical functions play a crucial role in
the proof. We explain this in greater detail in Section 6.

In a previous paper [19], the source structure is considered de-
finable over the pure set, or more generally over (Q,≤). In the case
when the target structure is fixed and finite, it is shown that the com-
plexity analysis can be reduced (with an exponential blowup) to the
case of finite input structures. A more general decidability result
concerns locally finite templates, i.e., templates which are defin-
able, but in which every relation is required to contain only finitely
many tuples. The decidability proof also employs Ramsey’s theo-
rem, most conveniently applied through the use of Pestov’s theo-
rem concerning the topological dynamics of the group Aut(Q,≤),
which is a special case of the Kechris-Pestov-Todorcevic result. As
we shall demonstrate, the local finiteness restriction is crucial and
adding a single infinite definable relation leads to undecidability.

This paper, as well as [19], is part of a programme aimed at
generalizing classical decision problems and computation models
such as automata [11], Turing machines [12] and programming
languages [10, 13], to sets with atoms. For other applications of
sets with atoms (called there nominal sets) in computing, see [25].

Motivation
Testing existence of homomorphisms is at the core of many de-
cidability problems related to combinatorics and logic. As shown
in [9], decidability of pp-definability of a definable relation R in
a definable structure A can be reduced to deciding the existence
of homomorphisms between definable structures. Another appli-
cation is to 0-1 laws, and deciding whether a sentence φ of the
form ∃R.∃∗∀∗ψ is satisfied with high probability in a finite ran-
dom graph. In [20], after showing that the problem is equivalent to
testing if φ holds in the infinite random graph, the authors give a
complex Ramsey argument based on [22] to prove the decidability
of the latter. The second step can be alternatively achieved by re-
ducing to several instances of the homomorphism problem from
structures definable over the ordered random graph (which is a
Ramsey structure by [22], see Section 7) to finite target structures.
Finally in [19] the homomorphism problem for locally finite defin-
able templates is used to test whether the logic IFP captures PTime
over a certain class of finite structures, generalizing the Cai-Fürer-
Immerman construction.

2. Preliminaries
Thorough this section, fix a countable relational structure A of
atoms. We assume that the signature of A is finite. We introduce
definable sets as in [19], and discuss their relevant properties.

2.1 Definable sets
An expression is either a variable from some fixed infinite set, or
a formal finite union (including the empty union ∅) of set-builder
expressions of the form

{ e | a1, . . . , an ∈ A, φ} , (1)

where e is an expression, a1, . . . , an are (bound) variables, and φ
is a first-order formula over the signature of A and over the set of
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variables. Free variables in (1) are those free variables of e and of
φ which are not among a1, . . . , an.

For an expression e with free variables V , any valuation val :
V → A defines in an obvious way a value X = e[val], which
is either an atom or a set, formally defined by induction on the
structure of e. We then say thatX is a definable set with atoms, and
that it is defined by e with val. Note that one set X can be defined
by many different expressions. When we want to emphasize those
atoms that are used in a definition of X , we say that the finite set
S = val(V ) ⊆ A supports X , or that X is S-definable.

As syntactic sugar, we allow atoms to occur directly in set
expressions. For example, what we write as the {1}-definable set
{a | a ∈ A, a 6= 1} is formally defined by the expression {a | a ∈
A, a 6= b}, together with a valuation mapping b to 1. Similarly, the
set {1, 2} is {1, 2}-definable as a union of two singleton sets.

Remark 4. To improve readability, it will be convenient to use
standard set-theoretic encodings to allow a more flexible syntax. In
particular, ordered pairs and tuples can be encoded e.g. by Kura-
towski pairs. We will also consider as definable infinite families of
symbols, such as {Rx : x ∈ X}, where R is a symbol and X is
a definable set. Formally, such a family can be encoded as the set
of ordered pairs {R} × X , where the symbol R is represented by
some ∅-definable set, e.g. ∅ or {∅}, etc. Here we use the fact that
definable sets are closed under Cartesian products (see below).

2.2 Closure properties
The following lemma is proved routinely by induction on the nest-
ing of set-builder expressions.

Lemma 5. Definable sets are effectively closed under:

• Boolean combinations ∩,∪,− and Cartesian products,
• images and inverse images under definable functions,
• quotients under definable equivalence relations,
• intersections and unions of definable families,
• the operations
V,W 7→ { (v, w) | v ∈ V,w ∈W, v ∈ w},
V,W 7→ { (v, w) | v ∈ V,w ∈W, v = w},
V,W 7→ { (v, w) | v ∈ V,w ∈W, v ⊆ w}
(x ∈ y and x ⊆ y are interpreted as false if y is an atom).

This implies that the set-builder notation (1) may be safely
generalized by allowing bound variables to range not only over A
but also over other definable sets, and allowing in φ quantifiers of
the form ∃v∈V or ∀v∈V , for V a definable set presented by an
expression. One may also use binary predicates =,∈,⊆, relation
symbols from the signature ofA, and binary operations∪,∩,−,×.
The resulting sets will still be definable. As an example, if V and
W are definable sets, then so is

{ (v, w) | v ∈ V,w ∈W, v ⊆ w ∧ ∃a ∈ A ∃b ∈ A (a, b) ∈ v} .

Suppose that the first-order theoryA is decidable (this applies in
particular to the pure set). Then it is straightforward to prove that
the validity of first-order sentences generalized as above, such as
∀v ∈ V ∃w ∈W v ⊆ w where V andW are given by expressions,
is also decidable. This demonstrates that definable sets are suitable
for effectively performing set-theoretic manipulations and tests.

2.3 Definable relational structures
For any object in the set-theoretic universe (a relation, a function, a
logical structure, etc.), it makes sense to ask whether it is definable.
For example, a definable relation onX,Y is a relationR ⊆ X×Y
which is a definable set of pairs, and a definable function X →
Y is a function whose graph is definable. Along the same lines,
a definable relational signature is a definable set of symbols Σ,

together with a partition Σ = Σ1 ] Σ2 ] . . . ] Σl into definable
subsets, for l ∈ N. We say that σ has arity r if σ ∈ Σr .

For a signature Σ, a definable Σ-structure A consists of a defin-
able universe A and a definable interpretation function which ass-
ings a relation σA ⊆ Ar to each relation symbol σ ∈ Σ of arity r.
(We denote structures using blackboard font, and their universes
using the corresponding symbol in italics). More explicitly, such
a structure can be represented by the tuple A = (A, I1, . . . , Il)
where Ir = {(σ, a1, . . . , ar) | σ ∈ Σr, (a1, . . . , ar) ∈ σA} is a
definable set for r = 1, . . . , l (where l is the maximal arity in Σ).

Remark 6. A definable Σ-structure A = (A, I1, . . . , Il), for Σ
finite or infinite, can be seen as a definable structure over a finite
signature, denoted AΣ and defined as follows. The universe of AΣ

is A ] Σ, and its relations are I1, . . . , Il, of arity 2, . . . , l+1, re-
spectively. The signature is finite, with just l symbols. Then homo-
morphisms between Σ-structures A and B correspond to those ho-
momorphisms between AΣ and BΣ that are the identity on Σ.

Example 7. The graph G from Example 1 can be seen as a struc-
ture over the signature with a single binary predicate E. To give
an example of an infinite, definable signature, extend G to a struc-
ture A by infinitely many unary predicates representing the neigh-
borhoods of each vertex of G. To this end, define the signature
Σ = {E} ∪ {Nv | v ∈ V }, where V is the vertex set of G and
N is a symbol (cf. Remark 4). The interpretation of Nv is specified
by the set I1 = { (Nv, w) | (v, w) ∈ E} (where E is defined by
the expression from Example 1), which is definable by Lemma 5.

Lemma 8. For every S-definable set X there is an S-definable
surjective function f : Y → X , where Y is an S-definable subset
of Ak, for some k ∈ N. Moreover, f and Y can be computed
from X .

Proof: see Appendix A.1.

Remark 9. Definable structures over finite signatures correspond,
up to definable isomorphism, to structures that interpret with pa-
rameters in A, in the sense of model theory [17]. This can be de-
duced from Lemma 8 (see Appendix A.2.).

2.4 Representing the input
Definable relational structures can be input to algorithms, as they
are finitely presented by expressions defining the signature, the
universe, and the interpretation function. If the input is an S-
definable set X , defined by an expression e with valuation val :
V → S with V = {v1, . . . , vn} the free variables of e, then we
also need to represent the tuple val(v1), . . . , val(vn) of elements of
S. For the pure setA, these elements can be represented as 1, 2, . . ..

In all decision problems defined in this paper, the input will
consist of definable structures as described above.

3. Homomorphism problems
For simplicity, we prefer to drop the generality of the previous
section. From now on, until the end of Section 5, let A be the pure
set. We postpone to Section 7 a discussion on generalizations of our
results to underlying structures other than the pure set.

3.1 ∅-definable homomorphism problem
Let’s start with the following warm-up decision problem:

Problem: ∅-DEFINABLE HOMOMORPHISM
Input: ∅-definable structures A and B over Σ.
Decide: Is there an ∅-definable homomorphism from A to B?

It is not hard to prove that:

Theorem 10. ∅-DEFINABLE HOMOMORPHISM is decidable.
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This implies (1) of Theorem 3. The proof is given e.g. in [19].
We sketch it here in order to illustrate good algorithmic properties
of definable sets, and to emphasize the contrast with later undecid-
ability results.

Proof sketch. Our aim is to decide if two given ∅-definable Σ-
structures A = (A, I1, . . . , Il) and B = (B, J1, . . . , Jl) admit
an ∅-definable homomorphism. The signature Σ is assumed to be
part of the input (also, it can be computed from A or from B).

We will use the following facts that hold for the pure set A, but
also for many other structures with decidable first-order theories.

Lemma 11. For each number n ∈ N, there are finitely (doubly
exponentially) many first-order formulas with n free variables, up
to equivalence in A.

The following lemma is a consequence.

Lemma 12. An ∅-definable set X has only finitely many ∅-
definable subsets, and expressions defining these subsets can be
enumerated from an expression defining X .

Indeed, for each definable setX represented by a single set-builder
expression of the form (1), replace φ by each (up to equivalence)
quantifier-free formula ψ with the same free variables and such that
ψ → φ, i.e., ψ ∨ φ is equivalent to φ.

To find an ∅-definable homomorphism from A to B, apply
Lemma 12 to X = A × B and for every ∅-definable subset
R ⊆ A×B, test the validity of the first-order formula

∀a ∈ A ∃!b ∈ B R(a, b)

ensuring that R is a graph of a function, and of the formula∧
1≤i≤l

∀a1, . . . , ai ∈ A ∀b1, . . . , bi ∈ B ∀ρ ∈ Σi

Ii(ρ, a1, . . . , ai)→ Ji(ρ, b1, . . . , bi)

ensuring that the function is a homomorphism.

In a similar vein one can decide the existence of homomor-
phisms that are injective, strong, or are embeddings, as all these
properties are first-order definable.

The assumption that the structures A and B are ∅-definable is
inessential in Theorem 10; the crucial assumption is that a homo-
morphism we ask for is required to be ∅-definable. In fact, a similar
argument as above works even if the two given structures are defin-
able instead of ∅-definable, and a homomorphism is allowed to be
definable with n parameters, for a given n ∈ N.

3.2 (Definable) homomorphism problem
In more relaxed versions of the homomorphism problem, we ask
for a homomorphism that is definable without any bound on the
size of support:

Problem: DEFINABLE HOMOMORPHISM
Input: Definable structures A and B over Σ.
Decide: Is there a definable homomorphism from A to B?

Or we may make no restriction on a homomorphism at all:

Problem: HOMOMORPHISM
Input: Definable structures A and B over Σ.
Decide: Is there a homomorphism from A to B?

Note the different nature of the two problems. On one hand, DE-
FINABLE HOMOMORPHISM is recursively enumerable, by an argu-
ment similar to the proof sketch of Theorem 10; on the other side
HOMOMORPHISM is co-recursively enumerable, by a compactness
argument. (Indeed, if every finite substructure of A maps to B, then
A maps to B.)

Remark 13. We might also consider natural variants of (DEFIN-
ABLE) HOMOMORPHISM, where one asks about existence of an
injective homomorphism, or a strong homomorphism, or an em-
bedding. The decidability status of all these problems is the same.
Theorems 14–17, to be stated below, apply to all these variants.

Below we show that both DEFINABLE HOMOMORPHISM and
HOMOMORPHISM are undecidable in general. Before that, we ob-
serve that when one of the input structures has finite universe, the
problems are decidable:

Theorem 14. DEFINABLE HOMOMORPHISM and HOMOMOR-
PHISM are decidable if one of the input structures has a finite uni-
verse.

Proof: see Appendix B.1.

In contrast with Theorems 10 and 14, our first main result is that
the general version of the homomorphism problem is undecidable:

Theorem 15. HOMOMORPHISM is undecidable, even if one of the
input structures is fixed.

The fixed input structure is understood existentially; in particular,
there exists a definable structure B such that it is undecidable, for a
given definable structure A over the same signature, whether there
is a homomorphism A→ B. Theorem 15 is proved in Section 4.

More surprisingly, it turns out that DEFINABLE HOMOMOR-
PHISM is even harder to decide:

Theorem 16. DEFINABLE HOMOMORPHISM is undecidable even if

(i) a source structure A over a finite signature is fixed; or
(ii) a target structure B is fixed.

Theorem 16 is proved in Section 5, proving (2) of Theorem 3.
These two negative results are complemented by a positive one:

Theorem 17. HOMOMORPHISM is decidable for finite signatures.

Theorem 17 is implicit in [9], and is proved (although not stated
explicitly) there in a special case when A = Bn, for n ≥ 1, where
Bn denotes the product structure, and A is a reduct of a finitely
bounded Ramsey structure A (see Section 7). For completeness,
we give a self-contained proof of Theorem 17 in Section 6. This
gives (3) of Theorem 3.

Theorems 10–17 settle the decidability landscape for homomor-
phism problem almost entirely. One remaining open problem is the
decidability status of DEFINABLE HOMOMORPHISM for a fixed
target structure B over a finite signature. We discuss this and other
minor remaining problems in Sections 4 and 5.

3.3 Homomorphism extension problem
Theorem 17 may be a little surprising in light of Theorem 15.
Indeed, Remark 6 allows viewing an arbitrary definable Σ-structure
as a definable structure AΣ over a finite signature. Homomorphisms
A → B correspond to those homomorphisms AΣ → BΣ that
are the identity on the subset Σ of the universe of AΣ. Thus by
Theorem 15 we obtain undecidability, even for finite signatures, of
the following slight generalization of HOMOMORPHISM:

Problem: HOMOMORPHISM EXTENSION
Input: Definable structures A and B over Σ and a definable partial
mapping f : A→ B.
Decide: Is there a homomorphism from A to B extending f?

The above remark proves (4) of Theorem 3:

Theorem 18. HOMOMORPHISM EXTENSION is undecidable for
finite signatures.
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4. Homomorphism problem for infinite
signatures

This section contains the proof of Theorem 15. We consider first the
case when the source structure is fixed, and the target structure is
the sole input. Thus, given a definable structure A over a definable
signature Σ, we consider the following problem:

Problem: HOM(A,-)
Input: A definable structure B over Σ
Decide: Is there a homomorphism from A to B?

Example 19. Consider a signature with a single binary relation
symbol R. For a chosen atom a0 ∈ A, define structures A and B
over this signature as follows:

A = A B = A− {a0}
RA = 6= RB = 6=

Note that A is ∅-definable and B is {a0}-definable. Considered as
graphs, A and B are isomorphic to the countably infinite clique.
However, no homomorphism h : A → B is definable. To see this,
suppose towards contradiction that an S-definable homomorphism
h actually exists for some finite S. Since A is a clique and B has no
self-loops, h must be injective. Pick the atom a1 = h(a0). Clearly
a1 6= a0, since a0 6∈ B. This means that a1 ∈ S; indeed, if a1 /∈ S
then the S-definition of (the graph of) h would be invariant under
a renaming π of atoms with π(a0) = a0 and π(a1) 6= a1, which
cannot be since h is a function. Now consider a2 = h(a1). Again,
a2 6= a0. Moreover we have a2 6= a1, since a1 6= a0 and h is
injective. Moreover, a2 ∈ S by the same argument as for a1. This
proceeds by induction, showing that infinitely many distinct atoms
must belong to S, which contradicts the finiteness of S.

More importantly, each homomorphism h : A → B deter-
mines an infinite sequence of distinct atoms a0, a1, a2, . . . such that
h(ai) = ai+1 for each i ∈ N.

Remark 20. An effect similar to Example 19 can be observed for
∅-definable A and B. Consider

A = A B = {ab | a, b ∈ A, a 6= b}
RA = 6= RB = {(ab, ac) | a, b, c ∈ A, a 6= b 6= c 6= a}

(Here ab is simplified syntax for (a, b).) Note that for any homo-
morphism h : A → B, all atoms in A are mapped to pairs that
share the same first component (call it a0). A reasoning similar to
Example 19 shows that this determines a sequence of distinct atoms
a0, a1, a2, . . . such that h(ai) = a0ai+1 for each i ∈ N.

Theorem 21. There exists a ∅-definable structure A for which the
problem HOM(A,-) is undecidable.

Proof. We reduce a quarter-plane tiling problem defined as follows.
For a finite setK 3 K,L, . . . of colors, and for relations ΓH ,ΓV ⊆
K ×K, a quarter-plane tiling is a function γ : N2 → K such that

(γ(i, j), γ(i+ 1, j)) ∈ ΓH and (γ(i, j), γ(i, j + 1)) ∈ ΓV

for i, j ∈ N. By a well-known result of Berger [1], it is undecidable
whether there exists a quarter-plane tiling for givenK, ΓH and ΓV .

Consider the (infinite but definable) signature Σ with:

• a unary predicate symbol Pa for each a ∈ A, and
• binary relation symbols Π1, Π2, R and T .

Define a structure A over Σ by:

A = A ∪A2 PA
a = {a} for a ∈ A

ΠA
1 = {((a, b), a) | a, b ∈ A} ΠA

2 = {((a, b), b) | a, b ∈ A}
RA = {(a, b) | a, b ∈ A, a 6= b} TA = A2 ×A2

Note that RA relates only atoms, TA relates only (and all) pairs
of atoms, and ΠA

1 , ΠA
2 relate pairs of atoms to their components.

Clearly, A is ∅-definable.
Fix an atom a0 ∈ A. Denote

B0 = {ab | a, b ∈ A, b 6= a0}.

Note that the set B0 is {a0}-definable. Elements of B0 are pairs of
atoms, but we write ab instead of (a, b), to distinguish them from
pairs of atoms used in A. The two kinds of pairs will serve different
purposes in the encoding of the quarter-plane tiling problem. Intu-
itively, a pair (a, b) in A will encode a point in the quarter-plane
with coordinates a and b, while a pair ab in B0 will model the fact
that b encodes the successor of a in both axes of the quarter-plane.

Formally, given an instance K, ΓH and ΓV of the quarter-plane
tiling problem, define a {a0}-definable Σ-structure B:

B = B0 ∪ (B2
0 ×K)

P B
a = {ab ∈ B0 | b ∈ A} for a ∈ A

ΠB
1 = {((ab, cd,K), ab) | ab, cd ∈ B0,K ∈ K}

ΠB
2 = {((ab, cd,K), cd) | ab, cd ∈ B0,K ∈ K}

RB = {(ab, cd) | ab, cd ∈ B0, b 6= d}
T B = {((ab, cd,K), (ef, gh, L)) |

((b = e) ∧ (c = g)→ (K,L) ∈ ΓH)

∧ ((a = e) ∧ (d = g)→ (K,L) ∈ ΓV )}

We shall now prove thatK, ΓH and ΓV admit a quarter-plane tiling
if and only if there is a homomorphism h : A→ B.

For one direction, assume a quarter-plane tiling γ : N2 → K.
Consider any enumeration of all atoms a0, a1, a2, . . . with a0 as
the first element. Define h : A→ B by:

h(ai) = aiai+1

h(ai, aj) = (aiai+1, ajaj+1, γ(i, j)).

It is easy to check that h is a homomorphism. Indeed, Π1, Π2

and all predicates Pa are preserved immediately. So is R, since
ai 6= aj implies ai+1 6= aj+1. For T to be preserved, for any
(ai, aj), (ak, al) ∈ A2, we need to check that(

(aiai+1, ajaj+1, γ(i, j)), (akak+1, alal+1, γ(k, l)
)
∈ T B.

If k = i + 1 and l = j then (γ(i, j), γ(k, l)) ∈ ΓH since γ is a
tiling. If k = i and l = j + 1 then (γ(i, j), γ(k, l)) ∈ ΓV , for
the same reason. In all other cases the condition holds trivially, by
definition of T B.

For the other direction, consider any homomorphism h : A →
B. Interpretations of the predicates Pa in A and B ensure that for
each a ∈ A, necessarily h(a) = ab for some b 6= a0. Moreover,
by the interpretations of Π1 and Π2, for each a, b ∈ A

h(a, b) = (h(a), h(b),K)

for some K ∈ K.
Consider Σ, A and B restricted to the relation symbol R. The

above implies that h restricts to a homomorphism from A to B0

that always returns its argument on the first component. This is
essentially the same situation as in Example 19, and for reasons
explained there, there must be an infinite sequence of distinct atoms
a0, a1, a2, . . . such that h(ai) = aiai+1 for each i ∈ N.

Define γ : N2 → K so that γ(i, j) is the color K such that

h(ai, aj) = (aiai+1, ajaj+1,K).

This is a quarter-plane tiling. Indeed, since

((ai, aj), (ai+1, aj)) ∈ TA
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then necessarily(
(aiai+1, ajaj+1, γ(i, j)), (ai+1ai+2, ajaj+1, γ(i+ 1, j)

)
∈ T B

which, by definition of T B, implies that (γ(i, j), γ(i+1, j)) ∈ ΓH .
The condition for ΓV follows analogously.

Remark 22. The problem HOM(A,-), for A as in the proof of The-
orem 21, remains undecidable even if one restricts input structures
B to be ∅-definable. To see this, Remark 20 is useful. Technically,
in the proof above one replaces B0 with

Be0 = {abc | a, b, c ∈ A, a 6= c},

redefines P B
a , ΠB

1 , ΠB
2 and T B so that they ignore the first compo-

nents of triples from Be0 , and changes RB so that it only relates
triples with the same first component:

RB = {(abc, ade) | abc, ade ∈ Be0 , c 6= e}
The resulting structure B is ∅-definable and, using Remark 20
instead of Example 19, the proof of Theorem 21 works analogously.

Another variant of the homomorphism problem keeps a target
structure B fixed, and treats the source structure as input:

Problem: HOM(-,B)
Input: A definable structure A over Σ
Decide: Is there a homomorphism from A to B?

It easily follows from Theorem 21 that this problem cannot be
solvable in any practical sense: even if HOM(-,B) were decidable
for every B, there could be no way to compute an algorithm to solve
this problem, given a description of B. In fact, a stronger negative
result holds:

Theorem 23. There exists a definable structure B for which the
problem HOM(-, B) is undecidable.

Proof. We proceed much as in the proof of Theorem 21, by a
reduction from a seeded version of the quarter-plane tiling problem
defined as follows. Given K, ΓH and ΓV , for a finite sequence of
colors K0,K1, . . . ,Kn ∈ K (a seed), a legal tiling γ : N2 → K is
seeded if γ(i, 0) = Ki for every i ∈ {0, 1, . . . , n}.

It is easy see that there exist fixed K, ΓH and ΓV such that it
is undecidable whether a given seed admits a seeded tiling. Indeed,
in Wang’s proof of undecidability of the constrained tiling problem
(see e.g. [14, App. A]), where tile sets encode Turing machines, it is
enough to consider a set that encodes a universal Turing machine,
and represent an input word for the machine as the seed.

Fix some atom a0 ∈ A and consider B defined as in the proof of
Theorem 21, for the specificK, ΓH and ΓV as above. Additionally,
extend the signature with an infinite family of predicate symbols
{Qa | a ∈ A}, and a finite family of predicate symbols {OK |
K ∈ K}. Interpret these in B as:

QB
a = {ba ∈ B0 | b ∈ A} for a ∈ A,

OB
K = {(ab, cd,K) | ab, cd ∈ B0} for K ∈ K.

(In particular, QB
a0 = ∅.) The structure B is {a0}-definable.

Given a seed K0,K1, . . . ,Kn, consider a structure A over the
extended signature as in the proof of Theorem 21. Pick any n + 2
distinct atoms a0, a1, . . . , an+1 starting with a0. Extend A by:

QA
ai+1

= {ai} for 0 ≤ i ≤ n,

QA
a = ∅ for a 6∈ {a1, . . . , an+1},

OA
K = {(ai, a0) | i ≤ n, Ki = K} for K ∈ K.

The structure A is {a0, a1, . . . , an+1}-definable.

Homomorphisms from A to B then correspond to quarter-plane
tilings for K, ΓH and ΓV seeded by K0, . . . ,Kn. To see this,
proceed as in the proof of Theorem 21, but note additionally that
due to the interpretation of the Pa and Qa in A and B, for any
h : A → B there is holds that h(ai) = aiai+1 for 0 ≤ i ≤ n.
In other words, the infinite sequence of atoms determined by h
as in the proof of Theorem 21, must begin with a0, a1, . . . , an+1.
Finally, by the interpretation ofOK in A and B, the tiling γ derived
from h satisfies γ(i, 0) = Ki for 0 ≤ i ≤ n, as requested.

Remark 24. The structure B in Theorem 23 can be made ∅-
definable, using the technique of Remarks 20 and 22. However,
nonempty support of input structures A used in the proof of The-
orem 23 seems harder to avoid, as in the reduction, its size is un-
bounded. We leave open the question whether there exists a B for
which HOM(-,B) is undecidable when restricted to ∅-definable in-
put structures.

5. Definable homomorphism problem
This section contains the proof of Theorem 16. First, given a defin-
able structure A over a finite signature Σ, consider the problem:

Problem: DEF-HOM(A,-)
Input: A definable structure B over Σ
Decide: Is there a definable homomorphism from A to B?

Example 19 shows a situation where definable homomorphisms
do not exist, but non-definable ones do, and each of them induces
an infinite sequence of atoms. In the following example definable
homomorphisms do exist, and each of them determines a finite
cycle of atoms.

Example 25. Consider a signature with a single binary relation
symbolR. Define structures A and B over this signature as follows:

A = A B = { ab | a, b ∈ A, a 6= b}
RA = 6= RB = { (ab, cd) | a, b, c, d ∈ A, a 6= b, c 6= d, a 6= c}
Note that there are many non-definable homomorphisms from A to
B. For example, for any enumeration a0, a1, a2, . . . of atoms, one
may put h(an) = anan+1 for each n ∈ N.

However, definable homomorphisms from h : A → B also
exist. For example, there is an S-definable one for S = {1, 2, 3}:

h(x) = x1 h(a) = 12 h(b) = 23 h(c) = 31

where x 6∈ S. Note how the values of h on S encode a cycle of
atoms of length 3. This is a general phenomenon. Indeed, consider
any S-definable homomorphism h : A → B, for some finite
S = {a1, . . . , an} ⊆ A. Denote ei = h(ai) for i = 1..n. Each
ei is of the form ajak for some 1 ≤ j 6= k ≤ n. Indeed, if some
ei = bc for some b 6∈ S, then the S-definition of (the graph of) h
would be invariant under a renaming π of atoms with π(ai) = ai
and π(b) 6= b, which cannot be since h is a function.

One may view the ei as edges of a directed graph with nodes
{a1, . . . , an}. This graph has n nodes, n edges, no self-loops, and,
looking at the definition ofRB, no two distinct edges have the same
source. In other words, the graph is the graph of a function without
fixpoints on {a1, . . . , an}, therefore it contains a cycle of length at
least 2. In other words, there is a subset of S of size at least 2 that
is mapped to a set of the form {aiaj , ajak, . . . , amai}.

This observation will be the core of the following undecidability
theorem, much as Example 19 was the core of Theorem 21.

Theorem 26. There exists an ∅-definable structure A over a finite
signature for which the problem DEF-HOM(A,-) is undecidable.

Proof. The proof is similar to that of Theorem 21, with Example 25
replacing Example 19 as the core source of undecidability.
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We reduce a periodic tiling problem defined as follows. For a
finite set K 3 K,L, . . . of colors and relations ΓH ,ΓV ⊆ K ×K,
we say that a tiling γ : N2 → K is periodic if there is a number
n ≥ 1 such that γ(i, j) = γ(i + n, j) = γ(i, j + n) for i, j ∈ N.
It is well known [16] that it is undecidable whether a periodic tiling
exists for given K, ΓH and ΓV .

Consider a signature Σ with four binary relation symbols Π1,
Π2, R and T . Define a structure A over Σ as in the proof of
Theorem 21, minus the interpretation of predicates Pa, which are
now absent from the signature.

Given an instanceK, ΓH and ΓV of the periodic tiling problem,
define a Σ-structure B by:

B = {ab | a 6= b ∈ A}
∪ {(ab, cd,K) | a 6= b, c 6= d ∈ A,K ∈ K}

ΠB
1 = {((ab, cd,K), ab) | a 6= b, c 6= d ∈ A,K ∈ K}

ΠB
1 = {((ab, cd,K), cd) | a 6= b, c 6= d ∈ A,K ∈ K}

RB = {(ab, cd) | a 6= b, c 6= d, a 6= c ∈ A}
T B = {((ab, cd,K), (ef, gh, L)) |

(e = b ∧ d = h =⇒ (K,L) ∈ ΓH)

∧ (d = g ∧ b = f =⇒ (K,L) ∈ ΓV )}

We shall now prove that K, ΓH and ΓV admit a periodic tiling if
and only if there is a definable homomorphism h : A→ B.

For the “if” part, consider any S-definable homomorphism h :
A → B, for a finite set S ⊆ A. Interpretations of Π1 and Π2

in A and B ensure that for each a ∈ A, necessarily h(a) = bc
for some b 6= c ∈ A. Moreover, for each a, b ∈ A, there is
h(a, b) = (h(a), h(b),K) for some K ∈ K.

Consider Σ, A and B restricted to the relation symbol R. The
above implies that h restricts to an S-definable homomorphism
from A to {ab | a 6= b ∈ A}. This is essentially as in Exam-
ple 25, and for reasons explained there, there must be a sequence
(a0, a1, . . . , an−1) of atoms from S, with 2 ≤ n ≤ |S|, such that
all pairs a0a1, a1a2, . . . , an−2an−1, an−1a0 are values of h on
some atoms from S. Denote those atoms b0, . . . , bn−1 ∈ S, so that

h(b0) = a0a1, h(b1) = a1a2, . . . , h(bn−1) = an−1a0.

Note that we make no claims as to whether some bi are equal to aj ,
and to which ones. This is irrelevant for the following.

For j ≥ n, define aj = ai, where i is the residue of j modulo
n. Define γ : N2 → K so that γ(i, j) is the color K such that

h(bi, bj) = (aiai+1, ajaj+1,K).

This is a legal periodic tiling. Indeed, since TA is the full relation
on pairs of atoms, for each i, j ∈ N we must have

((aiai+1, ajaj+1, γ(i, j)), (ai+1ai+2, ajaj+1, γ(i+1, j))) ∈ T B

((aiai+1, ajaj+1, γ(i, j)), (aiai+1, aj+1aj+2, γ(i, j+1))) ∈ T B

hence (γ(i, j), γ(i+ 1, j)) ∈ ΓH , (γ(i, j), γ(i, j + 1)) ∈ ΓV and
the tiling is legal.

For the converse, let γ : N2 → K be a periodic tiling with
period n. Without loss of generality, n ≥ 2. Pick any n atoms
a0, . . . , an−1 ∈ A. Define

h(x) = xa0

h(ai) = aiai+1

h(x, y) = (xa0, ya0, γ(0, 0))

h(ai, y) = (aiai+1, ya0, γ(i+ 1, 0))

h(x, aj) = (xa0, ajaj+1, γ(0, j + 1))

h(ai, aj) = (aiai+1, ajaj+1, γ(i+ 1, j + 1))

where x, y 6∈ {a0, . . . , an−1}. Let S = {a0, . . . , an−1}.
The function h is clearly S-definable. Moreover, it is a homo-

morphism from A to B. Indeed, relations Π1, Π2 and R are pre-
served immediately by definition. To check that T is preserved, we
need to demonstrate that h maps every pair of elements of A2 to
a pair related by T B. Consider the value of h on some arbitrarily
chosen pair of elements of A2, say

(ab, cd,K) and (ef, gh, L).

We must show that the implications in the definition of T B hold.
By definition of h, the value of h on elements of A2 is always

of the form (xai, yaj , γ(i, j)), for some i, j ∈ {0, . . . , n−1}, and
for some atoms x, y that will be irrelevant for the present analysis.
In particular, we know that b, d, f, h ∈ {a0, . . . , an−1}. Choose
i, j ∈ {0, . . . , n−1} so that b = ai and d = aj .

We only concentrate on the first implication in the definition of
T B, as the other one is shown analogously. Suppose b = e and
d = h. Then f = ai+1 (by the definition of h), and we obtain

(ab, cd) = (xai, yaj) (ef, gh) = (aiai+1, zaj),

for some atoms x, y, z. We infer K = γ(i, j) and L = γ(i+ 1, j),
hence (since γ is a tiling) (K,L) ∈ ΓH as required.

Remark 27. Note that the structure B constructed in the proof
above is always ∅-definable, so the problem DEF-HOM(A,-) re-
mains undecidable on inputs restricted to ∅-definable structures.

As in the case of arbitrary homomorphisms, one can consider a
dual variant of the definable homomorphism problem, for a fixed
target Σ-structure B:

Problem: DEF-HOM(-,B)
Input: A definable structure A over Σ
Decide: Is there a definable homomorphism from A to B?

At the price of considering infinite signatures, one can repeat the
development of Section 4 to prove:

Theorem 28. There exists an ∅-definable structure B for which the
problem DEF-HOM(-,B) is undecidable.

Proof: see Appendix C.1.

Remark 29. We do not know whether DEF-HOM(-,B) remains
undecidable for some structure B over a finite signature, and/or
when inputs are restricted to ∅-definable structures. Note, however,
that by Theorem 26 there exists an ∅-definable structure A over a
finite signature for which DEF-HOM(A,-) is undecidable.

Remark 30. Homomorphisms constructed in the proofs of The-
orems 21, 23, 26 and 28, are injective. Therefore the respective
variants of the homomorphism problem remain undecidable when
one asks about existence of an injective homomorphism. In The-
orems 21 and 26, those homomorphisms are even embeddings,
i.e., they reflect relations and predicates as well as preserve them.
Therefore the existence of embeddings of fixed structures is unde-
cidable. However, homomorphisms in the proofs of Theorems 23
and 28 are not embeddings, as they do not reflect predicates Qa
and OK . Decidability of the existence of embeddings into fixed
definable structures therefore remains open.

6. Homomorphism problem for finite signatures
This section contains the proof of Theorem 17:

Theorem 17. HOMOMORPHISM is decidable for finite signatures.

The result can be easily deduced from the proof in [9]. How-
ever, it is not explicitly stated there. Therefore, we present a self-
contained proof, which follows the lines of [24].
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Let A and B be definable structures over a finite signature Σ.
Then there is a finite set S ⊆ A such that every relation of A
and of B is S-definable. For simplicity, we assume that S = ∅,
i.e. that every relation (and also the domains A,B) of A and B are
∅-definable. The proof generalizes to arbitrary definable structures
over a finite signature as we discuss later. In the rest of this section
fix A and B over a finite signature Σ, as described above.

One might try to prove Theorem 17 by proving that existence of
a homomorphism from A to B implies existence of a definable one
with a support of bounded size. Then one could use the approach of
Section 3.1. This cannot work however, as shown in Example 19.

Instead, we first show that existence of a homomorphism from
A to B implies existence of a canonical one (to be defined shortly);
then we provide a way of representing canonical homomorphisms
effectively, which yields a decision procedure to decide their exis-
tence. The key technical tool comes from topological dynamics, in
the following theorem due to Pestov [23]:

Theorem 31. Every continuous action of the topological group
Aut(Q,≤) on a compact space has a fixpoint.

Since Pestov’s theorem concerns the automorphism group of
the rational numbers, it will be convenient to assume that A is
isomorphic to (Q,≤). Therefore, A has more structure than the
pure set. Every set or structure definable over the pure set is also
definable over A (where definitions can refer to = but also to ≤).

6.1 Canonical functions
We recall from [9] canonical functions and the main result about
them. Our presentation is inspired by [24]. In this section, there is
no mention of relational structures.

We use standard notions of (topological) groups, (continuous)
group actions and orbits. In particular, we consider the pointwise
convergence topology on the set of all functions fromA toB, where
a basic open neighborhood of a function f : A → B is specified
by a finite set S ⊆ A, and consists of those functions g : A → B
which agree with f on S.

The connection of continuous group actions with definable sets
comes from the following lemma.

Lemma 32. LetD denote the set of all definable sets overA. Then
Aut(A) acts on D via π · e[val] = e[π ◦ val], for π ∈ Aut(A), an
expression e and valuation val of the free variables of e. This action
is continuous, for the discrete topology on D and the pointwise
convergence topology on Aut(A).

It follows that if x,X are definable sets such that x ∈ X then
π ·x ∈ π ·X for all π ∈ Aut(A). In particular, ifX is ∅-definable,
then X is an Aut(A)-invariant subset of D.

To avoid confusion later, and also for greater generality, let us
assume that two, possibly different groups G,H act on A and on
B, respectively. The following definition is crucial.

Definition 33. Let G act on A and H act on B. A function
f : A→ B is canonical if for every n ≥ 1, every G-orbit of An is
mapped (componentwise) by f to a single H-orbit of Bn.

Below we state the main result about canonical functions, Theo-
rem 34. Roughly, it says that under some topological assumptions,
every function fromA toB induces a “similar” canonical function.
To state this precisely, we need some terminology from topology.

A topological group G is extremely amenable if every continu-
ous action of G on a compact space X has a fixpoint. By Pestov’s
theorem [23], the group Aut(Q,≤), with the topology of pointwise
convergence, is extremely amenable.

We say that H acts oligomorphically on B if for every n ∈ N,
Bn has finitely many orbits under the componentwise action of H .

In the statement below, A and B are discrete, and the closure is
with respect to the pointwise convergence topology on A→ B.

Theorem 34 ([9]). Assume that G is extremely amenable and acts
continuously on A, and that H acts oligomorphically on B. Then,
for every function h : A → B there exists a canonical function
f : A→ B such that f ∈ H · h ·G.

We introduce some terminology which we find useful in proving
Theorem 34, and also in its applications.

For n ∈ N, denote {1, . . . , n} by [n]. Let K be the category
whose objects are sets [n], for n ≥ 1, and whose morphisms are
order-preserving inclusions. A projection system, also known as a
simplicial set, is a contravariant functorP fromK to the category of
sets. More explicitly, P is a family of sets Pn, one for each n ∈ N,
and for each i : [m] → [n], a mapping πi : Pn → Pm called
a projection, such that for [k]

i−→ [m]
j−→ [n], the composition

Pn
πj−→ Pm

πi−→ Pk is equal to πj◦i. A mapping of projection
systems P,Q is a natural transformation α : P → Q, i.e., a family
of functions αn : Pn → Qn, one for each n ∈ N, which commutes
with projections: for each increasing i : [m]→ [n],

αm ◦ πPi = πQi ◦ αn. (2)

For a set A, denote by A∗ the projection system whose com-
ponents are An, for n ≥ 1, and with πi : An → Am be-
ing the obvious projection onto m coordinates, for an increasing
i : [m]→ [n]. A function f : A→ B naturally induces a mapping
f∗ : A∗ → B∗ of projection systems.

The componentwise action of G on A∗ is an action by projec-
tion system automorphisms, i.e., an element ρ ∈ G induces a map-
ping of the projection system A∗ to itself, which has an inverse
mapping. This action induces the quotient projection system, de-
notedA∗/G, whose components areAn/G, the orbits ofAn under
the action of G, and the projections are the natural ones. Similarly
we define the action of H on B∗ and the quotient B∗/H .

The groups G and H act on the set of mappings α : A∗ → B∗:

• H acts from the left, by (ρ · α)(ā) = ρ(α(ā)) for ρ ∈ H .
• G acts from the right, by (α · σ)(ā) = α(σ(ā)) for σ ∈ G.

Moreover, the two actions commute, i.e., (ρ · f) · σ = ρ · (f · σ).
Let κ : (A → B) → (A∗ → B∗/H) be defined so that κ(f)

is the composition of f∗ with the quotient mapping B∗ → B∗/H .
The following lemma is simply a reformulation of the definition of
canonicity.

Lemma 35. f : A → B is canonical iff κ(f) : A∗ → B∗/H is
invariant under the (right) action of G.

We now proceed to proving Theorem 34. First, two lemmas:

Lemma 36. Any mapping of projection systems u : A∗ → B∗/H
can be lifted to a mapping f : A→ B, such that κ(f) = u.

Proof. Choose an enumeration a1, a2, . . . of the elements of A.
We lift u to a mapping f∗ : A∗ → B∗ inductively, so that
H ·f∗(a1 . . . an) = u(a1 . . . an). In each step, this can be achieved
because u is a mapping of projection systems.

Lemma 37. If H acts oligomorphically on B, then the set of
projection system mappings A∗ → B∗/H , equipped with the
topology of pointwise convergence is a compact space.

Proof: see Appendix D.1.
Finally, we prove Theorem 34.

Proof. Let h : A → B. Then κ(h) : A∗ → B∗/H; let K =

G · κ(h) denote the closure of the orbit of κ(h) in the space of pro-
jection system mappingsA∗ → B∗/H . It follows from Lemma 37
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that K is compact. It is clear that G acts continuously on the set
of mappings A∗ → B∗/H , and hence also on K, the closure of a
G-orbit. By extreme amenability, there is a fixpoint u ∈ K, where
u is a mapping u : A∗ → B∗/H . Let f be as in Lemma 36, so that
κ(f) = u. It follows that f ∈ H · h ·G (see Appendix D.2.).

6.2 Back to relational structures
We now interpret Theorem 34 in terms of relational structures.

Let A be isomorphic to (Q,≤). Let A,B be structures over
finite signatures, both definable overA, and such that each relation
of A and B is ∅-definable. Let G = H = Aut(A); this group
acts continuously on A and on B, and preserves each relation of A
and B (by Lemma 32). In particular, every ρ ∈ Aut(A) induces an
automorphism of A and of B. If A is isomorphic to (Q,≤), then
the two assumptions of Theorem 34 are satisfied:

• G is extremely amenable, thanks to Pestov’s result (Theo-
rem 31), since A is isomorphic to (Q,≤).

• H acts oligomorphically onB. This is because clearly, Aut(A)
acts oligomorphically on A, and so it acts oligomorphically
on every ∅-definable subset X ⊆ An, for n ≥ 1, and, by
Lemma 8, on every ∅-definable set; in particular, on B.

Since homomorphisms A→ B form a closed subset ofA→ B,
and G,H induce automorphisms of A,B, Theorem 34 yields:

Corollary 38. If there is a homomorphism h : A → B, then there
is a canonical one.

If A,B, G,H are as above, then a mapping of projection sys-
tems f : A∗/G → B∗/H is homomorphic if for every relation
symbol R, if n is its arity, then for every O ∈ An/G such that
O ⊆ RA, it holds that f(O) ⊆ RB.

By definition, a canonical mapping f : A → B induces
a mapping of the quotient projection systems, which we denote
f∗/GH : A∗/G → B∗/H . Note that a canonical function
f : A → B is a homomorphism iff f∗/GH : A∗/G → B∗/H is
homomorphic.

Lemma 39. There is a homomorphism h : A → B iff there is a
homomorphic mapping k : A∗/G→ B∗/H of projective systems.

Proof: see Appendix D.3.

6.3 Small representations
We shall now see that under certain assumptions, the set of all
mappings A∗/G → B∗/H can be finitely represented. This will
lead to an effective procedure testing the condition in Lemma 39.

A projection system Q is m-simple if for any x, y ∈ Qn with
m ≤ n, if πi(x) = πi(y) for all i : [m]→ [n], then x = y.

Lemma 40. If B is an ∅-definable subset of An for some n and
H = Aut(A), then the system B∗/H is 2-simple.

Proof: see Appendix D.4.

Corollary 41. If B is an ∅-definable subset of An for some n and
H = Aut(A), then any h : A∗/G → B∗/H is determined by
its component h2 : A2/G → B2/G. Moreover, hm : Am/G →
Bm/G can be effectively computed from h2, for every m ≥ 1.

For n ≥ 1 define an n-projection system as a projection sys-
tem P whose components Pm are empty for m > n. For any
projection system P , let Fn(P ) denote the n-projection system
obtained by truncation; similarly for a mapping f : P → Q let
Fn(f) : Fn(P ) → Fn(Q) be the truncated mapping. In what
follows, for a set A we denote Fn(A∗) by A≤n, Fn(A∗/G) by
A≤n/G, and for a canonical mapping h : A → B, we denote
Fn(h∗)/GH by h≤n/GH : A≤n/G→ B≤n/H .

Lemma 42. If B is an ∅-definable subset of An for some n and
H = Aut(A), then every mapping k : A≤3/G → B≤3/H of
3-projection systems lifts to a canonical mapping h : A→ B such
that h≤3/GH = k.

Proof: see Appendix D.5.

Corollary 43. If B is an ∅-definable subset of An for some n and
H = Aut(A), then every mapping k : A≤3/G → B≤3/H of
3-projection systems has a unique extension f : A∗/G→ B∗/H .

Proof of Theorem 17. We can assume that the universe of B is a set
of tuples of atoms of a fixed length. Indeed, given a ∅-definable
structure B over a finite signature Σ, apply Lemma 8 to obtain
B′ ⊆ An and a surjection g : B′ → B. Then compute a definable
structure B′ with universe B′ over the signature Σ. A relation
symbol ρ in Σ is interpreted in B′ as the inverse image under g of its
interpretation in B. It is easy to see that there is a homomorphism
from A to B if and only if there is a homomorphism from A to B′.
Therefore, we can assume that B is an ∅-definable subset of An.

Lemma 39 yields a decision procedure for deciding whether
A maps homomorphically to B: scan through all mappings of 3-
projection systems f : A≤3/G → B≤3/H , and for each of them
check if its unique extension (whose existence is guaranteed by
Corollary 43) is homomorphic. This can be checked by Corol-
lary 41 applied to m the maximal arity of relations in Σ.

7. Concluding remarks
We investigated the homomorphism problem for definable rela-
tional structures. Our contribution is a detailed decidability border
in the landscape of different variants of the problem. Few cases are
decidable, which is quite unexpected.

Our proofs work, or can be easily adapted to the variant of
the problem when one asks about the existence of an injective
homomorphism, or a strong homomorphism, or an embedding.

7.1 Underlying structure A
We briefly describe the assumptions on the structure A for which
the results presented in this paper still hold.

Preliminaries. The definitions and lemmas in Section 2 hold for
an arbitrary structureA. However, one needs to specify how inputs
are represented, specifically, the parameters involved in the input.
To represent all definable sets over A, we should assume that
there is an effective enumeration of its universe. Furthermore, to
effectively perform tests on definable sets one needs to assume that
the structure is decidable: given any first-order formula φ over the
signature of A with n free variables, and an n tuple ā of elements
ofA, it is decidable if φ, ā |= A. For simplicity we assume that the
signature ofA is finite, to avoid questions concerning the encoding
of relation symbols.

Undecidability results. Theorems 15, 16 and 18 hold for every
infinite structure A. For Theorems 15 and 18 this is clear, as every
structure definable over the pure set is also definable over arbitrary
infinite A, and existence of a homomorphism does not depend
on A. For Theorem 16 this is less clear, since the existence of
definable homomorphisms depends on A. However, an inspection
of the proof shows that the result holds for arbitrary A.

∅-definable homomorphism. The ∅-definable homomorphism
problem considered in Theorem 10 is decidable (with the same
proof) as long as the following conditions hold:

• A is ω-categorical, i.e., it is the only countable model of its
first-order theory. An equivalent condition, due to the Ryll-
Nardzewski-Engeler-Svenonius theorem [17], is that A is count-
able and Aut(A) acts oligomorphically on A.
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• The number of orbits of An under the action of Aut(A) is
computable, from a given n ∈ N.

We call such structures effectively ω-categorical. Any effectively
ω-categorical structure is (isomorphic to) a decidable structure, so
every definable set can be represented. Theorem 10 can be easily
generalized so that arbitrary definable structures A,B are given on
input, as well as a finite set S ⊆ A, and the algorithm determines
whether there exists an S-definable homomorphism from A to B.

Finite source or target structure. In the case when the source
structure A is assumed to be finite, it is sufficient that A is a de-
cidable structure. In the case when the target structure B is finite,
and arbitrary homomorphisms are considered, the assumptions un-
der which the proof from [19] work are that Aut(A) is extremely
amenable or, equivalently, thatA is a Ramsey structure[18]. Exam-
ples of Ramsey structures include (Q,≤) and the ordered random
graph, by [22].

We do not know how to generalize to other atoms the case when
only definable homomorphisms to a finite B are considered.

Finite signatures. Finally, let us briefly discuss deciding the ex-
istence of homomorphisms between structures over a finite signa-
ture. In the most general form, the proof of Theorem 17 presented
in Section 6 works under the following assumptions:

• The structure A is definable over a decidable Ramsey struc-
ture A. An It is shown in [9] that if A is a Ramsey structure,
then extending A by finitely many constants still yields a Ram-
sey structure. Clearly, this preserves decidability of the structure.
From this it follows that the assumption made in Section 6 that
the relations of A and B are ∅-definable is not relevant, since if
they are S-definable overA for some finite S ⊆ A, then they are
∅-definable over A extended by elements of S as constants.

• The structure B is definable over a structure B which is homo-
geneous and finitely bounded. We say that a structure B over a
signature Γ is finitely bounded if there is a finite setF of finite Γ-
structures such that for every finite Γ-structure A, A embeds into
B iff no structure from F embeds into A. For example, (Q,≤)
is finitely bounded, as witnessed by the family F consisting of
two structures, the directed 3-cycle and the 2-vertex graph with
no edges, explaining why the value 3 appears in the statement
of Lemma 42. It is straightforward to generalize this lemma to
a finitely bounded homogeneous structure (see [9]). Any finitely
bounded homogeneous structure is effectively ω-categorical, and
thus decidable.
We do not know whether the finite boundedness condition can be
dropped, while assuming that B is effectively ω-categorical.

7.2 Remaining problems
Besides the open problems listed above, we leave a few open ques-
tions (of limited significance) relating to the decidability border:

• Is there a definable structure B, for which (DEF-)HOM(-,B) is
undecidable on inputs restricted to ∅-definable structures?

• Is there a definable structure B such that the question whether a
given A embeds in B is undecidable?

• Is there a definable structure B over a finite signature, for which
DEF-HOM(-,B) remains undecidable?

We leave open the decidability of the isomorphism problem:
decide whether two definable structures A,B (say, over the pure
set) are isomorphic. An equivalent problem is the orbit problem:
given a definable structure A and two elements x, y ∈ A, decide
whether there is an automorphism of A which maps x to y.

This is related to an open problem from [9]: decide whether
a given relation R is first-order definable in a given structure A.

Indeed, a unary predicateR ⊆ A is first-order definable in A iff it is
preserved by all automorphisms of A, iff no x ∈ R and y ∈ A−R
lie in the same orbit of Aut(A).

Acknowledgments. We are grateful to Albert Atserias, Manuel
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A. Proofs from Section 2
A.1 Proof of Lemma 8
If X is described by a single set-builder expression of the form (1),
then take Y to be the set defined by the same expression, with e
replaced by (a1, . . . , an), where a1, . . . , an are the free variables
of e; then Y is a definable subset of An. Let f : Y → X be the
function whose graph is { ((a1, . . . , an), e) |φ}, which is clearly
definable and surjective.

IfX = X1∪· · ·∪Xr is a union of set-builder expressions, then
for each Xi construct a definable surjective function fi : Yi → Xi
as above. By embedding Am into An for m ≤ n, we can assume
that there is a single exponent n ∈ N such that each Yi is a subset
of An. The last step is to replace the disjoint union of the Yi’s by
a single subset Y of Ak, for some k. This can be done by taking
m large enough, so that Am partitions into r disjoint nonempty, ∅-
definable subsets U1, . . . , Ur . Finally, take Y =

⋃r
i=1 Yi×Ui and

f =
⋃r
i=1 gi, where gi : Yi × Ui → Xi first projects onto Yi, and

then applies fi. Then Y ⊆ An+m and f : Y → X is surjective
and definable by Lemma 5.

A.2 Proof of Remark 9
We sketch one direction: if a relational structure A over a finite
signature is definable over A, then it interprets in A. Indeed, let
f : B → A be a surjective definable mapping obtained from
Lemma 8, with B ⊆ Ak. Lift the structure of A to a structure
B with universe B, by taking the inverse images of the relations:

σB = {(x1, . . . , xk) : (f(x1), . . . , f(xk)) ∈ σA}.
This is a definable set, by Lemma 5. Moreover, f is a homomor-
phism from B to A. As a result, A is isomorphic to B/∼, where ∼
is the kernel of f , i.e., x ∼ y iff f(x) = f(y). Again by Lemma 5,
∼ is a definable subset of B × B ⊆ A2k. Since B ⊆ Ak and
∼ ⊆ A2k are definable, there are formulas φdom and φ= which
define them. Similarly, for each symbol σ ∈ Σ, σB ⊆ Bl, where l
is the arity of σ, so there is a formula φσ defining σB. The formulas
φdom, φ=, (φσ)σ∈Σ define an interpretation of B/∼ in A, and, as
noted above, B/∼ is isomorphic to A.

The opposite direction (every structure A which interprets in A
is definable) is straightforward, since the usual expressions defin-
ing the universe of the structure A and its relations, are allowed by
Lemma 5. In particular, the universe of A is defined as the quo-
tient of Ak under a definable equivalence relation, where k is the
dimension of the interpretation.

B. Proofs from Section 3
B.1 Proof of Theorem 14
[Proof sketch] If the source structure A has a finite universe, say
A = {a1, . . . , an}, then the two problems coincide, as every
homomorphism A → B is definable. Both problems reduce to
validity of the following generalized first-order formula in B

∃x1, . . . , xn
∧

1≤k≤l,1≤i1...ik≤n

∀ρ ∈ Σk ρ(ai1 , . . . , aik )→ ρ(xi1 , . . . , xik ),

which in turn reduces to validity of a first-order formula in A as
observed in Section 2.2, and is thus decidable.

Both problems are also decidable if the target structure B has
a finite universe. Structures with finite universe is a special case
of a locally finite structures, and thus decidability of HOMOMOR-
PHISM follows from [19]. To see decidability of DEFINABLE HO-
MOMORPHISM, for simplicity assume that A and B are ∅-definable.
We claim that the problem reduces to ∅-DEFINABLE HOMOMOR-
PHISM and hence is decidable by Theorem 10 (the general case of
a definable B with a finite universe is shown analogously). Indeed,

suppose f is an S-definable homomorphism from A to B. Consider
the following modification of the defining expression of f : change
all occurrences of terms v = a, for a ∈ S, to ⊥; and all occur-
rences of terms v 6= a, for a ∈ S, to >. As B is assumed to be
finite and ∅-definable, the modified expression still defines a func-
tion from A to B, and the function is clearly ∅-definable. As A is
∅-definable, the function is a homomorphism as required.

C. Proofs from Section 5
C.1 Proof of Theorem 28
We apply the technique used in the proof of Theorem 23 to modify
the proof of Theorem 26, with appropriate changes.

This time, the reduction is from a seeded ultimately-periodic
tiling problem. For a finite setK 3 K,L, . . . of colors and relations
ΓH ,ΓV ⊆ K × K, an ultimately periodic tiling is a function
γ : N2 → K such that for all 0 ≤ i, j,

(γ(i, j), γ(i+ 1, j)) ∈ ΓH and
(γ(i, j), γ(i, j + 1)) ∈ ΓV ,

and such that for some numbers n (the head) and m (the period),

γ(i, j) = γ(i+ n, j) for all i ≥ m, j ∈ N
γ(i, j) = γ(i, j + n) for all j ≥ m, i ∈ N.

Additionally, a tiling is seeded by K0,K1, . . . ,Kk ∈ K if
γ(i, 0) = Ki for every i ∈ {0, 1, . . . , k}.

It is not difficult to see that there exist fixed K, ΓH and ΓV
such that it is undecidable whether a given seed admits a seeded
ultimately periodic tiling. The argument is similar to the one in the
proof of Theorem 23, with the additional observation that while in
Wang’s encoding of Turing machines (see [14, App. A]), arbitrary
tilings correspond to infinite runs, it is easy to modify the encoding
so that ultimately periodic tilings correspond to finite accepting
runs.

Consider B defined as in the proof of Theorem 26 for the
specific K, ΓH and ΓV for which the seeded ultimately periodic
tiling problem is undecidable. Additionally, extend the signature
with an infinite family of predicate symbols {Pa, Qa | a ∈ A},
and a finite family of predicates {OK | K ∈ K}. Interpret these in
B as in the proof of Theorems 21 and 23:

P B
a = {ab ∈ B0 | b ∈ A} for a ∈ A,

QB
a = {ba ∈ B0 | b ∈ A} for a ∈ A,

OB
K = {(ab, cd,K) | ab, cd ∈ B0} for K ∈ K.

The structure B is ∅-definable.
Given a seed K0,K1, . . . ,Kk, consider a structure A over

the extended signature as in the proof of Theorem 21. Pick any
sequence of n+ 2 distinct atoms a0, a1, . . . , an+1 and extend A as
in the proof of Theorem 23. The structure A is {a0, a1, . . . , an+1}-
definable.
K, ΓH and ΓV admit an ultimately periodic tiling seeded by

K0, . . . ,Kn if and only if there is a homomorphisms from A to
B. To see this, proceed as in the proof of Theorem 26, but note
additionally that due to the interpretation of the Qa in A and B, for
any h : A→ B there must be

h(ai) = aiai+1 for 0 ≤ i ≤ n

Moreover, all a0, . . . , an+1 must be in every support S of h. Look-
ing back at Example 25, notice that not only the graph considered
there must contain a cycle, but every node in the graph determines
a unique directed path that starts from it, and ultimately ends in a
cycle. This means that the sequence a0a1, a1a2, . . . anan+1 must
extend to a sequence of edges that ends in a cycle of length n ≥ 2,
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and every edge (pair of atoms) in that sequence is a value of h on
some atom from S.

Using this, proceed as in the proofs of Theorems 23 and 26.
In particular, a tiling with head n and period m determines a
homomorphism supported by n + m + 1 atoms. Note also that
every homorphism h : A→ B does determine a periodic tiling, but
that tiling is not necessarily seeded by K0, . . . ,Kn. For a seeded
tiling one needs to resort to an ultimately periodic tiling, since there
is no guarantee that edges a0a1, a1a2, . . . for the atoms a0, a1, . . .
fixed in the definition of A, lie on the cycle determined by h.

D. Proofs from Section 6
D.1 Proof of Lemma 37
From oligomorphicity of the action of H on B, the system B∗/H
is finitary, i.e., each of its components is finite. In general, if P and
Q are projective systems andQ is finitary, then the set of projection
system mappings P → Q with the topology of pointwise conver-
gence is compact. Indeed, P → Q embeds into

∏
n≥1 Q

Pn
n in the

natural way. Moreover, if the latter is equipped with the product
topology, then this embedding is a homeomorphism of P → Q
onto a subset of

∏
n≥1 Q

Pn
n which is closed, as follows from the

form of the consistency conditions (2). From Tychonoff’s theorem,∏
n≥1 Q

Pn
n is compact, hence so is P → Q.

D.2 Proof of Theorem 34 cont.
Let h : A → B. Then κ(h) : A∗ → B∗/H; let K = G · κ(h)
denote the closure of the orbit of κ(h) in the space of projection
system mappings A∗ → B∗/H . It follows from Lemma 37 that
K is compact. It is clear that G acts continuously on the set of
mappings A∗ → B∗/H , and hence also on K, the closure of a
G-orbit. By extreme amenability, there is a fixpoint u ∈ K, where
u is a mapping u : A∗ → B∗/H .

Let f be obtained from Lemma 36, so that κ(f) = u. We show
that f ∈ H · h ·G. To this end, choose any finite set S ⊆ A; we
exhibit ρ ∈ H and σ ∈ G such that ρ · f · σ and h agree on S.

Let ā ∈ A∗ be a tuple enumerating S. Since u ∈ K =
κ(h) ·G, it follows that u(ā) is of the form (κ(h) ·σ)(ā), for some
σ ∈ G. From κ(f) = u we have:

H · f∗(ā) = u(ā) = (κ(h) · σ)(ā) = H · (h∗ · σ)(ā)

Therefore, f∗(ā) = (ρ · h∗ · σ)(ā), for some ρ ∈ H , so f and
ρ · h · σ agree on S. Hence, every basic open neighborhood of f
contains an element of H · h ·G, proving that f ∈ H · h ·G.

D.3 Proof of Lemma 39
Suppose that h : A → B is a homomorphism; by Corollary 38 we
can assume that it is canonical. Then f∗/GH is homomorphic.

Conversely, suppose that k : A∗/G→ B∗/H is homomorphic.
Let u : A∗ → B∗/H be the mapping obtained by composing k
with the quotient mappingA∗ → A∗/G. By Lemma 36, there is an
f : A → B such that κ(f) = u. By construction, κ(f) = u is G-
invariant; in particular, f is a canonical mapping, and f/GH = k
is homomorphic. Hence f is a homomorphism.

D.4 Proof of Lemma 40
Indeed, if B is an ∅-definable subset of An and H = Aut(A),
then every orbit O ∈ Bk/H corresponds to a ≤-type of kn-tuples
of atoms, and thus is uniquely determined by its projections to 2-
element subsets of coordinates.

D.5 Proof of Lemma 42
We construct an auxiliary structure D = (D,≤), where

D = (A× {1, . . . , n})/∼.

The equivalence relation ∼ and the relation ≤ are defined as fol-
lows.

Take (a1, a2, a3) ∈ A3 and let O be its orbit. Then g(O) ∈
B≤3/H corresponds to a ≤-type of 3n-tuples of atoms. The ≤-
type concerns tuples (x1

1, . . . , x
n
1 , x

1
2, . . . , x

n
2 , x

1
3, . . . , x

n
3 ) and

specifies a relation

xik ≤ xjl (3)

for certain 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ 3. Put (ak, i) ≤ (al, j)
in A × {1, . . . , n} if the ≤-type specifies the relation (3). This
defines a transitive relation on A × {1, . . . , n}. Define ∼ to be its
symmetric part, ∼ = ≤ ∩ ≤−1, to obtain a partially ordered set
D = (D,≤).

Since D is a countable total order, there is an embedding e :
D → A. We define a function h : A → An, by essentially
composing the abstraction function [ ]∼ : A × {1, . . . , n} → D
with the embedding e:

h(a) = (e([(a, 1)]∼), . . . , e([(a, n)]∼)).

It follows from the construction that h is a canonical function
from A to B, and that the induced function h∗/GH extends k,
as required.
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