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Abstract. We present a new, self-contained proof of the limitedness
problem. The key novelty is a description using profinite words, which
unifies and simplifies the previous approaches, and seamlessly extends the
theory of regular languages. We also define a logic over profinite words,
called MSO+inf and show that the satisfiability problem of MSO+B
reduces to the satisfiability problem of our logic.

1 Introduction

This paper is an attempt to establish a natural framework for problems related to
the limitedness problem. A notable example of such a problem is the decidability
of the logic MSO+B.

a : 1

b : 0

Fig. 1. A distance automaton over
the input alphabet {a, b}.

The limitedness problem was introduced by Hashiguchi [8] on his way to
solving the famous star height problem. In its basic form, it concerns distance
automata, i.e. nondeterministic automata, whose transitions are additionally la-
beled by nonnegative, integer weights, such as the one depicted in Figure 1. A
distance automaton is limited if there exists a bound n such that every accepted
word has some accepting run whose sum of weights is bounded by n. Thus the
limitedness problem is a decision problem which asks whether a given automaton
is limited. The automaton in the example is not limited: the words a, a

2
, a

3
, . . .

require accepting runs of ever larger weights.
The logic MSO+B was introduced by Bojańczyk in his dissertation (see

also [2]) in relation with a problem concerning modal µ-calculus. It is an exten-
sion of the usual MSO logic – over infinite trees or words – by the quantifier B,
defined so that the formula BX.'(X) holds if and only if all the sets of positions
X satisfying the formula ' in the given model have a commonly bounded size.
A typical language of infinite words defined in this logic is:

L

B

= {an1
ba

n2
b . . . : the sequence n1, n2, . . . is bounded}.

Note that this language is not !-regular, as its complement does not contain
any ultimately periodic word. As a far-reaching project (see [3] for a survey),
? Author supported by ERC Starting Grant “Sosna”.
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Bojańczyk posed the question of decidability of satisfiability of the logic MSO+B
over infinite trees. Still, it is not even known to be decidable over infinite words.

A syntactic fragment of the logic MSO+B has been shown decidable in [4].
The key tool used in this paper is a model of automata called !B-automata.
Later, the authors discovered that limitedness of distance automata can be eas-
ily decided using their results concerning !B-automata. The link with the limit-
edness problem has been exploited in [6], where Colcombet defined B-automata
and developed his theory of regular cost functions and stabilization semigroups.
B-automata directly generalize distance automata, by allowing more than one
counter which, moreover, can be reset.

Our contribution is a theory which we believe to be the appropriate setting
for considering limitedness of B-automata, and related problems. As a starting
point, we see that B-automata naturally define languages of profinite words. The
set of profinite words has a rich algebraic and topological structure, which we
find very useful in the context of limitedness.

For instance, consider the distance automaton from Figure 1. There is a profi-
nite word, denoted a

! (not to be confused with the infinite word) which witnesses
the fact that the automaton is not limited – this word can be defined as the limit
of the sequence of finite words (a

n!
)

1
n=1. We say that this profinite word does

not belong to the language of this automaton; the language of this automaton
consists of profinite words which only have finitely many a’s, such as b or b

!

a.
We call the class of languages of profinite words defined by B-automata B-

regular languages. Our main result states that this class can be characterized
in terms of logic, regular expressions and semigroups. The result generalizes the
main results of the papers [11, 13, 9, 1, 4], and implies the main result of [6, 7]. The
description in terms of semigroups immediately implies decidability of the limit-
edness problem for B-automata, which, in our framework is simply the question
of language universality. In particular, together with Kirsten’s elegant reduction
of the star height problem to the limitedness problem, our result gives yet an-
other proof of decidability of the star height problem. The result also implies
decidability of a more general problem – limitedness of Boolean combinations of
B-automata. The remaining characterizations are primarily of conceptual value,
as they manifest both that our framework is appropriate, and that the class
of B-regular languages is robust. Note that most of these characterizations are
also available in the framework of Colcombet. One exception is a new, finite-
index characterization of B-regular languages, à la the Myhill-Nerode theorem;
it seems that this result cannot be even phrased in the other frameworks.

Lastly, we show that our framework is suited for dealing with the satisfiability
problem for MSO+B over infinite words – we prove that this problem can be
reduced to the satisfiability problem of a new logic MSO+inf over profinite
words, which we introduce here. This seems impossible in the other frameworks.
In fact, our reduction is very general, and works for very many logics. The proof
extends Büchi’s ideas, and consists of two key ingredients: convergent Ramsey
factorizations of infinite words, and a model of deterministic automata over
infinite words with a profinite acceptance condition.
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Related work. Several proofs of decidability of the limitedness problem exist [8,
11, 13, 9, 1, 6]. Our proof builds on ideas from all of these papers, and simplifies
them greatly. Hashigushi’s #-expressions acquire a new, concrete meaning in
our framework, as simply defining profinite words. We extend Leung’s insight of
considering the compact topological semigroup of all matrices over the tropical
semiring, to considering the profinite semigroup. Also, Leung introduced finite
versions of his topological semigroups, which are predecessors of stabilization
semigroups of Colcombet. The factorization forests of Simon play a key role in
the main technical part of our proof. The proof of Kirsten applies to a model
very similar to B-automata, but with a hierarchical constraint on the counter
operations. Kirsten generalized Leung’s proof, providing further instances of sta-
bilization semigroups; however, the topological insights of Leung disappeared, as
he no longer considered compact topological semigroups.

Colcombet used ideas from [4] and of Kirsten in [7], where he developed his
theory of regular cost functions. In his theory, a B-automaton defines a B-regular
cost function – an equivalence class of number-valued functions. These cost func-
tions also have equivalent descriptions in terms of regular expressions, logic and
semigroups. The crucial discovery of that paper is the tight two-way correspon-
dence between stabilization semigroups (defined there) and B-automata. Still,
the topological insights of Leung remained missing.

On a general level, and also on the level of proof structure, our approach
resembles the approach of Colcombet. We outline the key differences. As we
deal with languages which are subsets of a topological semigroup, many classical
notions naturally lift to our setting – such as recognizable subsets, Myhill-Nerode
equivalence, homomorphisms. In Colcombet’s framework, cost functions are not
sets, and have no apparent algebraic nor topological structure (they only have
a lattice structure, corresponding to the lattice ordering of languages). Because
of this, the natural notions mentioned above do not exist, or have non-obvious
definitions – an example is the complex notion of compatible mapping [6], which
corresponds to our 1-homomorphism. Even the notion of a Boolean combination
of cost functions is meaningless. As a result, cost functions are not well-suited
for the study of the full logic MSO+B. On a technical level, the proofs in [6, 7]
deal with the relative notions of “big” vs. “small” values, and this relativity needs
to be carefully controlled in the calculations and proofs. In our more abstract
setting, we deal with the absolute notions of infinite vs. finite, and computations
involve usual set-theoretic equalities.

Outline of the paper. First, we recall the definitions of B- and S-automata, and of
profinite words. Next, we show how languages of profinite words can be defined
using automata, regular expressions and logic. Then we present our main tech-
nical tool – recognition by homomorphisms. In Section 5, we state the central
result. Finally, we show a link between languages of infinite words and of profinite
words. Due to space limitations, many details are deferred to the appendix.

Acknowledgements. I would like to thank Mikołaj Bojańczyk and Thomas Col-
combet for many useful comments.
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2 Preliminaries

Let us fix a finite alphabet A; finite words are assumed to be elements of A. In
the examples, we will more concretely assume the alphabet A = {a, b}. By N
we denote {0, 1, 2, . . .}, and by N we denote N [ {!}. We treat N as a compact
metric space, in which d(m,n) = |2�m � 2

�n| (where 2

�!

= 0).
B-automata and S-automata (implicit in [4], defined in [6]) are nondeter-
ministic automata over finite words, equipped with a finite number of counters.
There are two counter operations available for each counter: inc increases the
current value of the counter by 1 and reset sets the value to 0. A transition of
a B- or S-automaton may trigger any sequence of operations on its counters. If
the operation reset is performed in a run ⇢ on a counter which currently stores
a value n, then we say that n is a reset value in the considered run ⇢. The two
models – B- and S-automata – differ in the semantics of the functions they define.

First, consider a B-automaton A. Since A is nondeterministic, there might
be many runs over a single word. For a particular run ⇢, we define the value of ⇢
as its maximal reset value. Next, the valuation fA(w) of an input word w under
the automaton A is the minimum of the values of all accepting runs ⇢ over w:

fA(w) = min

⇢

max{n : in the run ⇢, the value n is a reset value}.

Note that min ranges only over the accepting runs ⇢ of A. We assume max(;) = 0

and min(;) = !, so if A has no accepting run over w, then fA(w) = !.
If A is an S-automaton, the definition of a valuation fA(w) of an input word w

is completely dual – simply swap min with max in the formula above.

Example 1 (The running example). Let A be the B-automaton with one counter
which is depicted in the left-hand side of the figure below.

A :

a : inc

b : reset

reset
B :

reset reset

b : "

a, b : "
a : inc

b : reset

a, b : "

We declare that the automaton resets its counter after reading the entire word
– this extra feature can be easily eliminated using nondeterminism. Then,

fA(w) = max{n1, n2, . . . , nk

} for w = a

n1
ba

n2
. . . ba

nk
.

Now consider the S-automaton B depicted in the right-hand side of the figure.
It has one counter, which is also assumed to be reset at the end of the run. The
reader can check that each accepting run of B over an input word w corresponds
to a block of a’s in w, and that fB(w) is the length of the largest block of a’s in
w. Therefore, fB and fA are precisely the same function from A

+ to N.

Example 2. Let A be a finite nondeterministic automaton. If we view A as a B-
automaton with no counters, the induced function assigns 0 to any word accepted
by A and ! to any rejected word. Dually, if we treat A as an S-automaton, the
induced function assigns ! to any accepted word, and 0 to any rejected word.
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A B- or S-automaton is said to be limited if the function fA has finite range
(it may nevertheless contain the value !). The limitedness problem for B- or
S-automata is then to decide whether a given B- or S-automaton is limited. The
automata in the example are not limited, since fA(a

n

) = n for any n 2 N.

Profinite words should be thought of as limits of sequences of finite words, with
respect to all regular languages. A formal definition follows (see e.g. [12] for more
details). We say that an infinite sequence w1, w2, . . . 2 A

+ of finite (nonempty)
words ultimately belongs to the regular language L ✓ A

+ if almost all the
words w1, w2, . . . belong to L. We say that a sequence of words is convergent, if
for any regular language L, the sequence ultimately belongs to L or ultimately
belongs to the complement of L. Every constant sequence is convergent. The
sequence a, a2!, a3!, . . . is also convergent, as follows from a pumping argument for
regular languages. However, the sequence a, a2, a3, . . . is not convergent, since the
regular language (aa)+ only contains every other of its elements. Two convergent
sequences are equivalent if they belong ultimately to precisely the same regular
languages. In other words, interleaving one sequence with the other yields a
convergent sequence. An equivalence class of convergent sequences is a profinite
word. A profinite word is uniquely specified by the set of regular languages to
which it ultimately belongs. For example, the equivalence class of the convergent
sequence a, a

2!
, a

3!
, . . ., which is a profinite word denoted a

!, ultimately belongs
to the languages a

+
, (aa)

+
, (aaa)

+
, . . ., and does not ultimately belong to the

languages a

⇤ · b · a⇤ nor a · (aa)+. We denote profinite words by x, y, . . ., and
the set of all profinite words by c

A

+. We define c
A

⇤
=

c
A

+ [ {"}, where " is the
empty word. Note that the set of finite words A

+ naturally embeds into the set
of profinite words c

A

+, via constant convergent sequences. We call subsets of c
A

+

or of c
A

⇤ languages of profinite words.

The set of profinite words forms a semigroup: if w1, w2, . . . and v1, v2, . . . are
two convergent sequences, then the sequence w1v1, w2v2, . . . is also convergent.
There is another important operation on profinite words, called the !-power. The
!-power of a convergent sequence w1, w2, w3, . . . is the sequence w

1
1, w

2!
2 , w

3!
3 , . . .,

which also turns out to be convergent. This operation induces an operation
x 7! x

! defined over profinite words.

The set of profinite words carries a compact metric: the distance between
two profinite words x, y is 1

n

, where n is the smallest size – measured as size of
the minimal automaton – of a regular language L such that x ultimately belongs
to L and y does not. This metric is compatible with the notion of convergence
defined above. In particular, the set A

+ of finite words is dense in the set of
profinite words, c

A

+. Multiplication and the !-power are continuous mappings
over c

A

+. One can prove that x

!

= lim

n!1 x

n! for any x 2 c
A

+.

The closure L in c
A

+ of any regular language L ✓ A

+ turns out to be both
closed and open, i.e. clopen in c

A

+. Conversely, any clopen subset of c
A

+ is of
the form L for some regular language L, so clopen sets correspond precisely to
regular languages. Any open set in c

A

+ is a (possibly infinite) union of clopen sets.
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3 Languages of profinite words

In this section we discuss several ways of describing languages of profinite words
– via automata, regular expressions and logic.
B- and S-regular languages. The essential idea underlying our theory is to
consider B- and S-automata as processing not only finite words, but also profinite
words. Let A be a B- or S-automaton. The following, simple observation relies
on the fact that for each n 2 N, the language {w 2 A

+
: fA(w) < n} is regular.

Fact 1. Let w1, w2, . . . be a convergent sequence of finite words. Then, the se-
quence fA(w1), fA(w2), . . . is convergent in N = N [ {!}.

Therefore, it makes sense to define, for any x 2 c
A

+,

c
fA(x)

def
= lim

n!1
fA(wn

),

where w1, w2, . . . is any sequence of finite words which converges to x. This
value may happen to be !. It is straightforward to show that c

fA is a well-
defined continuous function from c

A

+ to N. Moreover, by density of A+ in c
A

+,
the continuous extension of fA to c

A

+ is unique, so we will further identify fA
with the continuous mapping c

fA :

c
A

+ ! N.
Similarly to the idea underlying cost functions [6], we do not care about the

exact values of the function fA (this would quickly lead to undecidability, as
demonstrated by Krob [10]). What we care about is over which sequences of
words, fA grows indefinitely. By continuity of fA and compactness of c

A

+, this
is encoded in the set

{x 2 c
A

+
: fA(x) = !}.

This is a closed set as the inverse image of a point under a continuous mapping.
This motivates the following definitions. For an S-automaton A, we define

the set L (A) consisting of all profinite words x such that fA(x) = !. For a
B-automaton A, we define L (A) dually, as the language of all profinite words
x such that fA(x) < !. In either case, we call L (A) the language recognized
by A. The reason why the definitions differ is that S-automata try to maxi-
mize, while B-automata try to minimize the value of a run. We call a language
L ✓ c

A

+ B-regular (respectively, S-regular), if it is recognized by a B-automaton
(respectively, S-automaton). Note that S-regular languages are closed, and B-
regular languages are open subsets of c

A

+. In particular, a language is both B-
and S-regular if and only if it is clopen.

Example 3. Let A be the B-automaton from Example 1, computing the largest
block of a’s. Then L (A) is the language of all profinite words for which every
block of a’s has uniformly bounded length:

L (A) = {x 2 c
A

+
: fA(x) < !} =

[

n2N
{x 2 c

A

+
: x has no infix a

n}.

It is not difficult to show (using compactness and continuity of multiplication)
that a profinite word has arbitrarily long blocks of a’s if and only if it contains
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a

! as an infix. (We say that u is an infix of v if v = v1 ·u ·v2 for some, potentially
empty, profinite words v1, v2.) Therefore, if B is the S-automaton from Example 1
(recall that fA = fB), we deduce that

L (B) = {x 2 c
A

+
: fB(x) = !} =

c
A

+ � L (A) = {x1 · a! · x2 : x1, x2 2 c
A

+}.

Limitedness. Assume that we want to test for limitedness of a B-automaton A.
It is easy to reduce the general case to the case when the underlying finite
automaton accepts all finite words (to do this, it suffices to consider the disjoint
union of A and A0, where A0 is a B-automaton which maps all words accepted
by A to !, and the rest to 0). Then, an immediate compactness argument shows:

Fact 2. A B-automaton A which accepts all finite words is limited iff L (A) =

c
A

+.

Closure properties. As usual with nondeterministic automata, both classes – of
B- and S-regular languages – are closed under language projection, and also
under union and intersection.They are not, however, closed under complements:
the complement of the B-regular language L (A) from the previous example is not
B-regular, since it is not an open set. However, this complement is an S-regular
language, as it is equal to L (B). More generally, we will prove the difficult result
that complements of B-regular languages are S-regular, and vice versa.
The logic MSO+inf. We introduce the logic MSO+inf over profinite words.
First, we define its base fragment, the logic MSO. A formula of this logic describes
a set of profinite words. Usually, in the case of finite or infinite words, one sees
such a word as a model whose elements are positions of the word, and so a formula
of MSO speaks about sets of positions of the word. However, in profinite words,
“positions” are not well-defined. To define the logic MSO over profinite words,
we view the constructs of MSO as operations on languages of profinite words.
We describe how to interpret the second-order existential quantifier 9; for the
other constructs, the idea is even simpler. We view the quantifier 9 as language
projection. What language do we project? A formula '(X) beneath a quantifier
9 defines a language L

'

over the extended alphabet A ⇥ {0, 1}. For example,
'(X) = a(X)^singleton(X) defines the language L

'

of those profinite words over
A⇥ {0, 1}, which contain precisely one symbol (a, 1) and no other symbols with
a 1 on the second coordinate. We define the language of the formula 9X.'(X)

as the projection of the language L

'

, forgetting about the second coordinate.
Therefore, 9X.a(X) ^ singleton(X) describes the set of profinite words which
have precisely one letter a.

With similar ideas, it is easy to interpret all the usual constructs of MSO as
language operations: the Boolean connectives ^,_,¬, the binary predicates <,2
and the unary predicates a(X), per each letter a 2 A. This way, we define the
semantic of the MSO logic over profinite words. This logic describes precisely
the class of clopen sets. To go beyond that, we add a predicate inf(X) which
holds in a profinite word over A ⇥ {0, 1} if it has infinitely many 1’s on the
second coordinate. This is a closed, but not open property of profinite words
over the alphabet A⇥ {0, 1}, so it is not definable in MSO. We denote the logic
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MSO extended by the quantifier inf by MSO+inf and distinguish the syntactic
fragment MSO+inf

+ (resp., MSO+inf

–) where the predicate inf appears only
under an even (resp. odd) number of negations.

Example 4. Consider the S-regular language L (B) from Example 3: “there is an
infinite block of a’s”. It can be described by the following formula of MSO+inf

+:

9X. inf(X) ^ 8x, y, z.
�
x 2 X ^ z 2 X ^ (x < y < z) =) (y 2 X ^ a(y))

�
.

This example can be easily extended, yielding the following.

Proposition 3. B-regular languages are definable in MSO+inf

–, and S-regular
languages are definable in MSO+inf

+. The translations are effective.

B- and S-regular expressions. We consider the usual syntax of regular ex-
pressions, except that apart from the usual Kleene star, which corresponds to
unrestricted iteration, there are two new iteration operations: finite iteration,
denoted L

<1, and infinite iteration, denoted L

1. Formally, we define profinite
sequences of profinite words, as profinite words over the alphabet A with an addi-
tional separator symbol †. A profinite word x 2 c

A

+ is an element of a profinite se-
quence x̂ if †x† is an infix of †x̂†. The concatenation of x̂ is obtained by removing
the symbols †. We define L

1 (resp. L<1 and L

⇤) as concatenations of profinite
sequences containing infinitely (resp. finitely, arbitrarily) many separators, and
whose elements belong to L. B-regular expressions can only use the exponents
<1 and ⇤, while S-regular expressions can only use the exponents 1 and ⇤.

Example 5. The B-regular expression (a

<1
b)

⇤
a

<1 describes precisely the lan-
guage accepted by the B-automaton A from Example 3 – “every block of a’s has
a finite length”. The S-regular expression (a+ b)

⇤
a

1
(a+ b)

⇤ describes precisely
the complement of L (A), i.e. the language accepted by the S-automaton B.

Mimicking the standard translation from regular expressions to automata we get:

Proposition 4. A language defined by a B-/S-regular expression is B-/S-regular.

4 Recognizable languages

Syntactic congruence. Just as multiplication is intimately related with regular
languages, multiplication together with the !-power over c

A

+ turn out to be of
central importance for B- and S-regular languages. For notational reasons, we
view (

c
A

+
, · ,!) as an algebra over the signature h · ,#i, where the !-power

of c
A

+ plays the role of the operation # of the signature. Let L ✓ c
A

+. Its
h · ,#i-syntactic congruence '

L

is the coarsest equivalence relation over c
A

+

which preserves multiplication, the !-power, and membership in L.

Example 6. Let L = (a

<1
b)

⇤
a

<1 be the language of the B-automaton which
computes the maximal length of a block of a’s. It is easy to see that the equiva-
lence classes of '

L

(and also of '
K

, for K =

c
A

+ � L) are:

a

<1
, (a

<1
b)

+
a

<1
, (a+ b)

⇤
a

1
(a+ b)

⇤
.
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Stabilization semigroups. We consider languages L ✓ c
A

+ whose h · ,#i-
syntactic congruence has a finite index. Such a set yields a finite h · ,#i-syntactic
algebra, i.e. the quotient S

L

=

c
A

+
/'

L

. Since '
L

is a congruence, the syntactic
algebra is equipped with two operations – the usual multiplication, and stabi-
lization, denoted #, which stems from the !-power in the profinite semigroup.
The syntactic algebra also naturally inherits the quotient topology from c

A

+,
which is usually non-Hausdorff, i.e. there might be singleton sets which are not
closed. (However, if L is a closed or open language, then the quotient topology
is T0, i.e. if x 2 {y} and y 2 {x} for x, y 2 S

L

, then x = y.) Multiplication and
stabilization in S

L

are continuous with respect to the topology, and also satisfy
several properties which are easily derived from the properties of multiplication
and the !-power over c

A

+. Namely, for s, t, e 2 S:

s · (t · s)# = (s · t)# · s s

# · s# = s

#

(s#)# = s

#
e · e# = e

# for idemptent e

(sn)# = s

# for n = 1, 2, 3 . . . s

# 2 {sn : n 2 N}.

A stabilization semigroup is a T0 topological space S equipped with two continu-
ous operations · and # satisfying the above axioms, apart from associativity of ·.

Example 7. Let S

L

denote the quotient set induced by the language L from
Example 6. As noted there, S

L

consists of three equivalence classes, which we
denote by [a], [b] and [a

!

], respectively. Multiplication, stabilization and topology
over S

L

flow from the properties of the three equivalence classes: multiplication
is commutative and each element is idempotent, [a!] is the zero element and [a]

is the neutral element; stabilization maps [a] to [a

!

] and s to s otherwise; [a!]
is contained in the closure of [a] and in the closure of [b].

Recognizability. We consider an analogue of the notion of recognizability by
semigroups in the classical theory. Recall that a subset L ✓ c

A

+ is recognizable
if there is a mapping ↵ : A ! S to a finite discrete semigroup such that for the
induced homomorphism ↵̂ :

c
A

+ ! S we have L = ↵̂

�1
(F ) for some F ✓ S.

Instead of semigroups, we deal with finite stabilization semigroups. A ho-
momorphism ↵̂ from c

A

+ to a stabilization semigroup S is required to preserve
multiplication and map the !-power in c

A

+ to stabilization in S. We use a notion
of invariance of ↵̂ under infinite substitutions, which intuitively means that if a
profinite word x is factorized into a profinite sequence of factors, and each factor
x

i

is replaced by some other factor y
i

with ↵̂(x

i

) = ↵̂(y

i

), then, for the resulting
concatenation y of the factors y

i

, ↵̂(x) = ↵̂(y). We say that such a homomor-
phism ↵̂ :

c
A

+ ! S is an 1-homomorphism. The following result plays a pivotal
role in the theory, and its proof is difficult comparing to the classical case.

Theorem 5. Let ↵ : A ! S be any mapping from a finite alphabet A to a fi-
nite stabilization semigroup S. Then there exists a unique 1-homomorphism
↵̂ :

c
A

+ ! S extending ↵. The mapping ↵̂ is continuous. Its image is the subset
of S generated from ↵(A) by the operations h · ,#i.
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Note that the extension ↵̂ is not necessarily the unique continuous homomorphic
extension of ↵. We call ↵̂ the 1-homomorphism induced by ↵. We say that a
language L ✓ c

A

+ is recognized by ↵̂ :

c
A

+ ! S if L = ↵̂

�1
(F ) for some F ✓ S; if

additionally F is closed (resp. open) in S, we say that L is # -recognizable (resp.
" -recognizable). Note that a recognizable set is described in a finite manner by
↵ : A ! S and F ✓ S. It is crucial that the image of ↵̂ can be computed from ↵.
Example 8. Let S be the stabilization semigroup c

A

+
/'

L

from the previous ex-
ample, whose elements are [a], [b], [a

!

]. Let ↵ : A ! S map a to [a] and b to [b].
We will check that the quotient mapping ↵

L

:

c
A

+ ! S is the 1-homomorphism
induced by ↵. We argue that ↵

L

is invariant under infinite substitutions. Con-
sider a profinite word x, and choose some factorization of x. Replace each factor
by some other factor, with the same image under ↵

L

. Schematically:
x = aaa aaba aaa · · · ab

!
a baaab

⇤ ⇤ ⇤ · · · ⇤ ⇤
y = aaaaa (ab)! aaaaaaa · · · aaaaabaaaa aaaaabaaa

Intuitively, it is clear that if the original word x contains no infinite block of a’s,
then no such block can appear in the resulting word y either. Hence, ↵

L

(y) = ↵

L

(x).
The proof of Theorem 5 extends the idea of Simon’s factorization trees to profi-
nite words and stabilization semigroups, which we shortly describe. Start with
any profinite word x. We want to determine the type of x, i.e. ↵̂(x). If x is a
single letter a, then its type is ↵(a). If not, we try to factorize x into a profinite
sequence of factors, for which the type can be determined. We use three rules:
– If x = x1 · x2, and ↵̂(x1) = s1, ↵̂(x2) = s2, then ↵̂(x) = s1 · s2,
– If x factorizes into finitely many factors, each of idempotent type e, then ↵̂(x) = e,
– If x factorizes into infinitely many factors, each of idempotent type e, then ↵̂(x) = e

#.
We prove by induction on |S| that in a finite number of steps, depending only
on |S|, using the above three rules, any profinite word x can be iteratively split
into single letters. Moreover, we prove that the resulting type does not depend
on the chosen “factorization tree”. The proof of existence of factorization trees
is similar to the proof of Simon’s theorem, and proceeds by induction on the
size of S. The proof of uniqueness requires the use of the axioms of stabilization
semigroups. It is similar to a proof of analogous statement in [7]. An important
difference is that there, only finite words have factorization trees, and their
output is unique only in an asymptotic way.

The standard Cartesian-product construction yields several closure proper-
ties for recognizable languages. For closure under projection, we use two en-
hanced variants of the powerset construction, similar to constructions from [7].
Proposition 6. Recognizable languages are closed under Boolean combinations.
# -recognizable (resp. " -recognizable) languages are closed under unions and in-
tersections. Complements of # -recognizable languages are " -recognizable and vice
versa. # -recognizable and " -recognizable languages are closed under projections.
By inductively applying the above to formulas of MSO+inf, we get:
Corollary 1. Languages definable in MSO+inf

– are # -recognizable, and lan-
guages definable in MSO+inf

+ are " -recognizable. The translations are effective.
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5 The main results

The main theorem collects the notions and results listed above, proving the
equivalence of several characterizations. The last one is a finite-index character-
ization of B-automata. Up to our knowledge, such a characterization has not
been – and perhaps cannot be – phrased in the remaining frameworks.

Theorem 7. Let L ✓ c
A

+ and K =

c
A

+ � L be its complement. The following
conditions 1-9 are equivalent:
1. L is defined by a B-regular expression,

2. L = L (A) for some B-automaton A,

3. L is definable in MSO+inf–,
4. L is " -recognizable,

5. K is defined by an S-regular expression,

6. K = L (B) for some S-automaton B,

7. K is definable in MSO+inf+,

8. K is # -recognizable,

9. The h · ,#i-syntactic congruence of K has finite index and K = K \A

h · ,!i
.

In the last characterization, Ah · ,!i is the set of profinite words which can be gen-
erated from A by applying multiplication and the !-power – they are analogues
of ultimately periodic words in the theory of !-regular languages. It follows that
a B- or S-regular language is determined by its elements contained in A

h · ,!i,
similarly as an !-regular language is determined by its ultimately periodic words.

By the last part of Theorem 5, the image of an 1-homomorphism to a finite
stabilization semigroup can be computed using a fixed point calculation. Hence,
emptiness of recognizable languages is decidable. This proves the following.

Theorem 8. Emptiness of Boolean combinations of B-regular languages is de-
cidable. In particular, the limitedness problem is decidable for B-automata.

The above result extends the decidability results of Hashiguchi and Kirsten. As
emptiness of Boolean combinations reduces to inclusion testing, it is equivalent to
the main result of [7] – that the domination relation is decidable for B-automata.

6 From infinite words to profinite words

We describe a connection between !-words (i.e. mappings from N to A) and
profinite words. Recall that any !-regular language can be presented as a finite
union of languages of the form U · V !, where U, V ✓ A

+ are regular languages
of finite words. We generalize this observation, and provide a meta-reduction
between the satisfiability problems for logics over !-words to corresponding logics
over profinite words. The proof resembles Büchi’s original proof of decidability
of MSO. Instead of the usual Ramsey lemma, we use the following observation
(originating from [5]): For any !-word w 2 A

! there is a factorization w =

u0·u1·u2 · · · such that the sequence u0, u1, u2, . . . is convergent to some u1 2 c
A

+.
The proof is an easy, repeated application of the usual Ramsey lemma.

Let V ✓ c
A

+ be a language of profinite words, and " > 0 a real number.
Consider the following language of infinite words V

!

"

✓ A

!:

V

!

"

def
= {v1 · v2 · v3 · · · : 9v1 2 V

⇤
: lim

n!1
v

n

= v1 and 8
n

d(v

n

, v1) < "}.
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For a regular language U ✓ A

+ of finite words, we say that the expression
U · V ! is well-formed if the language U · V !

"

does not depend on the choice
of 0 < "  1/n, where n is the size of the minimal automaton recogniz-
ing U . In this case, we define the language U · V ! as U · V !

"

. For example,
the expression (a + b)

⇤ · (a<1
b)

! is well-formed and describes the language
L

B

from the introduction. For a class L of languages of profinite words, let
!L denote the class of all finite unions of languages defined by well-formed
expressions U · V ! with U ✓ A

+ regular and V 2 L.
In the following theorem, by regular, B-regular, S-regular, MSO+inf,

we denote the corresponding classes of languages of profinite words, and to each
we apply the map L 7! !L as described above, yielding classes of languages of
infinite words. The proof of the theorem is very general. It generalizes Büchi’s
proof of decidability of MSO over infinite words.
Theorem 9. Every !-regular language is in !regular. Every !B-regular lan-
guage is in !B-regular. Every !S-regular language is in !S-regular. Every
MSO+B definable language is in !MSO+inf. The translations are effective.

The reduction described above allows to transfer results from profinite words to
!-words. For instance, the main results of [4] (concerning !B- and !S-regular
languages) follow from the results in our paper. More importantly, we get:
Corollary 2. The satisfiability problem for the logic MSO+B over !-words re-
duces to the satisfiability problem for the logic MSO+inf over profinite words.

We mention that by refining our Theorem 9, Skrzypczak [14] proved that a
language of infinite words which is both !B-regular and !S-regular must in fact
be !-regular – reflecting the immediate, analogous fact for profinite words.

Conclusion. We presented a new proof and framework for the limitedness problem.
We rise the question of decidability of the logic MSO+inf over profinite words.
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