OCENA KLASYFIKATORÓW

Metody oceniania klasyfikatorów

- Znane metody oceniania:
 - Skuteczność predykcji
 - Łączny koszt (gdy różne typy błędów powoduje różne koszty)
 - ■Krzywy "Lift" i "ROC"
 - ■Błędy przy predykcji wartości rzeczywistych.

□ Jak wiarygodne są te miary?

Błąd klasyfikacji

- □error rate = I.błędów / I. obieków testowych
 - Sukces: gdy obiekt jest prawidłowo klasyfikowany
 - Błąd: gdy obiekt jest źle klasyfikowany
 - Error rate: odsetka błędów podczas klasyfikacji
- □ Błąd klasyfikacji na zbiorze: zbyt optymistyczny!
 - Powinniśmy sprawdzić na losowych danych.

Classification Step 1: Split data into train and test sets

Clasificatio n 4

THE PAST

Results Known

Classification Step 2: Build a model on a training set

Clasificatio n 5

THE PAST

Results Known

Classification Step 3:

Evaluate on test set (Re-train?)

Clasificatio n 6

A note on parameter tuning

- □ It is important that the test data is not used in any way to create the classifier
- □ Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- □ The test data can't be used for parameter tuning!
- Proper procedure uses three sets: training data,
 validation data, and test data
 - Validation data is used to optimize parameters

Making the most of the data

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier (but returns diminish)
- □ The larger the test data the more accurate the error estimate

Evaluation on "LARGE" data

- If many (thousands) of examples are available, including several hundred examples from each class, then a simple evaluation is sufficient
 - Randomly split data into training and test sets (usually 2/3 for train, 1/3 for test)
- Build a classifier using the train set and evaluate it using the test set.

Classification:

Train, Validation, Test split

Handling unbalanced data

- □ Sometimes, classes have very unequal frequency
 - Attrition prediction: 97% stay, 3% attrite (in a month)
 - medical diagnosis: 90% healthy, 10% disease
 - eCommerce: 99% don't buy, 1% buy
 - □ Security: >99.99% of Americans are not terrorists
- □ Similar situation with multiple classes
- Majority class classifier can be 97% correct, but useless

Balancing unbalanced data

- With two classes, a good approach is to build BALANCED train and test sets, and train model on a balanced set
 - randomly select desired number of minority class instances
 - add equal number of randomly selected majority class
- Generalize "balancing" to multiple classes
 - Ensure that each class is represented with approximately equal proportions in train and test

*Predicting performance

Clasification n 13

- □ Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- □ Prediction is just like tossing a biased (!) coin
 - "Head" is a "success", "tail" is an "error"
- In statistics, a succession of independent events like this is called a Bernoulli process
- Statistical theory provides us with confidence intervals for the true underlying proportion!

*Przedział ufności

- We can say: p lies within a certain specified interval with a certain specified confidence
- Example: S=750 successes in N=1000 trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence $p \in [73.2,76.7]$
- \square Another example: S=75 and N=100
 - Estimated success rate: 75%
 - With 80% confidence $p \in [69.1,80.1]$

*Wartość średnia i wariancja

Clasification

Mean and variance for a Bernoulli trial:

$$p, p (1-p)$$

- Expected success rate f=S/N
- Mean and variance for f : p, p(1-p)/N
- \square For large enough N, f follows a Normal distribution
- c% confidence interval $[-z \le X \le z]$ for random variable with 0 mean is given by:

$$\Pr[-z \le X \le z] = c$$

With a symmetric distribution:

$$\Pr[-z \le X \le z] = 1 - 2 \times \Pr[X \ge z]$$

*Granice ufności

Clasification 16

Idea: Sprowadzamy wszytskie problemy do rozkładu

normalnego N(0,1):

Pr[<i>X</i> ≥ <i>z</i>]	Z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

Dla zmiennej X o rozkładzie N(0,1)

*Dla rozkładu Bernouliego

Clasification 17

- □ Wartość oczekiwana i wariancję dla f : p, p (1-p)/N
- □ Normalizacja zm. f:

$$\frac{f-p}{\sqrt{p(1-p)/N}}$$

Mamy równanie na p:

$$\left| \Pr \left[-z \le \frac{f - p}{\sqrt{p(1 - p)/N}} \le z \right] = c \right|$$

Rozwiązanie dla p:

$$p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

*Przykład

Clasification 18

$$f = 75\%$$
, $N = 1000$, $c = 80\%$ (so that $z = 1.28$):

$$p \in [0.732, 0.767]$$

$$f = 75\%$$
, $N = 100$, $c = 80\%$ (so that $z = 1.28$):

$$p \in [0.691, 0.801]$$

- Note that normal distribution assumption is only valid for large N (i.e. N > 100)
- f = 75%, N = 10, c = 80% (so that z = 1.28):

$$p \in [0.549, 0.881]$$

Ocena małych zbiorów danych

Clasification 19

- Metoda podziału na trening i test:
 - \square Zwykle: 1/3 na test, 2/3 na trening
- Jeśli zbiór danych jest zbyt mały, zbiory treningowe i testowe nie są reprezentatywne:
 - Próbki muszą zawierać obiekty z każdej klasy
- Stratified sample: advanced version of balancing the data
 - Make sure that each class is represented with approximately equal proportions in both subsets

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - □ The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?

Cross-validation

- □ Cross-validation avoids overlapping test sets
 - \blacksquare First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- □ This is called k-fold cross-validation
- Often the subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate

Cross-validation:

- Losowy podział zbioru danych na k grup

Zatrzymamy jedną grupę do testu a reszty używamy do treningu

More on cross-validation

- Standard method for evaluation: stratified ten-fold crossvalidation
- □ Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate
- Stratification reduces the estimate's variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Leave-One-Out cross-validation

Clasification n 24

- Leave-One-Out:
 przypadek szczególny cross-validation
 Liczba grup = liczba przykładów
 - Tzn., dla n obiektów budujemy klasyfikator n razy
- Najlepiej ocenia klasyfikatora
- Obliczeniowo kosztowna metoda
 - (wyjątek: NN)

Leave-One-Out-CV and stratification

Clasification n 25

- Disadvantage of Leave-One-Out-CV: stratification is not possible
 - It guarantees a non-stratified sample because there is only one instance in the test set!
- Przykład ekstremalny: dane są podzielone losowo na 2 równe zbiory:
 - Głosowanie większościowe jest najlepszym klasyfikatorem.
 - Na nowych zbiorach danych 50% skuteczności
 - Leave-One-Out-CV oszacuje, że jest 100% błędu!

*The bootstrap

- CV uses sampling without replacement
 - The same instance, once selected, can not be selected again for a particular training/test set
- Metoda bootstrap próbkuje ze zwracaniem, żeby stworzyć zbiory treningowe i testowe
 - Próbkuje ze zwracaniem n razy
 - Wybrane obiekty tworzą zbiór treningowy
 - Reszta zbiór testowy.

*The 0.632 bootstrap

Clasification n 27

- Obiekt nie zostanie wybrany do zbioru
 treningowego z prawdopodobieństwem 1–1/n
- Prawdopodobieństwo tego, że pozostaje w zbiorze testu:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

To oznacza, że zbiór treningowy zawiera ok.
 63.2% przykładów

*Estimating error with the bootstrap

Clasificatio

- The error estimate on the test data will be very pessimistic
 - \sim Trained on just \sim 63% of the instances
- Therefore, combine it with the resubstitution error:

$$err = 0.632 \cdot e_{\text{test instances}} + 0.368 \cdot e_{\text{training instances}}$$

- The resubstitution error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results

*More on the bootstrap

Clasification 129

- Probably the best way of estimating performance for very small datasets
- However, it has some problems
 - Consider the random dataset from above
 - A perfect memorizer will achieve
 0% resubstitution error and
 ~50% error on test data
 - Bootstrap estimate for this classifier: $err = 0.632 \cdot 50\% + 0.368 \cdot 0\% = 31.6\%$
 - True expected error: 50%

Comparing data mining schemes

- □ Frequent situation: we want to know which one of two learning schemes performs better
- ■Note: this is domain dependent!
- □ Obvious way: compare 10-fold CV estimates
- □ Problem: variance in estimate
- Variance can be reduced using repeated CV
- □ However, we still don't know whether the results are reliable

Direct Marketing Paradigm

Clasification 131

- Find most likely prospects to contact
- Not everybody needs to be contacted
- Number of targets is usually much smaller than number of prospects

- Typical Applications
 - retailers, catalogues, direct mail (and e-mail)
 - customer acquisition, cross-sell, attrition prediction
 - **-** ...

Direct Marketing Evaluation

- Accuracy on the entire dataset is not the right measure
- Approach
 - develop a target model
 - score all prospects and rank them by decreasing score
 - select top P% of prospects for action
- □ How to decide what is the best selection?

Cost Sensitive Learning

Clasificatio n 33

□ There are two types of errors

		Predicted class	
	•	Yes	No
Actual class	Yes	TP: True positive	FN: False negative
	No	FP: False positive	TN: True negative

- Machine Learning methods usually minimize FP+FN
- □ Direct marketing maximizes TP

Model-Sorted List

Use a model to assign score to each customer

Sort customers by decreasing score

Expect more targets (hits) near the top of the list

No	Score	Target	CustID	Age	
1	0.97	Υ	1746	•••	
2	0.95	N	1024	.,,	
3	0.94	Y	2478		
4	0.93	Y	3820		
5	0.92	N	4897		
99	0.11	Ν	2734		
100	0.06	N	2422	Clasifica	tion

3 hits in top 5% of the list

If there 15 targets overall, then top 5 has 3/15=20% of targets

Gain chart

CPH (Cumulative Pct Hits)

CPH(P,M) = % of all targets in the first P% of the list scored by model M

CPH frequently called Gains

5% of random list have 5% of targets

Q: What is expected value for CPH(P,Random)?

A: Expected value for CPH(P,Random) = P

CPH: Random List vs Model-ranked list

5% of random list have 5% of targets,

but 5% of model ranked list have 21% of targets CPH(5%,model)=21%.

Lift

Lift (at 5%) = 21% / 5% = 4.2 better than random

Note: Some (including Witten & Eibe) use "Lift" for what we call CPH.

P -- percent of the list

Lift Properties

```
Clasificatio
n 38
```

- \square Q: Lift(P,Random) =
 - ■A: 1 (expected value, can vary)
- \square Q: Lift(100%, M) =
 - ■A: 1 (for any model M)
- □ Q: Can lift be less than 1?
 - A: yes, if the model is inverted (all the non-targets precede targets in the list)
- Generally, a better model has higher lift

*ROC curves

- ROC curves are similar to gains charts
 - Stands for "receiver operating characteristic"
 - Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel
- Differences from gains chart:
 - y axis shows percentage of true positives in sample rather than absolute number
 - x axis shows percentage of false positives in sample rather than sample size

*A sample ROC curve

Clasification

- Jagged curve—one set of test data
- Smooth curve—use cross-validation

Clasification

*Cross-validation and ROC curves

Clasification 41

- Simple method of getting a ROC curve using crossvalidation:
 - Collect probabilities for instances in test folds
 - Sort instances according to probabilities
- This method is implemented in WEKA
- However, this is just one possibility
 - The method described in the book generates an ROC curve for each fold and averages them

*ROC curves for two schemes

- For a larger one, use method B
- In between, choose between A and B with appropriate probabilities

*The convex hull

Clasification n 43

- Given two learning schemes we can achieve any point on the convex hull!
- \square TP and FP rates for scheme 1: t_1 and t_2
- \square TP and FP rates for scheme 2: t_2 and t_2
- If scheme 1 is used to predict 100×q % of the cases and scheme 2 for the rest, then
 - TP rate for combined scheme:

$$q \times t_1 + (1-q) \times t_2$$

FP rate for combined scheme:

$$q \times f_2 + (1-q) \times f_2$$

Different Costs

- In practice, true positive and false negative errors often incur different costs
- Examples:
 - Medical diagnostic tests: does X have leukemia?
 - Loan decisions: approve mortgage for X?
 - Web mining: will X click on this link?
 - Promotional mailing: will X buy the product?
 - **-** . . .

Cost-sensitive learning

Clasification n 45

- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Re-sampling of instances according to costs
 - Weighting of instances according to costs
- Some schemes are inherently cost-sensitive, e.g. naïve
 Bayes

KDD Cup 98 – a Case Study

- Cost-sensitive learning/data mining widely used, but rarely published
- Well known and public case study: KDD Cup 1998
 - Data from Paralyzed Veterans of America (charity)
 - □ Goal: select mailing with the highest profit
 - Evaluation: Maximum actual profit from selected list (with mailing cost = \$0.68)
 - Sum of (actual donation-\$0.68) for all records with predicted/ expected donation > \$0.68

*Measures in information retrieval

Percentage of retrieved documents that are relevant:

Percentage of relevant documents that are returned:

$$recall = TP/(TP+FN)$$

- Precision/recall curves have hyperbolic shape
- Summary measures: average precision at 20%, 50% and 80% recall (three-point average recall)
- \Box F-measure=(2×recall×precision)/(recall+precision)

*Summary of measures

Clasification n 48

	Domain	Plot	Explanation
Lift chart	Marketing	TP Subset size	TP (TP+FP)/(TP+FP+TN+FN)
ROC curve	Communications	TP rate FP rate	TP/(TP+FN) FP/(FP+TN)
Recall- precision curve	Information retrieval	Recall Precision	TP/(TP+FN) TP/(TP+FP)