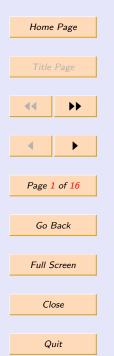


Motivations
Basic notions
Soft cuts and soft D
Searching for soft cut
Conclusions



A Soft Decision Tree

Nguyen Hung Son

son@mimuw.edu.pl

June 4, 2002

Abstract

We present the novel "soft discretization" methods using "soft cuts" instead of traditional "crisp" (or sharp) cuts. This new concept allows to generate more compact and stable decision trees with high classification accuracy. We also present an efficient method for soft cut generation from large data bases.

Motivat	ions		
Basic no	otions	;	
Soft cut	s and	l soft DT	
Searchin	ng for	soft cuts	
Conclus	ions		
I	Ноте	e Page	
	Title	Page	
			•
•	•	••	

Page 2 of 16

Go Back

Full Screen

Close

Quit

Talk layout

- 1. Motivations
- 2. Basic notions
- 3. Soft cuts and soft DT
- 4. Searching for soft cuts
- 5. Conclusions

Motivations
Basic notions
Soft cuts and soft DT
Searching for soft cuts
Conclusions

Home	e Page
Title	Page
••	••
•	
Page	3 of 16
Go	Back
Full S	Screen
Cl	ose
Q	uit

1. Motivations

- The most important **advantage** of decision tree methods are:
 - compactness and clearness of presented knowledge
 - high accuracy of classification
- The **disadvantage** of standard decision tree methods:
 - inefficiency for very large data tables.
 - instability, i.e., small deviation of data can considerably change a model.
- Our proposition: use "soft cuts" instead of "crisp cuts" in internal nodes. This concept allows to
 - generate more compact and stable decision trees.
 - assure high classification quality.
 - speed up induction algorithms in case of large data stored in databases.

Motivations	
Basic notions	
Soft cuts and soft DT	
Searching for soft cuts	
Conclusions	
Home Page	

Title	Page
••	••
•	•
Page	4 of 16
-	1
Gol	Back
E II (Screen
Full S	Screen
Cl	ose
0	uit

2. Basic notions

Decision table consists of

- a set of objects U.
- a set of attributes (columns)

$$A = \{a : U \to V_a\}$$

• a decision attribute $dec \notin A$. Assume that $V_{dec} = \{1, \dots, d\}$, $DEC_k = \{x \in U : dec(x) = k\}$ will be called the k^{th} decision class

• Any pair (a, c) , where	is an attribute and c is a real	
value, is called <i>a cut</i> .		

 We say that "the cut (a, c) discerns a pair of objects x, y" if either a(x) < c ≤ a(y) or a(y) < c ≤ a(x).

🙆 Rosetta - Rosetta 1 📃 🗖 🗙						
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp						
No name					×	
		SepalWidth	PetalLength	PetalWidth	Class	^
1	5.0	2.0	3.5	1.0	Iris-versicol	
2	6.0	2.2	5.0	1.5	Iris-virginica	
3	6.0	2.2	4.0	1.0	Iris-versicol	
4	6.2	2.2	4.5	1.5	Iris-versicol	
5	4.5	2.3	1.3	0.3	Iris-setosa	
6	5.0	2.3	3.3	1.0	Iris-versicol	
7	5.5	2.3	4.0	1.3	Iris-versicol	
8	6.3	2.3	4.4	1.3	Iris-versicol	
9	4.9	2.4	3.3	1.0	Iris-versicol	
10	5.5	2.4	3.8	1.1	Iris-versicol	
11	5.5	2.4	3.7	1.0	Iris-versicol	
12	5.7	2.5	5.0	2.0	Iris-virginica	
13	5.5	2.5	4.0	1.3	Iris-versicol	
14	5.1	2.5	3.0	1.1	Iris-versicol	
15	4.9	2.5	4.5	1.7	lris-virginica	
16	5.6	2.5	3.9	1.1	Iris-versicol	
17	6.3	2.5	4.9	1.5	Iris-versicol	
18	6.3	2.5	5.0	1.9	lris-virginica	
19	6.7	2.5	5.8	1.8	lris-virginica	
20	5.7	2.6	3.5	1.0	Iris-versicol	
21	5.5	2.6	4.4	1.2	Iris-versicol	
22	6.1	2.6	5.6	1.4	lris-virginica	
23	5.8	2.6	4.0	1.2	Iris-versicol	
24	7.7	2.6	6.9	2.3	lris-virginica	
25	5.8	2.7	5.1	1.9	Iris-virginica	

Mc	otivations
Ba	sic notions
So	ft cuts and soft DT
Sea	arching for soft cuts
Со	nclusions
	Home Page

T ... D

Title	The Page		
••	••		
•	►		
Page 🖁	5 of 16		
Go I	Back		
Full S	Screen		
Cle	ose		

Quit

2.1. Standard decision tree

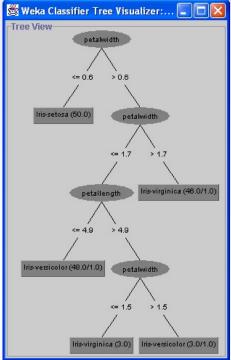
Decision tree (DT) consists of

- "test functions" in internal nodes
- "decision class" in leaves.

Decision tree tasks:

. . .

- using DT to classify new objects;
- construction of DT from data;
- choosing parameters for DT: "test function" types, "test function" evaluation, pruning



Optimal decision tree?

- DT is *consistent* with the decision table A if it classifies properly all objects from A.
- DT is *optimal* for A if it has a smallest height among decision trees consistent with A.

Ma	otivations	
Ba	sic notions	
So	ft cuts and soft DT	
Se	arching for soft cuts	
Со	nclusions	
	Home Page	

T.

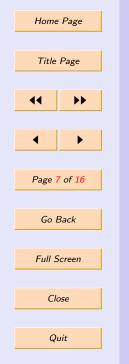
Title Page		
••	••	
◀	•	
Page	6 of 16	
Go	Back	
Full S	Screen	
CI	ose	
0	uit	

2.2. Decision tree construction

- The cut (a, c) is *optimal* if it labels one of internal nodes of optimal decision trees.
- The typical algorithm for DT induction:
 - 1. For a given set of objects U, select a cut (a, c_{Best}) of high quality among all possible cuts and all attributes;
 - 2. Induce a partition U_1, U_2 of U by $(a, c_{\textit{Best}})$;
 - 3. Recursively apply Step 1 to both sets U_1, U_2 of objects until some stopping condition is satisfied.
- decision tree induction problem:
 - "For a given set of candidate cuts $\{c_1, ..., c_N\}$ on an attribute a, find a cut c_i belonging to the set of optimal cuts with highest probability".
- Usually, we use some measure $F : \{c_1, ..., c_N\} \to \mathbb{R}$ to estimate the quality of cuts.
- straightforward algorithm:

$$c_{Best} = \arg\max_{c_i} F(c_i)$$

Motivations
Basic notions
Soft cuts and soft DT
Searching for soft cuts
Conclusions



Entropy measure

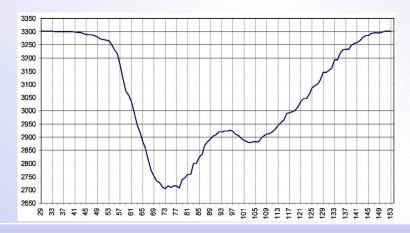
• The class information entropy of object set X with class distribution $\langle N_1, ..., N_d \rangle$, where $N_1 + ... + N_d = N$:

$$Ent(X) = -\sum_{j=1}^{d} \frac{N_j}{N} \log \frac{N_j}{N}$$

• the entropy of the partition induced by a cut (a, c):

$$E(a,c;U) = \frac{|U_L|}{n} Ent(U_L) + \frac{|U_R|}{n} Ent(U_R)$$

where $\{U_L, U_R\}$ is a partition of U defined by c.



Motivations
Basic notions
Soft cuts and soft DT
Searching for soft cuts
Conclusions



Discernibility measure

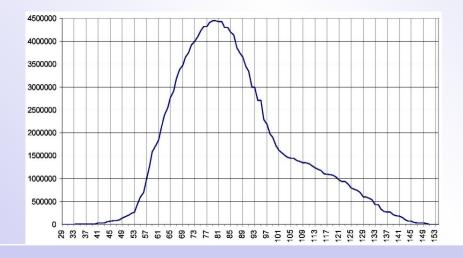
• energy of the set of objects $X \subset U$ can be defined by the number of pairs of objects from X to be discerned

$$conflict(X) = \sum_{i < j} N_i N_j$$

where $\langle N_1,...,N_d
angle$ is a class distribution of X

• The cut c which divides the set of objects U into U_1 , and U_2 is evaluated by

$$W(c) = conflict(U) - conflict(U_1) - conflict(U_2)$$



Motivations Basic notions Soft cuts and soft DT Searching for soft cuts Conclusions Home Page Title Page

Page 9 of 16 Go Back

Close

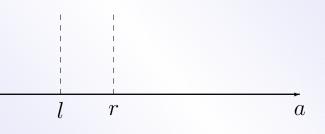
Full Screen

Quit

3. Soft cuts and soft DT

A soft cut is any triple $p = \langle a, l, r \rangle$, where

- $a \in A$ is an attribute,
- $l, r \in \Re$ are called the left and right bounds of p ;
- the value $\varepsilon = \frac{r-l}{2}$ is called the uncertain radius of p.
- We say that a soft cut p discerns a pair of objects x_1, x_2 if $a(x_1) < l$ and $a(x_2) > r$.



• The intuitive meaning of $p = \langle a, l, r \rangle$:

- there is a real cut somewhere between l and r.
- for any value $v \in [l, r]$ we are not able to check if v is either on the left side or on the right side of the real cut.
- -[l,r] is an uncertain interval of the soft cut p.
- normal cut can be treated as soft cut of radius 0.

Мс	otivations		
Ba	sic notions	:	
Sol	ft cuts and	soft DT	
Sea	arching for	soft cuts	
Со	nclusions		
	Home	Page	
	Title	Page	
	44	••	
	•	•	

Page 10 of 16

Go Back

Full Screen

Close

Quit

3.1. Soft Decision Tree

- The test functions can be defined by soft cuts
- Here we propose two strategies using described above soft cuts:
 - fuzzy decision tree: any new object u can be classified as follows:
 - * For every internal node, compute the probability that u turns left and u turns right;
 - * For every leave L compute the probability that u is reaching L;
 - * The decision for u is equal to decision labeling the leaf with largest probability.
 - rough decision tree: in case of uncertainty
 - Use both left and right subtrees to classify the new object;
 - * Put together their answer and return the answer vector;
 - * Vote for the best decision class.

Motivations
Basic notions
Soft cuts and soft DT
Searching for soft cuts
Conclusions

Home Page

Title	Page
44	••
	_
Page 1	1 of 16
Go I	Back
F 11 (
Full S	Screen
CI	
Cla	ose
Qi	uit

4. Searching for soft cuts

STANDARD ALGORITHM FOR BEST CUT

• For a given attribute a and a set of candidate cuts $\{c_1, ..., c_N\}$, the best cut (a, c_i) with respect to given heuristic measure

$$F: \{c_1, ..., c_N\} \to \mathbb{R}^+$$

can be founded in time $\Omega(N)$.

• The minimal number of simple SQL queries of form

```
SELECT COUNT
FROM data_table
WHERE (a BETWEEN c_L AND c_R) GROUPED BY d.
```

necessary to find out the best cut is $\Omega(dN)$

OUR PROPOSITIONS FOR SOFT CUTS

- Tail cuts can be eliminated
- Divide and Conquer Technique

Mc	otivations		
Ba	sic notions	5	
So	ft cuts and	l soft DT	
Sea	arching for	soft cuts	
Со	nclusions		
	Home	e Page	
	Title	Page	
	44	••	

Page 12 of 16

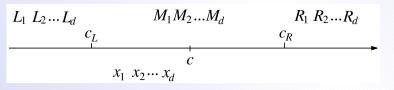
Go Back Full Screen

Close

Quit

4.1. Divide and Conquer Technique

- The algorithm outline:
 - **1.** Divide the set of possible cuts into k intervals
 - 2. Chose the interval to which the best cut may belong with the highest probability.
 - **3.** If the considered interval is not STABLE enough then Go to Step 1
 - 4. Return the current interval as a result.
- The number of SQL queries is $O(d \cdot k \log_k n)$ and is minimum for k = 3;
- How to define the measure evaluating the quality of the interval [c_L; c_R]?



• This measure should estimate the quality of the best cut from $[c_L; c_R]$.

Motivations Basic notions Soft cuts and soft DT Searching for soft cuts Conclusions

Home Page Title Page Page 13 of 16 Go Back Full Screen Close Quit

We construct estimation measures for intervals in four cases:

	Discernibility measure	Entropy Measure
Independency	?	?
assumption		
Dependency	?	?
assumption		

4.2. Discernibility measure:

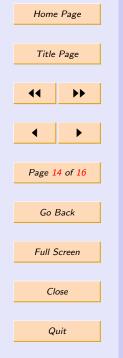
Under dependency assumption, i.e.

$$\frac{x_1}{M_1} \simeq \frac{x_2}{M_2} \simeq \dots \simeq \frac{x_d}{M_d} \simeq \frac{x_1 + \dots + x_d}{M_1 + \dots + M_d} = \frac{x}{M} =: t \in [0, 1]$$

discernibility measure for $[c_L; c_R]$ can be estimated by:

 $\frac{W(c_L) + W(c_R) + conflict(c_L; c_R)}{2} + \frac{[W(c_R) - W(c_L)]^2}{conflict(c_L; x_R)}$

Motivations Basic notions Soft cuts and soft DT Searching for soft cuts Conclusions



Under **dependency assumption**, i.e. $x_1, ..., x_d$ are independent random variables with uniform distribution over sets $\{0, ..., M_1\}, ..., \{0, ..., M_d\}$, respectively.

• The mean E(W(c)) for any cut $c \in [c_L; c_R]$ satisfies

$$E(W(c)) = \frac{W(c_L) + W(c_R) + conflict(c_L; c_R)}{2}$$

 \bullet and for the standard deviation of W(c) we have

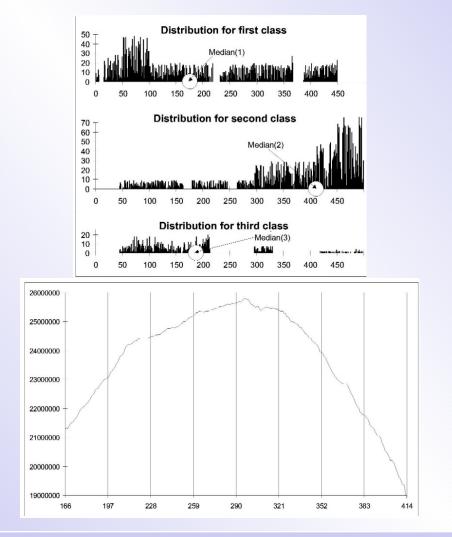
$$D^{2}(W(c)) = \sum_{i=1}^{n} \left[\frac{M_{i}(M_{i}+2)}{12} \left(\sum_{j \neq i} (R_{j} - L_{j}) \right)^{2} \right]$$

• One can construct the measure estimating quality of the best cut in $[c_L; c_R]$ by

$$Eval\left([c_L;c_R],\alpha\right) = E(W(c)) + \alpha \sqrt{D^2(W(c))}$$

Motivations

4.3. Example



Basic notions Soft cuts and soft DT Searching for soft cuts Conclusions Home Page Title Page •• 44 ◀ Page 15 of 16 Go Back Full Screen Close Quit

Ma	otivations	
Ba	sic notions	
So	ft cuts and soft DT	
Se	arching for soft cuts	
Со	nclusions	
	Home Page	
	Title Page	

Title	Page
44	••
•	
Page 1	6 of 16
Go I	Back
Full S	Screen
Clo	ose
0	

5. Conclusions

- Soft cuts as a novel discretization concept;
- Soft decision tree;
- Efficient method for construction of soft cuts from large data (one can reduce the number of simple queries from O(N) to O(log N) to construct the partition very close to the optimal one).