

Text and Web Mining

A big challenge for Data Mining

Nguyen Hung Son Warsaw University

- Text vs. Web mining
- Search Engine Inside:
 - Why Search Engine so important
 - Search Engine Architecture
 - Crawling Subsystem
 - Indexing Subsystem
 - Search Interface
- Text/web mining tools
- Results and Challenges
- Future Trends

TEXT AND WEB MINING OVERVIEW

Text Mining

- The sub-domain of Information Retrieval and Natural Language Processing
 - Text Data: free-form, unstructured & semistructured data
 - **Domains**: Internal/intranet & external/internet
 - Emails, letters, reports, articles, ..
 - Content management & information organization
 - knowledge discovery: e.g. "topic detection",
 "phrase extraction", "document grouping", ...

Web mining

- The sub-domain of IR and multimedia:
 - Semi-structured data: hyper-links and html tags
 - Multimedia data type: Text, image, audio, video
 - Content management/mining as well as usage/traffic mining

The Problem of Huge Feature Space

Natural Language Processing

- Text classification/categorization
- Document clustering: finding groups of similar documents
- Information extraction
- Summarization: no corresponding notion in Data Mining

Text Mining vs. NLP

- Text Mining: extraction of interesting and useful patterns in text data
 - NLP technologies as building blocks
 - Information discovery as goals
 - Learning-based text categorization is the simplest form of text mining

Text Mining : Text Refining + Knowledge Distillation

Text categorization Visualization

Predictive modelling Associative discovery **Deviation** detection Trend analysis

Large Text Databases

- have emerged in early 90's with the rapid progress of communication and network technologies.
 - Web pages (OPENTEXT Index, GBs to TBs)
 - A collection of SGML documents / XML.
 - Genome databases (GenBank, PIR)
 - Online dictionary (Oxford Eng. Dict., 600MB)
 - Emails or plain texts on a file system.
- Huge, Heterogeneous, unstructured data
- Traditional data mining technology cannot work!

SEARCH ENGINE INSIDE

- From Technical Views

Statistics

- 1 in every 28 page views on the Web is a search result pages. (June 1,1999, Alexa Insider)
- The most widely traveled path on the web in March 1999 was from home.microsoft.com to www.altavista.com . (March 1999, Alexa Insider)
- The average work user spends 73 minutes per month at search engines, second only to 97 minutes at news, info and entertainment sites. (Feb, 1999, Internet World)
- Almost 50% of online users turn to search sites for their online news needs. (Dec. 1998, Jupiter)

Statistics

How Internet Users Find New Websites

Source: IMP Strategies, Feb, 21. 2000

Take Inktomi for example, it should accepts 440 queries each second.

Taxonomy

- General-purpose Search Engine Altavista, Excite, Infoseek, Lycos, HotBot,...
- Hierarchical Directory Yahoo,Open Directory,LookSmart,...
- Meta Search Engine MetaCrawler, DogPile, SavvySearch, ...
- Question-Answering AskJeeves
- Specialized Search Engines
 - HomePage Finder, Shopping robots, RealName, ...
- • •

Components

• Spider

Spiders crawl the web, collect the documents through what they have found.

• Indexer

Process and make a logical view of the data.

• Search Interface

Accept user queries and search through the index database. Also, rank the result listing and represent to the user.

Crawling Subsystem

```
Spider (URL)
{
   #Use the HTTP protocol get method to acquire the web page
   Set HttpConnection = HTTPGet(URL);
   #Verify that information is accurate and not a 404 error
   Set Content = CheckInformation(HttpConnection);
   #Place the information into a database for later processing
   StoreInformation(Content);
}
```


Measurement of Indexed Pages

Unit : Million

Coverage of the Web

Issues for Crawling (1/3)

- Web Exploration with Priority
 - Decisions about which site(page) is explored first
 - Ensuring document quality and coverage
 - Use Random , BFS, DFS (+depth limits) with priority
- Duplications
 - Host-wise duplications
 - Near 30% of the web are syntactically duplicated
 - ?? are semantically duplicated.
 - Single Host duplications
 - The same website with different host name
 - Symbolic links will cause some infinite routes in the web graph
 - Use Fingerprint, limited-depth exploration
- Dynamic Documents
 - Whether retrieve dynamic documents or not ?
 - Single dynamic document with different parameters ?!

Issues for Crawling (2/3)

- Load Balance
 - Internal
 - Response time, size of answers are unpredictable
 - There are additional system constraints (# threads,# open connections, etc)
 - External
 - Never overload websites or network links (A well-connected crawler can saturate the entire outside bandwidth of some small country)
 - Support robot standard for politeness.
- Storage Management
 - Huge amount of url/document data
- Freshness
 - Many web sites(pages) changes oftenly, others nearly remains unchanged
 - Revisit different website with different periods.

Issues for Crawling (3/3)

- The Hidden Web
 - Some websites are not popular but valuable
 - Use Fast DNS search for possible explorations.
- Sample Architecture of Crawling System (Adapted from a topic-specific crawler)

Indexer Subsystem

```
Index(content,URL) {
  #Search each needed HTML structure
  Set Head=GetHtmlHead(content);
  Set Title=GetHtmlTitle(content);
  Set Keywords=GetHtmlKeyword(content);
  #Get needed keywords
  Loop {
    Set Object = CreateObject(Keywords,Title,Head,URL);
    #Store the keyword, and make internal representation
    StoreKeyword(Object,keyword);
  }
}
```


Logic View of Docs and Queries

from Vector Space Model

- Documents and Queries are treated as a tdimension vectors
 - t is the dimension of the whole index term space.
 - Each vector component is the weight for relevance factor for a specific index term.
- Typical measurement for relevance

$$sim(d_j,q) = \frac{\overrightarrow{d_j} \cdot \overrightarrow{q}}{|\overrightarrow{d_j}| \times |\overrightarrow{q}|}$$

Logic View of Docs and Queries from Vector Space Model

• Typical weighting scheme – TFxIDF $W_{i,j} = f_{i,j} \times \log \frac{N}{n_i}$

 Typical Effectiveness Measurement – Recall/Precision

Recall = the fraction of the relevant documents which has been retrieved Precision = the fraction of the retrieved documents which is relevant

Issues for Indexing (1/2)

- Language Identification
 - Documents with different languages should be unified into a meta-representation.
 - Code conversion without concept lose.
 - How to identify language type
 - use meta data (charset, content-encoding) if available.
 - statistical approaches to identify language type
- Storage Management
 - Huge amount of indexes can not be loaded in the memory totally
 - Use cache mechanism, fast secondary storage access...
 - Efficient database structures
 - Using Compression ?! Speed and Storage tradeoff

Issues for Indexing (2/2)

- Text Operations
 - Full text or controlled vocabulary
 - Stop list, Stemming, Phrase-level indexing, Thesaurus...
 - Concept discovery, Directory establishment, Categorization
 - Support search with fault tolerances ?!
 - ...
- Query-independent ranking
 - Weighting scheme for query-independent ranking
 - Web graph representation manipulations
- Structure information reservation
 - Document author, creation time, title, keywords, ...

Search Subsystem

```
Report (query) {
   #Get all relevant URLs in the internal database
   Set Candidates = GetRelevantDocuments(query);
   #Rank the lists according to its relevance scores
   Set Answer = Rank(Candidates);
   #Format the result
   DisplayResults();
}
```


What makes Web Users So Different

- Make poor queries
 - Short queries (2.35 terms for English, 3.4 characters for Chinese)
 - Imprecise terms
 - Sub-optimal syntax (80% queries without operator)
- Wide variance in
 - Needs (Some are looking for proper noun only)
 - Expectations
 - Knowledge
 - Bandwidth
- Specific behavior
 - **85% look over one result screen only**
 - 78% of queries are not modified
 - Follow links

Ranking

• Goal

order the answer set to a query in decreasing order of value

- Types
 - Query-independent : assign an intrinsic value to a document, regardless of the actual query
 - Query-dependent : value is determined only with respect to a particular query
 - Mixed : combination of both valuations
- Examples
 - Query-independent : length, vocabulary, publication data, number of citations(indegree), etc
 - Query-dependent : cosine measurement

Some ranking criteria

Content-based techniques

Variant of term vector model or probabilistic model

• Ad-hoc factors

Anti-porn heuristics, publication/location data

- Human annotations
- Connectivity-based techniques
 - Query-independent
 - PageRank [PBMW '98, BP '98], indegree [CK'97] ...
 - Query-dependent
 - HITS [K'98] ...

Connectivity-Based Ranking

- PageRank
 - Consider a random Web surfer
 - Jumps to random page with probability $\boldsymbol{\alpha}$
 - With probability 1 α , follows a random hyperlink
 - Transition probability matrix is

 $\alpha \ge U + (1 - \alpha) \ge A$

where U is the uniform distribution and A is adjacency matrix

Query-independent rank = stationary probability for this Markov chain

 $PR(a) = \alpha + (1 - \alpha) \sum PR(P_i) / C(P_i)$

 Crawling the Web using this ordering has been shown to be better than other crawling schemes.

Practical Systems

- Alianista ista

- Altavista configuration '98
 - Crawler Scooter
 - 1.5 GB memory
 - 30 GB RAID disk
 - 4x533 MHz AlphaServer
 - 1 GB/s I/O bandwidth
 - Indexing Engine Vista
 - 2 GB memory
 - 180 GB RAID disk
 - 2x533 MHz AlphaServer
 - Search Engine Altavista
 - 20 multi-processor machines
 - 130 GB memory
 - 500 GB RAID disk

Don't be surprised about it !!

- Inktomi uses a cluster of hundreds of Sun Sparc workstation with 75 GB RAM, over 1 TB disk.
- It crawls 10 millions pages a day.

How Well does it Perform?

- Index about 0.8TB text
- No stop words
- 37 million queries on weekdays
- Mean response time = 0.6 sec

Practical Systems

• The power of PageRank

A REVIEW OF SEARCH ENGINE STUDIES AND CHALLENGES

"Intelligent" web agents

- Some intelligent crawlers have builtin learning algorithms:
 - text classification (for domain-specific data base)
 - path finding (using reinforcement learning)
- Some Search Engines use Inference
 Networks / Belief Networks for
 document ranking

Information Retrieval results

- Measures
 - Recall measures
 - Precision measures
 - Real user evaluation measures????
- Transaction Log Analysis
- Defining Web Searching Studies

Challenges

- Comparison framework?
 - **Descriptive Information**
 - Analysis Presentation
 - session
 - query
 - term (phrase)
 - Statistical analysis

THE FUTURE

Text/Web Mining - The Market Place

- Many products/companies
 - High tech start-up and big players
 - Battle field is in industry rather than in academic institutes.
- Functions
 - Search & retrieval
 - Document navigation & exploration
 - Text analysis
 - Knowledge management

Future Trends

- Multi-lingual/Cross-Lingual Information Retrieval
 - Another way toward concept-oriented searching
- Web Mining
 - Web content mining : customer behavior analysis, advertisment
 - Web usage mining : web query log analysis
- Personalized Search Agents
 - Information filtering, information routing
 - More accurate user concept hierarchy mapping
- Topic-specific knowledge base creation
- Question-Answering system
 - Intelligent e-Service
 - User modeling research

Promising directions

- Content personalization
- Multilingual
- New content/knowledge discovery
- Domain-specific applications
 - Personalized portal
 - Competitive intelligence
 - Knowledge management

References

- KRDL's Text Mining site
 - http://textmining.krdl.org.sg/resources.html
- KDNuggets:Data Mining and Knowledge
 Discovery Resources
 - http://www.KDNuggets.com
- PRICAI'2000 Workshop on Text and Web Mining, Melbourne, 28 August 2000