Clustering:

Techniques & Applications

Nguyen Sinh Hoa, Nguyen Hung Son

Agenda

- Introduction
- Clustering Methods
- Applications:
 - Outlier Analysis
 - □ Gene clustering
- Summary and Conclusions

Clustering vs. Classification

Clustering:

Unsupervised learning:

Finds "natural" grouping of instances given un-labeled data

Classification:

Supervised learning:

Learns a method for predicting the instance class from pre-labeled (classified) instances

15 lutego 2006

Examples of Clustering Applications

- Marketing: discover customer groups and use them for targeted marketing and re-organization
- Astronomy: find groups of similar stars and galaxies
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Genomics: finding groups of gene with similar expressions
 WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - □ high <u>intra-class</u> similarity
 - □ low <u>inter-class</u> similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation.
- The quality of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

15 lutego 2006

Clustering

Requirements of Clustering in Data Mining Scalability

- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Agenda

- Introduction
- Clustering Methods
- Techniques for Improving the Efficiency
- Applications:
 - Medical Image Clustering
 - Document Clustering
 - Outlier Analysis
 - Summary and Conclusions

Types of Clustering Algorithms

- Hierarchical vs. flat
- For numeric and/or symbolic data
- Deterministic vs. probabilistic
- Exclusive vs. overlapping
- Top-down vs. bottom-up

Clusters: Exclusive vs. Overlapping

Flat, non-overlapping, deterministic

Flat, overlapping, deterministic

15 lutego 2006

Clustering

Clusters: Hierarchical vs. Flat

Hierarchical, nonoverlapping, deterministic Flat, overlapping, probabilistic

Major Clustering Methods

- Partitioning algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Density-based: based on connectivity and density functions
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
 - Summary and Conclusions

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database *D* of
 n objects into a set of *k* clusters
- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
 - k-means (MacQueen'67): Each cluster is represented by the center of the cluster
 - k-medoids or PAM (Partition Around Medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

Given k, the k-means algorithm is implemented in 4 steps:

Step 1. Partition objects into *k* nonempty subsets **Step 2**. Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.

Step 3. Assign each object to the cluster with the nearest seed point.

Step 4. Go back to Step 2, stop when no more new assignment.

15 lutego 2006

K-means Example, Step 3

X

K-means Example, Step 4

Reassign points Y closest to a different new cluster center

Q: Which points are reassigned?

X

15 lutego 2006

K-means Example, Step 4b Y re-compute cluster k₃♠ ♦ k₂

means

X

15 lutego 2006

Discussion

- Result can vary significantly depending on initial choice of seeds
- Can get trapped in local minimum
 - Example: initial cluster centers
 Instances
 To increase chance of finding global optimum: restart with different random seeds

K-means Clustering Summary

Advantages

- Simple, understandable
- items automatically assigned to clusters

Disadvantages

- Must pick number of clusters before hand
- All items forced into a cluster
- Too sensitive to outliers

The K-Medoids Clustering Method

- Find *representative* objects, called *medoids*, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling

PAM (Partitioning Around Medoids)

PAM (Kaufman and Rousseeuw, 1987)

• Use real object to represent the cluster

Step 1. Select *k* representative objects arbitrarily

Step 2. For each pair of non-selected object h and selected object i, calculate the total swapping cost TC_{ih}

Step 3. For each pair of *i* and *h*, if $(TC_{ih} < 0)$, *i* is replaced by *h*. Then assign each non-selected object to the most similar representative object

Step 4. repeat steps 2-3 until there is no change

PAM Clustering: Total swapping cost

 $C_{jih} = 0$

Clustering 26

Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
 - Summary and Conclusions

Hierarchical Clustering

• This method does not require the number of clusters *k* as an input, but needs a termination condition

Agglomerative Approach

- Start with single-instance clusters
- At each step, join the two closest clusters
- Design decision: distance between clusters
 - E.g. two closest instances in clusters vs. distance between means

15 lutego 2006

Clustering

Divisive Approach

- Start with one universal cluster
- Find two clusters
- Proceed recursively on each subset
- Can be very fast

15 lutego 2006

Clustering

A *Dendrogram* Shows How the Clusters are Merged Hierarchically

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a

Linkage Hierarchies

- Single Linkage
- Complete Linkage
- Average Linkage / Centroid Linkage

Single Linkage

Distance between clusters (nodes):

 $Dist(C_1, C_2) = \min_{p \in C_1, q \in C_2} \{dist(p, q)\}$

Merge Step:

Union of two subset of data points

 A single linkage hierarchy can be constructed using the Minimal Spanning Tree

Complete Linkage

Distance between clusters (nodes):

 $Dist(C_1, C_2) = \max_{p \in C_1, q \in C_2} \{dist(p, q)\}$

Merge Step:

Union of two subset of data points

 Each cluster in a complete linkage hierarchy corresponds to a complete subgraph

Average Linkage / Centroid Method

Distance between clusters (nodes):

$$\begin{split} Dist_{avg}(C_1,C_2) &= \frac{1}{\#(C_1)\cdot \#(C_2)} \sum_{p \in C_1} \sum_{p \in C_2} dist(p,q) \\ Dist_{mean}(C_1,C_2) &= dist[mean(C_1),mean(C_2)] \end{split}$$

- Merge Step:
 - Union of two subset of data points
 - Construct the mean point of the two clusters

More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - <u>do not scale</u> well: time complexity of at least O(n²), where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters

BIRCH

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD'96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree

BIRCH

- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- *Weakness:* handles only numeric data, and sensitive to the order of the data record.

Basic Idea of the CF-Tree

Condensation of the data using CF-Vectors
 Clustering Feature Vector:

$$CF = (N, \overrightarrow{LS}, SS)$$

N: number of objects in the cluster

$$\vec{LS} = \sum_{i=1}^{N} \vec{X_i} \qquad SS = \sum_{i=1}^{N} \vec{X_i}$$

•CF-tree uses sum of CF-vectors to build higher levels of the CF-tree

Clustering

Insertion Algorithm for a New Point x

Step 1. Find the closest leaf b
Step 2. If x fits in b, insert x in b; otherwise split b
Step 3. Modify the path for b
Step 4. If tree is to large, condense the tree by merging the closest leaves

Clustering in BIRCH

Drawbacks of Distance-Based Method

- Drawbacks of square-error based clustering method
 - Consider only one point as representative of a cluster
 - Good only for convex shaped, similar size and density, and if *k* can be reasonably estimated

Clustering

Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
 - Summary and Conclusions

Density-Based Clustering Methods

- Major features:
 - Discover clusters of arbitrary shape
 - □ Handle noise
 - One scan
 - Need density parameters as termination condition

Several interesting studies: <u>DBSCAN:</u> Ester, et al. (KDD'96) <u>OPTICS</u>: Ankerst, et al (SIGMOD'99). <u>DENCLUE</u>: Hinneburg & D. Keim (KDD'98) <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98)

Density-Based Clustering: Background

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - *MinPts*: Minimum number of points in an Eps-neighbourhood of that point
- $N_{Eps}(p): \qquad \{q \text{ belongs to } D \mid dist(p,q) \leq Eps\}$
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* wrt. *Eps*, *MinPts* if
 - □ 1) *p* belongs to *N_{Eps}(q)*
 - □ 2) core point condition:

$$|N_{Eps}(q)| \ge MinPts$$

Density-Based Clustering: Background (II)

Density-reachable:

• A point *p* is density-reachable from a point *q* wrt. *Eps*, *MinPts* if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

 A point p is density-connected to a point q wrt. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- □ If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Agenda

- Introduction
- Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
- Applications
 - Summary and Conclusions

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods:
 - □ CLIQUE: Agrawal, et al. (SIGMOD'98)
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and gridbased
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - □ A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - □ A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster

Strength and Weakness of *CLIQUE*

- Strength
 - It <u>automatically finds subspaces of the highest dimensionality</u> such that high density clusters exist in those subspaces
 - □ It is *insensitive* to the order of records in input and does not presume some canonical data distribution
 - It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

Weakness

The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Agenda

- Introduction
- Clustering Methods
- Applications:
 - Outlier Analysis
 - □ Gene clustering
- Summary and Conclusions

What Is Outlier Discovery?

What are outliers?

- The set of objects are considerably dissimilar from the remainder of the data
- Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem
 - Find top n outlier points
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute

In many cases, data distribution may not be known

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm

Cell-based algorithm

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- sequential exception technique
 - simulates the way in which humans can distinguish unusual objects
 from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data

Agenda

- Introduction
- Clustering Methods
- Evaluating Clustering Models
- Applications:
 - Outlier Analysis
 - Gene Clustering
- Summary and Conclusions

Expression Vectors

Gene Expression Vectors encapsulate the expression of a gene over a set of experimental conditions or sample types.

Expression Vectors As Points in 'Expression Space'

Distance and Similarity

-the ability to calculate a distance (or similarity, it's inverse) between two expression vectors is fundamental to clustering algorithms

-distance between vectors is the basis upon which decisions are made when grouping similar patterns of expression

-selection of a *distance metric* defines the concept of distance

Distance: a measure of similarity between gene expression.

Exp 4

Exp 5

Exp 6

Gene A	x _{1A}	x _{2A}	x _{3A}	x _{4A}	x _{5A}	x _{6A}
Gene B	x _{1B}	x _{2B}	x _{3B}	x _{4B}	x _{5B}	x _{6B}

Exp 3

Some distances: (MeV provides 11 metrics)

Exp 2

1. Euclidean: $\sqrt{\sum_{i=1}^{6} (x_{iA} - x_{iB})^2}$

Exp 1

- 2. Manhattan: $\sum_{i=1}^{6} |\mathbf{x}_{iA} \mathbf{x}_{iB}|$
- 3. Pearson correlation

 p_1

Hierarchical Clustering

15 lutego 2006

Hierarchical Clustering

15 lutego 2006

Clustering

The Leaf Ordering Problem:

- Find 'optimal' layout of branches for a given dendrogram architecture
- 2^{N-1} possible orderings of the branches
- For a small microarray dataset of 500 genes there are 1.6*E150 branch configurations

Hierarchical Clustering

The Leaf Ordering Problem:

15 lutego 2006

Clustering

Agenda

- Introduction
- Clustering Methods
- Applications
- Summary and Conclusions

Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, PAM
 - Hierarchical: BIRCH
 - Density-based: DBSCAN
 - Grid-based: CLIQUE
- Current clustering techniques do not <u>address</u> all the requirements adequately
- Constraint-based clustering analysis: Constraints exist in data space (bridges and highways) or in user queries

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, gridbased methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distancebased or deviation-based approaches
- There are still lots of research issues on cluster analysis, such as constraint-based clustering

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scietific, 1996
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
 - A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.

15 lutego 2006

Clustering

References (2)

- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- **R**. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition, 101-105.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGMOD'96.

