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Decidability border for Petri nets with data:
wqo dichotomy conjecture
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• a set of rewriting rules:
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• steps:

• configurations reachable from an initial one

T ✓ M(P)⇥M(P)

M(P)

X + I �! X +O, (I,O) 2 T

P }multiset rewriting 
system

For      and       finite, this is essentially classical Petri nets.P T
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P = P⇥ N

T =
[

t2T

Tt Tt ✓ M(P)⇥M(P)

Petri nets, where instead of finite sets of 
places and transitions, infinite ones but 
definable in first-order logic; this follows 
the lines of [Bojańczyk, Klin, L.’14]}

Tt = {({(p1, y1), (p2, y2)}, {(p1, z1), (p2, z2), (p2, z3)}) :

y1 = y2 6= z3 ^ z1 = z2}
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• reachability: is a given configuration reachable, up 
automorphism?

• place boundedness: is the set of reachable configurations 
finite, up to data automorphism, when projected to a 
given subset of places?

• width boundedness: is there a bound on the number of 
different data values in every reachable configuration?

• depth boundedness: is there a bound on the cardinality 
of every data value in every reachable configuration?

}defined up to 
automorphism

input: an (un)ordered Petri net 
and an initial configuration.

}only makes 
sense in data 
setting
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(N,=)

(Q, <)

Data domain is a parameter in the following.

Automorphisms of A we call data automorphisms.
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A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

21

homogeneous structures

Fact: 
Isomorphic configurations are 
equal up to data automorphism.

Thus a configuration can be 
finitely represented by its 
isomorphism type.
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Theorem: 
Homogeneous structures 
admit quantifier elimination: 
every first-order formula is 
equivalent to a quantifier-free 
one.
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Theorem: [Lachlan,Woodrow’80] Let A be an infinite countable 
homogeneous graph. Then either A or its complement is isomorphic 
to one of:
• universal (random) graph

• universal graph excluding n-clique, for some n

• disjoint union of cliques of the same (finite or infinite) size

An analogous (but more complex) classification exists for directed 
graphs [Cherlin’98]. 

 A classification of all homogeneous structures remains a great 
challenge. 
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• data domain

• the proof adapts to

(N2,=1,=2,=12)

(N2,=1,=2)



undecidability - proof idea 

32



undecidability - proof idea 

32

• data domain (N2,=1,=2,=12)



undecidability - proof idea 

32

• data domain 

• simulate 2-counter machine

(N2,=1,=2,=12)



undecidability - proof idea 

32

(a1, a2), (a2, a3), . . . , (an, an+1), (an+1, a1)

• data domain 

• simulate 2-counter machine

• counter value n is represented by a ”cycle’’:

(N2,=1,=2,=12)



undecidability - proof idea 

32

(a1, a2), (a2, a3), . . . , (an, an+1), (an+1, a1)

• data domain 

• simulate 2-counter machine

• counter value n is represented by a ”cycle’’:

• zero test: 

(N2,=1,=2,=12)



undecidability - proof idea 

32

(a1, a2), (a2, a3), . . . , (an, an+1), (an+1, a1)

• data domain 

• simulate 2-counter machine

• counter value n is represented by a ”cycle’’:

• zero test: 

• decrement:

(N2,=1,=2,=12)
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Consider age(A) ordered by embeddings. 
Recall that a configuration is a structure from age(A) labeled by 
elements of M(P)

A =                         configurations =      (N,=) M(M(P))

A =                         configurations =      (Q, <) M(P)⇤

Theorem:
Let A be an effective homogeneous data domain such that 
configurations, ordered by embeddings, are a wqo.
Then all the standard problems are decidable.

A = random graph     configurations =  finite graphs labeled 
                                                                by elements of               M(P)

}wqo

no wqo!

Proof: Using the framework of well-structured transition systems of  
[Finkel,Schnoebelen’01].
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WQO Dichotomy Conjecture:
For a homogeneous data domain A, exactly one of the following 
conditions holds:
• age(A), ordered by embeddings, is a wqo

• all the standard problems are undecidable for 
Petri nets with data A.

thank you!
Likewise for other wqo-based algorithms, for instance 
emptiness of alternating automata with 1-register.


