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finite multisets

* configurations: M (P x N)

* data automorphism = arbitrary permutation of N

* conhgurations up to data automorphism: M (M (P))
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a set P

a set of rewriting rules: 7 C  M(P) x M(P)

configurations: M (P)
steps: X+1 — X+0,
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multiset rewriting

e aset P

multiset rewriting

* asetofrewritingruless T C  M(P) x M(P) system
* conhgurations: M (P)
* steps: X+1I — X+0, (I,O)ET

* conhigurations reachable from an imitial one

For P and 7 finite, this is essentially classical Petri nets.
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semantics via multiset rewriting

P11 Y2 P2

r1,T2
t1 >@/—\ to
\__/ \___/
Z1 \ 22,23

T1 # T2 Y1 = Y2 #F 23 N 21 = 22

Petri nets, where instead of finite sets of
glaces and transitions, infinite ones but
efinable in first-order logic; this follows

P — PxN the lines of [Bojahiczyk, Khin, 1.."14]

T =|JT Te C€ M(P) x M(P)

Te = {({(plvyl)v(p27y2)}7{(plvzl)7(p27Z2)7(p27Z3)}) :
Y1 =Yz F 23 N 21 = 22}
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beyond standard problems

input: an (un)ordered Petri net
and an mmitial configuration.

reachability: 1s a given conhiguration reachable, up

automorphism?
defined up to
place boundedness: is the set of reachable configurations g automorphism
finite, up to data automorphism, when projected to a
given subset of places?
width boundedness: 1s there a bound on the number of
different data values in every reachable configuration? only makes
sense 1n data
depth boundedness: 1s there a bound on the cardinality setting

of every data value 1n every reachable conﬁguration?
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From now on we only consider standard problems like:

* termination
* coverability

* boundedness
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Petr1 nets with data

 unordered data Petri nets = Petri nets with data (N : :)

* ordered data Petri nets = Petri nets with data (@, <)

¢ .7

Fix a countably infinite relational structure A over a finite vocabulary,
and call it data domain. This yields Petri nets with data A.

Data domain 1s a parameter in the following.

Automorphisms of A we call data automorphisms.
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quantifier elimination

Theorem:
Homogeneous structures
admit quantifier elimination:

every hirst-order formula 1s

equivalent to a quantifier-free
one.
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Examples:
A= (N, =) conhgurations = M (M (P))
A=(Q, <) configurations = M (P)* o

A = random graph configurations = finite graphs labeled __ wqo!
by elements of M (P)

Theorem:
Let A be an effective homogeneous data domain such that

configurations, ordered by embeddings, are a wqo.

Then all the standard problems are decidable.

Proof: Using the framework of well-structured transition systems of

[ Finkel,Schnoebelen’01].

38



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

39



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

The conjecture 1s confirmed for:

39



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

The conjecture 1s confirmed for:

* graphs

39



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

The conjecture 1s confirmed for:

* graphs
* directed graphs

39



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

The conjecture 1s confirmed for:

* graphs
* directed graphs

* structures, where all relations are equivalences

39



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

* all the standard problems are undecidable.

The conjecture 1s confirmed for:

* graphs
* directed graphs

* structures, where all relations are equivalences

39



idea of the proof for graphs



idea of the proof for graphs

Consider an amalgamation class of graphs.

40



idea of the proof for graphs

Consider an amalgamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

40



idea of the proof for graphs

Consider an ama;gamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

* otherwise, wlog. all co-cliques are 1n the class,

40



idea of the proof for graphs

Consider an amaigamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

o
* otherwise, wlog. all co-cliques are 1n the class,

0y 0 -
o o
* and the following graphs are implied:
o ® ® o

40



idea of the proof for graphs

Consider an amaigamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

o
* otherwise, wlog. all co-cliques are 1n the class,

0y 0 -
o o°
* and the following graphs are implied:

40



idea of the proof for graphs

Consider an amaigamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

o
* otherwise, wlog. all co-cliques are 1n the class,

0y 0 -
o o°
* and the following graphs are implied:

40




idea of the proof for graphs

Consider an amaigamation class of graphs.

* if the class excludes any of the following graphs, wqo

: N

o
* otherwise, wlog. all co-cliques are 1n the class,

0y 0 -
o o°
* and the following graphs are implied:

40




WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

e all the standard problems are undecidable for
Petri nets with data A.

41



WQO Dichotomy Conjecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

e all the standard problems are undecidable for
Petri nets with data A.

Likewise for other wqo-based algorithms, for instance
emptiness of alternating automata with 1-register.

41



WQO Dichotomy Conijecture:

For a homogeneous data domain A, exactly one of the following

conditions holds:

e age(A), ordered by embeddings, 1s a wqo

e all the standard problems are undecidable for
Petri nets with data A.

Likewise for other wqo-based algorithms, for instance
emptiness of alternating automata with 1-register.

fhank ¥ ou’



