
Sławomir Lasota
University of Warsaw

Computation theory with atoms

FoPSS School 2019: Nominal Techniques
�1

I.   Sets with atoms
II. Computation models with atoms



II. Computation models with atoms

• automata with atoms
• Turing machines with atoms

• other models of computation

�2



computation theory with atoms

�3

orbit-finite automata
[Bojańczyk, Klin, L. 2011, 2014]

orbit-finite Turing machines 
[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

programming languages processing orbit-finite objects
[Bojańczyk, Braud, Klin, L. 2012]
[Klin, Szynwelski 2016]
[Kopczyński, Toruńczyk 2016, 2017]

orbit-finite homomorphism/isomorphism problem
[Klin, Kopczyński, Ochremiak, Toruńczyk 2015]
[Klin, L., Ochremiak, Toruńczyk 2016]
[Keshvardoost, Klin, L., Ochremiak, Toruńczyk 2019]

orbit-finite pushdown automata
[Clemente, L. 2015, 2019]

tractability in orbit-finite computation
[Bojańczyk, Toruńczyk 2018]

orbit-finite logics
[Bojańczyk, Place 2012]
[Klin, Łełyk 2017]
[Klin, Eberhart 2019]



orbits of atoms(n) = substructures 
generated by n atoms

In the sequel, atoms are well-behaved:
• have finite vocabulary
• are homogeneous
• have bounded substructures
• are effective

�4

hence oligomorphic and
FO = quantifier free logic}

there is a function b such that 
substructures generated by n atoms 
have size bounded by b(n)

finitely generated substructures 
of atoms are computable

hence quantifier-free 
logic decidable

although may have arbitrarily 
high complexity



• alphabet A

• states Q

• δ ⊆ Q × A × Q

• I, F ⊆ Q

Nondeterministic automata:

Automata 

�5

}orbit-finite sets
instead of finite ones

Deterministic automata:

• δ : Q × A → Q

• initial state ∊ Q

Unambiguous automata, alternating automata:   ….

= definable sets

any well-behaved atoms



?

�6

Question:  Consider an S-supported language accepted by a
   nondeterministic orbit-finite automaton.
   Is this language accepted by an S-supported one?
   What about deterministic automata?

Question:  Consider an equivariant language accepted by a 
 nondeterministic orbit-finite automaton.
 Is this language accepted by an equivariant one?
 What about deterministic automata? 

equality atoms (N, =) 



• alphabet A

• states Q

• δ ⊆ Q × ( A∪{ε} ) × Q

• I, F ⊆ Q

?

�7

Question:  do ε-transition increase the power of 
 nondeterministic automata?

any well-behaved atoms



language:

�8

Q =                       ∪ {reject}

"exactly two different atoms appear"

input alphabet:      atoms

δ : Q × A  →  Q

states: 

transitions:

δ((), a) = (a) a ∊ atoms

δ((a), b) = (ab) a ≠ b

δ((a), b) = (a) a = b
δ((ab), c) = reject c ≠  a, b

accepting states: 

atoms2

any well-behaved atoms

number of registers may vary 
from one orbit to another

atoms2

initial state: ()



language:

�9

Q =                       ∪ {reject}

"exactly two different atoms appear"

input alphabet:      atoms

δ : Q × A  →  Q

 states: 

transitions:

δ(∅, a) = {a} a ∊ atoms

δ({a}, b) = {a, b} a, b ∊ atoms

δ({a, b}, c) = reject c ≠  a, b

P2(atoms)

accepting states: P2(atoms)

registers are not 
necessarily ordered

initial state: ∅

any well-behaved atoms



∅

{2}

{3}

{2,5}

{7,9}

{5}

...

2 → 5

2 → 3

2 → 9
5 → 7

states have

four orbits
2

2

5

5

2

0

...

5

3

reject

�10

language: "exactly two different atoms appear"

input alphabet:       atoms any well-behaved atoms



language:

�11

Q = atoms ∪ {init, accept}

’’last letter appears elsewhere
and is different than 7”

input alphabet:      atoms

δ : Q × A  →  Pfin(Q)

 states: 

transitions:

δ(init, a) = {init, a} a ∊ atoms, a ≠ 7

δ(a, b) = a a, b ∊ atoms, a ≠ b

δ(a, b) = accept a, b ∊ atoms, a = b

accepting states: 

initial state: init

accept

finitary 
nondeterminism

any well-behaved atoms

can it be  
determininized?



language:

�12

Q = atoms ∪ {accept}

’’last letter doesn’t appear elsewhere
and is different than 7”

input alphabet:      atoms

δ : Q × A  →  Q

 states: 

transitions:

accepting states: 

initial states: atoms \ {7}

{accept}

infinitary 
nondeterminism

δ(a, a) = accept a ∊ atoms

δ(a, b) = a a, b ∊ atoms, a ≠ b

any well-behaved atoms



language:

�13

Q = atoms

’’nonempty intersection of all letters,
 or empty word”

input alphabet:      P2(atoms)

δ : Q × A  →  Q

 states: 

transitions:

δ(a, {a,b}) = a a, b ∊ atoms, a ≠ b

accepting states: 

equality atoms (N, =) 

initial states: atoms

atoms

can it be  
determininized?



language:

�14

’’nonempty intersection of all letters,
 or empty word”

input alphabet:      P2(atoms)

δ : Q × A  →  Q

 states: 

transitions:

δ(x, y) = x ∩ y 

accepting states: 

initial states: {atoms}

all states except ∅

Q =                       ∪ {atoms}P2(atoms)

equality atoms (N, =) 



language:

�15

input alphabet:      triples of atoms up to cyclic shift

δ : Q × A  →  Pfin(Q)

 states: 

transitions:

accepting states: 
initial states: {0}

all states except 0

sequences like

that can be glued into a chain

equality atoms (N, =) 

isn’t it  
determininistic?



language:

�16

Q = atoms ∪ {-∞}

nonempty monotonic words

input alphabet:      atoms

δ : Q × A  →  Q

 states: 

transitions:

δ(-∞, b) = b b ∊ atoms

δ(a, b) = b a, b ∊ atoms, a < b

accepting states: 

total order atoms (Q, <) 

initial state: -∞
atoms



language:

�17

’’local minima are monotonic”

input alphabet:      atoms

total order atoms (Q, <) 

?



language:

�18

Q = atoms ∪ {init}

dependent words  =  ’’some subsequence of letters
                                    sums up to 0’’

input alphabet:      V

δ : Q × A  →  Pfin(Q)

 states: 

transitions:

δ(init, a) = {init, a} a ∊ atoms
δ(a, b) = {a, a+b} a, b ∊ atoms

accepting state: 

initial state: init

0

bit vector atoms (V, +)

can it be  
determininized?



• number of registers (dimension) may vary from one orbit to another

• registers are not necessarily ordered
• alphabet letters may contain more than one atom

(Non)deterministic orbit-finite automata slightly generalize 
register automata:

equality atoms (N, =)

�19

Theorem:  Every equivariant orbit is isomorphic to
 atoms(n) modulo G, for some n and 
 G a group of permutations of {1…n}.

not a design decision but 
a property of orbit-finite sets

ordered for total order atoms (Q, <)



automata with equality atoms
over alphabet atoms × (a finite set)

Expressive power

register automata with 
equality tests x = y 

=
• likewise for total order atoms (Q, ≤)

�20

nondeterministic nondeterministic

equality atoms (N, =)

straight automata with equality atoms

straight set:   every orbit isomorphic 
to atoms(n) for some n

Claim:   Every (non)deterministic automaton over a straight alphabet A
is equivalent to a straight one 



Straightization (deterministic case)

�21

Claim:   Every (non)deterministic automaton over a straight alphabet A
is equivalent to a straight one 

Theorem:  Every equivariant orbit is isomorphic to atoms(n)/G, 
for some n and  G a group of permutations of {1…n}.

f : atoms(n) ➝ Q  support-reflecting

equality atoms (N, =)

• δ ⊆ Q × A × Q

• δ : Q × A → Q

f-1(δ)  ⊆  atoms(n) × A × atoms(n)

an orbit of atoms(n) × A

f

atoms(n)

f

Q × A                  Qδ

?

Think of 1-orbit Q
straight set:   every orbit isomorphic 

to atoms(n) for some n



Minimization

do minimizedo not minimize

=

�22

automata with equality atoms
over alphabet atoms × (a finite set)

register automata with 
equality tests x = y 

deterministic deterministic



Myhill-Nerode Theorem

L is recognized by a deterministic automaton

iff
the set of L-equivalence classes is orbit-finite 

The equivalence classes are states of the minimal automaton for L 

Theorem:

�23

Two words are L-equivalent 
 iff

  they lead the minimal automaton to the same state

any well-behaved atoms



18 and  81 are L-equivalent 

after reading first two different data values, the minimal automaton
should  not remember their order!

1 8

this is impossible in register automata!

Two words are L-equivalent 
 iff

  they lead the minimal automaton to the same state

�24

language: "exactly two different atoms appear"

input alphabet:      atoms

Every equivariant orbit is isomorphic to atoms(n) modulo G, 
for some n and G a group of permutations of {1…n}.



579, 795 and 957 are L-equivalent 

after reading first three letters, the minimal automaton
should remember their order up to cyclic shift only!

5
7

9

again, this is impossible in register automata!

�25

Two words are L-equivalent 
 iff

  they lead the minimal automaton to the same state

language: {defdef, defefd, deffde : d, e, f pairwise different}

input alphabet:      atoms

Every equivariant orbit is isomorphic to atoms(n) modulo G, 
for some n and G a group of permutations of {1…n}.



• automata with atoms

• Turing machines with atoms

• other models of computation

�26



Turing machines 

• tape alphabet A

• states Q

• subset δ ⊆ Q × A × Q × A × {←,→,↓}

• subsets I, F ⊆ Q

Configurations = A* × Q × A*

• δ : Q × A → Q × A × {←,→,↓}

Deterministic machines:

�27

}orbit-finite sets
instead of finite ones



language:

�28

A = atoms ∪ {⊥} 

Q = atoms ∪ {start, accept, ret}

{a1a2 . . . an : ai 6= aj when i 6= j}
"no atom appears twice":

input alphabet:      atoms

δ : Q × A  →  Q × A × {←,→,↓}

tape alphabet: 

states: 

transitions:

δ(start, a) = (a, ⊥, →) a ∊ atoms
δ(a,  b) = (a, b, →) a ≠ b,  a, b ∊ atoms
δ(a,  B) = (ret, B, ←) a ∊ atoms
δ(ret,  a) = (ret, a, ←) a ∊ atoms
δ(ret,  ⊥) = (start, ⊥, →)

δ(start, B) = (accept, B, →)

equality atoms (N, =)



language:

�29

"some atom belongs to an odd number of letters”

input alphabet:      P≤10(atoms)

?

equality atoms (N, =)



�30

1. Are TMs with atoms equivalent to classical TMs?

2. Do TMs with atoms determinize?

3. Do TMs with atoms determinize when alphabet = atoms?

4. Has P vs NP question the same answer as classically in this case?

Questions

A - orbit-finite equivariant input alphabet
L ⊆ A* equivariant

• TM with atoms inputs a word w∊A* 
• classical TM inputs definition of w

yes

no!

yes
P ≠ NP

P ≠ NP



�31

1. Nondeterministic TMs with atoms = classical TMs
well-behaved atoms

atoms are well-behaved:
• have finite vocabulary
• are homogeneous
• have bounded substructures
• are effective

L ⊆ A* equivariant

• TM with atoms inputs a word w∊A* 
• classical TM inputs definition of w

with atoms  ⟾  classical: 

• L recognized by a definable TM
• atom-less simulation by manipulating definitions

classical       ⟾     with atoms   (case A = atoms):

• L recognized by a classical TM
• TM with atoms, on input w: 

• computes the quantifier-free formula defining the orbit of w
• atom-less simulation by manipulating definitions



�32

1. Nondeterministic TMs with atoms = classical TMs
well-behaved atoms

atoms are well-behaved:
• have finite vocabulary
• are homogeneous
• have bounded substructures
• are effective

L ⊆ A* equivariant

• TM with atoms inputs a word w∊A* 
• classical TM inputs definition of w

classical       ⟾     with atoms   (case A ≠ atoms):

• L recognized by a classical TM
• f-1(L) too (alphabet = atoms)
• f-1(L) recognized by a TM with atoms M (previous slide)
• TM with atoms, on input w: guess f-1(w) and execute M

Fact:  Every equivariant orbit finite set A admits a surjective 
 equivariant function

                 f  :   ∪i∊I  atoms(ni)   ⟶   A



�33

In case of equality atoms (N, =) this depends on input alphabet:

• atoms

• ordered pairs of atoms

• unordered pairs of atoms

• unordered pairs of ordered pairs of atoms

• ordered triples of pairs of atoms modulo even 
number of flips 

}standard

non-standard!

2. Do TMs with atoms determinize?

In case of total order atoms (Q, <) they do.



�34

TMs over this alphabet do determinizeFact:

alphabet:  atoms

• deatomization: replace atoms with binary encodings

• atom-less simulation of atom-full computation

equality atoms (N, =)

a b a e d d c d f d g y h e u s e d f e r g f f e d s  

guess an atom
different than h



�35

alphabet:  ordered pairs of atoms

• input word represents a directed graph

• nodes (atoms) can be computed using projections

 and stored on the tape

• then any decidable property of directed graphs can be decided 
deterministically

(a, b) 7! a (a, b) 7! b

TMs over this alphabet do determinizeFact:

equality atoms (N, =)

(a, b) ∈ atoms(2)



�36

alphabet:  unordered pairs of atoms

• input word represents an undirected graph

• can nodes (atoms) be computed? 

• then any decidable property of undirected graphs can be decided 
deterministically

{a, b} 2 P2(atoms)

{a, b} 7! a

({a, b}, {b, c}) 7! b

TMs over this alphabet do determinizeFact:

equality atoms (N, =)



�37

alphabet:  unordered pairs of ordered pairs
  of atoms {(a, c), (b, d)}

simple strips:

is not a simple strip

TMs over this alphabet do determinizeFact:

Are simple strips recognized by a deterministic TM?

equality atoms (N, =)

⟼{a, b}

⟼(a, c)

neither which is legal?



det. nondet.

P
NP

P ≠ NP

separating
language

There is an alphabet A, and a language over A that is in NP but is not 
recognizable by a deterministic TM.

Theorem:

�38

equality atoms (N, =)



Triangle =

≈

Let triangles with same side sets be equivalent if exactly two pairs 
are flipped:

�39

((a, a0), (b, b0), (c, c0))

alphabet:  equivalence classes of triangles

side set

equality atoms (N, =)alphabet:  ordered triples of 
  ordered pairs of atoms modulo even number of flips



{ }
equivalence class of                        has four elements:                    

�40

alphabet:  ordered triples of 
  ordered pairs of atoms modulo even number of flips



�41

flip one pair

{ }
{ }

equivariant function

alphabet:  ordered triples of 
  ordered pairs of atoms modulo even number of flips



{ }
there is no function!

�42

alphabet:  ordered triples of 
  ordered pairs of atoms modulo even number of flips



closely related to Cai-Fuerer-Immerman graphs (1992)

Language: a word is in the language iff
some sequence of elements is conflict-free

{ }{ }{ }{ } ...

∈ ∈ ∈ ∈

...
sequence

 of 
elements

recognized in NP?

not recognized by a deterministic machine: 
enumeration of sequences of elements is not doable by 
a deterministic machine

�43

separating language
side sets either equal or disjoint



{a, a’}

{b, b’}

{c, c’}

{e, e’}

{d, d’}

For sufficiently large n, deterministic machine can not distinguish an 
input torus from a ”flipped” one 

�44

Hard inputs

equal side sets

equal side sets
lik

ew
ise

 ➝
 to

ru
s

but flipping alters membership in the language!



�45

positions Flipping one position in a torus 
alters membership in the language

Machine M ignores a position x after y steps at tape cell z: 
content of cell z after y steps would remain the same if the position x was flipped 

Claim: For n sufficiently large M ignores, after every step at every cell, 
all positions except for k2 of them 

Hard inputs

including possibly control state of the machine
Fix a deterministic machine M

k := twice the maximal support of a tape cell 



�46

• Induction base: initially, M ignores, at every cell, all positions except that one
• Induction step: 

• cell content after a step depends on three neighbour cell contents before the step 
• hence M ignores, after the step, all except for 3k2 
• hence M ignores some position in C  (for n sufficiently large)
• hence M ignores every position in C (move the flip along the connecting path)

Observation: The greatest connected component C 
contains all except at most k2 positions

Hard inputs
k := twice the maximal support of a tape cell 

Claim: For n sufficiently large M ignores, after every 
step at every cell, all positions except for k2 of them 

Induction on number of steps:



�47

3. TMs with atoms determinize when alphabet = atoms
well-behaved atoms

a d c d f d g y h e u s e d f e r g f f e d s  

guess an atom
different than h

• input word w ∊ atomsn

• compute the quantifier-free formula defining the orbit of w 
= the substructure of atoms generated by w

• atom-less simulation by manipulating definitions

atoms are well-behaved:
• have finite vocabulary
• are homogeneous
• have bounded substructures
• are effective



det. nondet.

P
NP

P ≠ NP

separating
language

There is a language over the alphabet of atoms that is in NP but not in P.
Theorem:

�48

bit vector atoms (V, +)
4. P ≠ NP when alphabet = atoms



�49

4. P ≠ NP when alphabet = atoms
bit vector atoms (V, +)

Claim:  (a₁ a₂ ... an), (b₁ b₂ ... bn) ∈ atoms(n) are in the same orbit

iff
𝞢 ai  = 0    iff   𝞢 bi  = 0 for for every I ⊆ {1…n}

                          i ∈ I                           i ∈ I       



�50

4. P ≠ NP when alphabet = atoms
bit vector atoms (V, +)

Fix a deterministic equivariant TM M recognizing the language 
in polynomial time

W.l.o.g. assume that states Q and tape alphabet T are straight: 

dependent words  =  ’’some subsequence of letters
                                    sums up to 0’’

input alphabet:      V

language:

Consider the rejecting run on sufficiently long independent input word w
We fool M with a dependent input w’  which M will forcedly reject too

Every orbit of Q or T is isomorphic to atoms(n) for n ≤ N



�51

bit vector atoms (V, +)

Consider the rejecting run on sufficiently long independent input word w
Every orbit of Q or T is isomorphic to atoms(n) for n ≤ N

4. P ≠ NP when alphabet = atoms

We fool M with a dependent input w’  which M will forcedly reject too

The idea: use locality



�52

4. P ≠ NP when alphabet = atoms
bit vector atoms (V, +)

Consider the rejecting run on sufficiently long independent input word w
We fool M with a dependent input w’  which M will forcedly reject too

As the run is of polynomial length (w.r.t. length of w), 
there are only polynomially many sums of 3N atoms appearing in it

w’  :=   take a subset I of w whose sum is not among them, and 
replace some arbitrary element a from I by r := the sum of I \ {a}

Claim:  I \ {a} ∪ {r} is the only subset of w’ that sums up to 0

Claim:  Every triple of elements of Q ∪ T in run(w) is in the same orbit as
the corresponding triple in run(w’)

(a₁ a₂ ... an), (b₁ b₂ ... bn) ∈ atoms(n) are in the same orbit
iff

𝞢 ai = 0  iff   𝞢 bi = 0 for for every I ⊆ {1…n}
              i ∈ I              i ∈ I       

Every orbit of Q or T is isomorphic to atoms(n) for n ≤ N

All subset of w have pairwise different sums

a  ⟼  r



�53

4. P ≠ NP when alphabet = atoms
bit vector atoms (V, +)

Claim:   run(w) is in the same orbit as run(w’), hence rejecting too

Claim:  Every triple of elements of Q ∪ T in run(w) is in the same orbit as
the corresponding triple in run(w’)



• automata with atoms
• Turing machines with atoms

• other models of computation

�54



Pushdown automata 

• alphabet A

• states Q

• stack alphabet S

• δ  ⊆  Q × (A∪{ε}) × S × Q × S*

• I, F  ⊆  Q
Configurations = Q × S*

�55

}orbit-finite sets
instead of finite ones

Deterministic pushdown automata: ...

Theorem:  Pushdown automata   =   prefix-rewriting
S*



�56

Theorem:  Pre*(regular set) is regular for pushdown automata,
 and may be effectively computed

Corollary:  Emptiness of pushdown automata is decidable

Pushdown automata 
recognized by a 
nondeterministic 
orbit-finite automaton



orbit-finite	set	of	symbols	S

Context-free grammars     

• nonterminal symbols S

• terminal symbols A

• an initial symbol

• δ  ⊆  S × (S ∪ A)*

Theorem: Context-free grammars   =   pushdown automata

�57

}orbit-finite sets
instead of finite ones



• a context-free language over 3 atoms

• palindroms

• bracket expressions with brackets 
(a  )a for a ∊ atoms

• monotonic bracket expressions ?

Examples

S  ⟶ a S a (a ∊ atoms)

S  ⟶ ε
any well-behaved atoms }

total order atoms (Q, <)

S  ⟶ (a  a  )a (a ∊ atoms)

a  ⟶ (b  b  )b (a,b ∊ atoms, a < b)

a  ⟶ b c (a,b,c ∊ atoms, a < b,c)

a  ⟶ ε (a ∊ atoms)



Petri nets

• places P

• an initial configuration

• δ ⊆ Mfin(P) × Mfin(P)
}orbit-finite sets

instead of finite ones

Configurations = finite multisets of places Mfin(P)

classical sets sets with equality atoms (N, =)

general Petri nets elementary nets 

data Petri nets general Petri nets

�59

places = atoms × (finite set)


