Computation theory with atoms

[. Sets with atoms
I1. Computation models with atoms

Stawomir Lasota
University of Warsaw

FoPSS School 2019: Nominal Techniques

1

[I. Computation models with atoms

* automata with atoms
e Turing machines with atoms

* other models of computation

computation theory with atoms

orbit-finite automata
[Bojariczyk, Klin, L. 2011, 2014]

orbit-finite pushdown automata
[Clemente, L. 2015, 2019]

orbit-finite Turing machines
Bojariczyk, Klin, L., Torudczyk 2013]
Klin, L., Ochremiak, Toruiczyk 2014]

tractability in orbit-finite computation
Bojariczyk, Toruriczyk 2018]

programming languages processing orbit-finite objects
[Bojariczyk, Braud, Klin, L. 2012]
[Klin, Szynwelski 2016]
[Kopcezyriski, Toruhiczyk 2016, 2017]

orbit-finite homomorphism/isomorphism problem
[Klin, Kopczyniski, Ochremiak, Toruriczyk 2015]
[Klin, L., Ochremiak, Torusiczyk 2016]
[Keshvardoost, Klin, L., Ochremiak, Torunczyk 2019]

orbit-finite logics
[Bojariczyk, Place 2012]
[Klin, Felyk 2017]
[Klin, Eberhart 2019]

[]
In the sequel, atoms are well-behaved: ®

* have finite vocabulary
* are homogeneous

» have bounded substriuctures

e are effective

hence quantifier-free

logic decidable

i

hence oligomorphic and

FO = quantifier free logic

orbits of atoms (n) = substructures
generated by n atoms

there 1s a function b such that

substructures generated by n atoms

have size bounded by b(n)

ﬁnitely generated substructures
of atoms are computable

although may have arbitrarily
high complexity

any well-behaved atoms

Automata

Nondeterministic automata:

* alphabet A = definable sets

* states Q orbit-finite sets

instead of finite ones

+ SCQOxAxQ

- LFCO

Deterministic automata:
c 0:0OxA—=Q

e 1nitial state € Q

Unambiguous automata, alternating automata:

5

? equality atoms (N, =)

Question: Consider an equivariant language accepted by a
nondeterministic orbit-finite automaton.
Is this language accepted by an equivariant one?
What about deterministic automata?

Question: Consider an S-supported language accepted by a
nondeterministic orbit-finite automaton.
Is this language accepted by an S-supported one?
What about deterministic automata?

any well-behaved atoms

* alphabet A

e states Q
* 8 Q x (AU{e}) xQ

- LFCOQ

Question: do e-transition increase the power of
nondeterministic automata?

any well-behaved atoms

input alphabet: atoms

language: '"exactly two different atoms appear"

number of registers may vary
from one orbit to another

states: Q = atoms§2 U { }

i

transitions: 6:0OxA — O

5((),a) = [(a) a € atoms
5((a), b) = [(ab) a=b
5((a), b) = [(a) a=Db
S5((ab), c) = c# a b

initial state: ()

accepting states: atoms

input alphabet:

language:

states:

transitions:

initial state:

accepting states:

any well-behaved atoms

atoms

"exactly two different atoms appear"

registers are not
necessarily ordered

Q= P<y(atoms)U { }

O : Q x A — Q

5(D, a) = {a} a € atoms
5({a}, b) = {a, b} a, b € atoms
5({a, b},) = c# a b

2

Po(atoms)

input alphabet:

language:

AtOMS any well-behaved atoms

"exactly two different atoms appear"

10

any well-behaved atoms

input alphabet: atoms

language: "last letter appears elsewhere
and 1s different than 7 can it be
determininized?
hinitary
states: Q= atoms U { } nondeterminism
transitions: 6: 0 x A — P, (0)
S(nit,a) = {init,a}] aeatoms,a=7
5(a,b) = a a, beatoms,azb
S5(a, b) = a, beatoms,a=Db

initial state:

accepting states:

11

input alphabet:

language:

states:

transitions:

initial states:

accepting states:

atoms

any well-behaved atoms

"last letter doesn’t appear elsewhere

and 1s different than 7”

Q = atoms U {
S:QXA — Q
d(a, a) =
S5(a, b) =

atoms \ {7}

{

}

12

a € atoms
a, b e atoms, a # b

inﬁnitary
nondeterminism

input alphabet:

language:

states:

transitions:

initial states:

accepting states:

Py (atoms)

equality atoms (N, =)

"nonempty intersection of all letters,

or empty word”

Q = atoms

S:QXA% Q

S(a, {a,b})

atoms

atoms

13

a

can it. b.e
determininized?

a, b € atoms, a # b

equality atoms (N, =)
input alphabet: P9(atoms)

language: "nonempty intersection of all letters,
or empty word”

states: Q= P<o(atoms) U {atoms}

transitions: 6:0OxA — O

initial states: {atoms])

accepting states: all states except I

14

equality atoms (N, =)

input alphabet: triples of atoms up to cyclic shift
{(a,b,c),(b,c,a),(c,a,b)} for a,b, c distinct

3. 9.8 8

language: sequences like §° 28 gog £° 29 PR
that can be glued into a chain 3.5.8.11
82302929%
states: {0} U {A(a,b),(a,b): a,b distinct} Isntit
determininistic?

transitions: §: 0 x A — P (0O)

(O, a-[@_.--b) — Tb/l for a, b, c distinct

C

(Tb/l, a5) — 'ﬁc

for a, b, c distinct

mitial states: {0}

accepting states: all states except 0

15

total order atoms (Q, <)

input alphabet: atoms

language: nonempty monotonic words

states: Q = atoms U {-co}

transitions: 6:0OxA — O

5(-o,b)= b b € atoms

S5(a, b) = b a, beatoms,a<b

initial state: -0

accepting states: atoms

16

total order atoms (Q, <)
input alphabet: atoms

language: "local minima are monotonic”

17

bit vector atoms (V, +)

input alphabet: V

language: dependent words = “some subsequence of letters
sums up to 0"

. can 1t be
states: Q = atoms U {init} determininized?
transitions: 6: 0 x A — P, (0)
S(init, a) = {init, a} a € atoms
S5(a, b) = {a, a+b)} a, b € atoms

initial state: init

accepting state: 0

18

equality atoms (N, =)

Theorem: Every equivariant orbit is isomorphic to

atoms (n) modulo G, fOI’ Some n and

G a group of permutations of {1...n}.

(Non)deterministic orbit-finite automata slightly generalize
register automata:

* number of registers (dimension) may vary from one orbit to another
° reglsters are not necessarlly ordered

° alphabet letters may conta mor an one atom

// not a design decision D

f orbit-fini
@ for total order atoms® property of orbit-finite sets

19

. equality atoms (N, =)
Expressive power

-rendeterministic -rendeterministic
register automata with — automata with equality atoms
equality tests x = y over alphabet atoms x (a finite set)

* likewise for total order atoms (Q, <)

straight set: every orbit isomorphic
to atoms (n) for some n

straight automata with equality atoms

Claim: Every (non)deterministic automaton over a straight alphabet A
1s equivalent to a straight one

20

equality atoms (N, =)

Straig htiZ ati()n (deterministic case)

Claim: Every (non)deterministic automaton over a straight alphabet A

1s equivalent to a straight one . o ,
straight set: every orbit isomorphic

Thlnk of 1-()rbit Q to atoms(n) for some n

Theorem: Every equivariant orbit 1s isomorphic to atoms /G,
for some n and G a group of permutations of {I...n}.

f: atoms(n) —Q support-reﬂecting

- —

« §COxAxQ f-1(8) C atoms(®) x A x atoms(n)

0
c 0:OxA—=Q an orbit of atoms(M) x A ——» atoms(®)

Ny

QxA —— Q

21

Minimization

deterministic deterministic
register automata with — automata with equality atoms
equality testsx =y over alphabet atoms x (a finite set)

do not minimize do minimize

22

any well-behaved atoms

Myhill-Nerode Theorem

Theorem: L is recognized by a deterministic automaton
itf

the set of L-equivalence classes 1s orbit-finite

The equivalence classes are states of the minimal automaton for L

Two words are L-equivalent
iff

they lead the minimal automaton to the same state

23

Two words are L-equivalent
itt

they lead the minimal automaton to the same state

Every equivariant orbit is isomorphic to atoms (1) modulo G,
for some n and G a group of permutations of {1...n}.

input alphabet: atoms

language: "exactly two different atoms appear"

/77 N\
18 and 81 are L-equivalent 1 8
N

atter reading first two different data values, the minimal automaton
should not remember their order!

this 1s impossible in register automatal

24

Two words are L-equivalent
Wt

they lead the minimal automaton to the same state

Every equivariant orbit is isomorphic to atoms (1) modulo G,
for some n and G a group of permutations of {1...n}.

input alphabet: atoms

language: {deldef, defetd, deftde : d, e, f pairwise different}

| 7
579, 795 and 957 are L-equivalent 5)

N9

after reading first three letters, the minimal automaton
should remember their order up to cyclic shift only!

again, this 1s impossible in register automatal

25

* automata with atoms
* Turing machines with atoms

* other models of computation

26

Turing machines

* tape alphabet A

e states Q orbit-finite sets

instead of finite ones

e subset 5 C QO x A xQ x A x {<,—,|}

e subsets, FC Q

Configurations = A* x Q x A*

Deterministic machines:

¢ 5:OxA—=QxAx{<,—|)

27

input alphabet:

language:

tape alphabet:
states:

transitions:

equality atoms (N, =)

atoms

"no atom appears twice':

{a1a2...ay : a; #a; when i # j}

A = atoms U {1}
Q = atoms U {start, accept, ret}

S:QXA — QxAx{e,%,\L}

S(start,a) = (a, L, =) a € atoms
S5(a, b) = (a, b, =) a=b, a, b eatoms
S5(a, B) = (ret, B, <) a € atoms
5() a)= (y 4, e) a € atoms

S(ret, L) = (start, L, =)
S(start, B) = (accept, B, =)

28

equality atoms (N, =)
input alphabet: P_jg(atoms)

language: "some atom belongs to an odd number of letters”

29

Questions

1. Are TMs with atoms equivalent to classical TMs? yes

A - orbit-finite equivariant input alphabet
L. € A* equivariant

* TM with atoms inputs a word weA”*

» classical TM inputs definition of

2. Do TMs with atoms determinize? no!
P = NP
3. Do TMs with atoms determinize when alphabet = atoms? yes

4. Has P vs NP question the same answer as classically in this case? P = NP

30

well-behaved atoms
1. Nondetermimistic TMs with atoms = classical T Ms

L C A* equivariant atoms are well-behaved:

* have finite vocabulary

* TM with atoms inputs a word weA” * are homogeneous

* classical TM inputs definition of w » have bounded substructures

e are effective

with atoms > classical:

* L recognized by a definable TM

* atom-less simulation by manipulating definitions

classical > with atoms (case A = atoms):

* L recognized by a classical TM

* TM with atoms, on input w:
* computes the quantifier-free formula defining the orbit of w
* atom-less simulation by manipulating definitions

31

well-behaved atoms

1. Nondeterministic TMs with atoms = classical TMs

L C A* equivariant atoms are well-behaved:

* have finite vocabulary
* are homogeneous

* TM with atoms inputs a word weA”

* classical TM inputs definition of w » have bounded substructures

e are effective

Fact: Every equivariant orbit finite set A admits a surjective
equivariant function

f - UieI atoms(@) — A

classical —> with atoms (case A = atoms):

* L recognized by a classical TM

* £-1(L) too (alphabet = atoms)

.« 11 recognized by a TM with atoms M (previous slide)
* TM with atoms, on input w: guess f'l(w) and execute M

32

2. Do TMs with atoms determinize?

In case of equality atoms (N, =) this depends on input alphabet:

* atoms
 ordered pairs of atoms

standard
* unordered pairs of atoms

* unordered pairs of ordered pairs of atoms

* ordered triples of pairs of atoms modulo even non-standard!
number of flips

In case of total order atoms (Q, <) they do.

33

equality atoms (N, =)

guess an atom
different than h

\

abaeddcdfdgyheusedfergtfeds

alphabet: atoms

. replace atoms with binary encodings
a sequence of atoms 2 1 1 9 1
deatomisation 1 # 10 # 10 # 100 # 10

* atom-less simulation of atom-full computation

Fact: TMs over this alphabet do determinize

34

alphabet: ordered pairs of atoms equality atoms (N, =)

(a, b) € atoms(2)

* input word represents a directed graph
* nodes (atoms) can be computed using projections
(a,b) — a (a,b) — b
and stored on the tape

* then any decidable property of directed graphs can be decided

deterministically

Fact: TMs over this alphabet do determinize

35

alphabet: unordered pairs of atoms equality atoms (N, =)

{a,b} € Ps(atoms)

* input word represents an undirected graph

* can nodes (atoms) be computed?

Buaonmas
({a, b}, {b,c}) b

* then any decidable property of undirected graphs can be decided
deterministically

Fact: TMs over this alphabet do determinize

36

: , lity at N, =
alphabet: unordered pairs of ordered pairs equality atoms ()

of atoms {(a,c),(b,d)} a——c

b——d
, . a——¢ se————a
51mple strips: b— d) f— b
“ ¢ €% isnota simple strip
b—d f——b
a ?C e Sh : D
b o i neither which 1s legal?
f/g a—¢ (@, b)
b——d T @
Are simple strips recognized by a deterministic TIM?
a—c¢
h— d (@0
a——>c C—€ a—€ a——a
h—d , d——f > 5 b—b

Fact: TMs over this alphabet do determinize

37

equality atoms (N, =)

Theorem:
There 1s an alphabet A, and a language over A that is in NP but 1s not
recognizable by a deterministic TM.

nondet. separating

language

38

alphabet: ordered triples of equality atoms (N, =)
ordered pairs of atoms modulo even number of flips

Trlangle — ((a a) (b b/ C C (a'va) Slde set {a (l

(¢,) (b, b")

Let triangles with same side sets be equivalent if exactly two pairs

are flipped:

(ava' (CL a)

= A

(b,1)

\’Q
Q\
~—
~~
=
S
~—
~~
(\
('3
~—

\/

alphabet: equivalence classes of triangles

39

alphabet: ordered triples of

ordered pairs of atoms modulo even number of flips

(a,a’)
equivalence class of has four elements:
(¢,) (b,0)
(a,a’) (a;a)
(c, c’) (b, b’) (Cf c) (b, b')
(a,a’) (asa)

alphabet: ordered triples of

ordered pairs of atoms modulo even number of tlips

(a,a’) (ala)

(c,c) (b,t) (clc) (b,b")

(a,a’) (ala)

(cle) (b50) (c,) (b/b)
4, equivariant function

{r

(ala) (a,a’)

(¢,) (b,6") (cic) (6,0')

(d}a) (a,a’)

(cie) (b7b) (¢,) (b7b)
41

alphabet: ordered triples of

ordered pairs of atoms modulo even number of flips

there 1s no function!

(cle) (b50) (c,) (b/b)

42

separating language

side sets either equal or disjoint

/ a,/a 'a (ala)
!\\
/ | Z /\\ /\\ / / /\\
) (b,v) (ce) (b,) j) —) (c{c)//ﬁ;)
/ﬁ A & //\ /\
AN A AL A

sequence W

Of (a,a’) (a,a’) a, a,a’
elements (/ (b7 b') (c7 c/) (b, b,) (C, C') (ba b/)

c,c) (b, ") (¢,d)

Language: a word 1s in the language 1iff

some sequence of elements 1s conflict-free
no conflict

N o— T /
closel relatﬁcli ﬁPC/ai-Fuerer- Immerm (a,@) (a,a’)

recognize
conflict
o o L] o L] /’—_\
not recogmzed by a deterministic macb(lcr,lg) (b, V) (', b) (d,d)

enumeration of sequences of elements 1s not doable by

a deterministic machine

43

Hard inputs

g
(o) ,
| equal side sets

equal side sets

For suthiciently large n, deterministic machine can not distinguish an

input torus from a “flipped” one
but flipping alters membership in the language!
44

Hard inputs

positions Flipping one position in a torus

alters membership in the language

Fix a deterministic machine #/

— including possibly control state of the machine

Machine A ignores a position x after y steps at tape cell z:
content of cell z after y steps would remain the same if the position x was flipped

Claim: For n sufhciently large /7 1ignores, after every step at every cell,
all positions except for k? of them

k := twice the maximal support of a tape cell

45

Hard inputs

k := twice the maximal support of a tape cell

Observation: The greatest connected component C

contains all except at most k2 positions

Claim: For n suthiciently large 4/ ignores, after every

step at every cell, all positions except for k2 of them

Induction on number of steps:

* Induction base: initially, #/ ignores, at every cell, all positions except that one

* Induction step:

* cell content after a step depends on three neighbour cell contents before the step

hence M ignores, after the step, all except for 3k2

* hence # ignores some position in C (for n sufthciently large)

* hence // 1ignores every position in C (move the flip along the connecting path)

46

well-behaved atoms

3. TMs with atoms determinize when alphabet = atoms

guess an atom atoms are well-behaved:
different than h * have finite vocabulary
* are homogeneous

\/ o
adCdfdgyheusedfergffeds ave bounded substructures

o are effective

* input word w € atoms”

» compute the quantifier-free formula defining the orbit of w
= the substructure of atoms generated by (W

* atom-less simulation by manipulating definitions

47

bit vector atoms (V, +)

4. P 2 NP when alphabet = atoms

Theorem:
There 1s a language over the alphabet of atoms that 1s in NP but not in P.

hondet.
separating

language

48

bit vector atoms (V, +)

4. P 2 NP when alphabet = atoms

Claim: (a1 a2 ... an), (b1 b... bn) € atoms(™ are in the same orbit
it
Za[=0 iff Zbg = 0 for for every 7 C {1...n}

cel cel

49

bit vector atoms (V, +)

4. P # NP when alphabet = atoms

input alphabet: V

language: dependent words = "some subsequence of letters
sums up to 0”

Fix a deterministic equivariant TM J/ recognizing the language
in polynomial time

Wl.o.g. assume that states Q and tape alphabet 1 are straight:

Every orbit of Q or T is isomorphic to atoms®™) for n < N

Consider the rejecting run on suthciently long independent input word w

We fool M with a dependent input w” which M will forcedly reject too

50

bit vector atoms (V, +)

4. P 2 NP when alphabet = atoms

Every orbit of Q or T is isomorphic to atoms®) for n < N
Consider the rejecting run on suthciently long independent input word w

We fool M with a dependent input w” which M will forcedly reject too

The idea: use locality cell (1. 42

I!llllhlllm
PEEEEEEEEN-

\ head of the machine

51

bit vector atoms (V, +)

4. P # NP when alphabet = atoms

Every orbit of Q or T is isomorphic to atoms®™ for n < N
Consider the rejecting run on sufficiently long independent input word

We fool M with a dependent input w” which M will forcedly reject too

w' := take a subset / of w whose sum 1s not among them, an
replace some arbitrary element a from /7 by r := the sum of I\ {a}
a —— r

Claim: /\ {a} U {r} 1s the only subset of v’ that sums up to 0

Claim: Every triple of elements of Q U T in run(w) 1s in the same orbit as
the corresponding triple in run(w’)
(ayas...an), (bibs...bn) € atoms(n) are 1n the same orbit
it
2a;=01iff Xb;=0forforevery [C {l...n}
o (€1 =y

bit vector atoms (V, +)

4. P 2 NP when alphabet = atoms

Claim: Every triple of elements of Q U T in run(w) 1s in the same orbit as
the corresponding triple in run(w’)

Claim: run(w) 1s in the same orbit as run(w’), hence rejecting too

;z:::::::::

\ head of the machine

53

* automata with atoms

* Turing machines with atoms

* other models of computation

54

Pushdown automata

 alphabet A

* states Q . .
orbit-finite sets

 stack alphabet S instead of finite ones

e 8§ C Ox(AU{e})) xSxQ x S*

- L F C Q
Configurations = Q x S*

Deterministic pushdown automatas ...

Theorem: Pushdown automata = prehix-rewriting

55

Pushdown automata

recognized by a

nondeterministic
/_ orbit-finite automaton
Theorem: Pre*(regular set) is regular for pushdown automata,
and may be effectively computed

Corollary: Emptiness of pushdown automata 1s decidable

56

Context-free grammars

* nonterminal symbols S

* terminal symbols A orbit-finite sets

o instead of finite ones
* an mitial symbol

e 8 C Sx(SUA)*

Theorem: Context-free grammars = pushdown automata

57

Examples

a context-free language over 3 atoms

palindroms

S — ada (a € atoms) any well-behaved atoms

S — ¢

bracket expressions with brackets
(.)afor a € atoms

monotonic bracket expressions ? total order atoms (Q, <)

S — (a2a)a (a € atoms)
— (b by (a,b € atoms, a < b)

—5 bec (a,b,c € atoms, a < b,c)

& |

—5 € (a € atoms)

|

Petr1 nets

* places P

orbit-finite sets
e an initial conhiguration instead of finite ones

e 8§ & Mgn(P) x Mgn(P)

Conhgurations = finite multisets of places Mg, (P)

places = atoms x (finite set)

classical sets sets with equality atoms (I, =)é/

general Petri nets elementary nets

data Petr1 nets general Petri nets

59

