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Theorem 1:  [Clemente, L. 2015]
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(t-c₂ = 1  ∨  t-c₂ = 2)

t

c1 c2 t{1 or 2

{ 0..2

{

2..3

0 < c₂-c₁ < 2

c₁ := t
t

if 0 < t-c₁ <= 1
c₂ := t

if 1 < t-c₁ < 2
c₂ := t-1

t
(2 < t-c₁ < 3) ∧ 

(t-c₂ = 1  ∨  t-c₂ = 2)

t

0 < c₂-c₁ <= 1

⅓0 2⅓

0 2⅓1⅓
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Presburger NFA

Minimization holds also if FO(<, +1) is replaced by FO(<, +)                              
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FO-definable PDA
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• states Q
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language: "ordered palindromes of even length over reals"
input alphabet:     A = reals ⨄ {ε}

states:
stack alphabet: 

transitions:

accepting state: 
initial state: 

Example
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language:

Q =  reals ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet:     A = reals ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

S =   reals ⨄ {⊥}

in state init, without 
reading input, change 
state to an arbitrary 
real t, and  push ⊥ on 
stack

Example
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pop  ⊆  Q × S × A × Q
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"ordered palindromes of even length over reals"
input alphabet:     A = reals ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

S =   reals ⨄ {⊥}

Example

(finish, t, t, finish)
(finish, ⊥, ε, acc)

pop  ⊆  Q × S × A × Q

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

in state finish, pop a real 
t from stack, read the 
same t from input, and 
stay in the same state

22



FO-definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S*   × A × Q × S*

• I, F ⊆ Q

}definable in FO(<, +1)
}orbit-finite
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orbit-finite	set	of	symbols	S

FO-definable context-free grammars     

• nonterminal symbols S
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• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite
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FO-definable context-free grammars     

• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

Generated language defined as for classical PDA.
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CFG

Expressiveness of FO-definable models

palindromes

dense-timed PDA 
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with 
timeless stack

(finite stack alphabet)

PDA

constrained PDA

palindromes over {a,b}×reals with 
the same number of a’s and b’s

25

[Clemente, L. 2015]
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 Theorem 2:  [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete. 

Fact:  The model subsumes dense-timed PDA with uninitialized clocks. 
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The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
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where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

for instance:

x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}{

What is the least solution with respect to inclusion?

30



orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

31



orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

How to solve the problem in absence of intersections?

31



orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}{

31



orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?
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Decidable in P
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

The problem is undecidable for unlimited intersections. 
[Jeż, Okhotin 2010] 
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x1
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x2 = t2

. . .
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What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete
• non-emptiness of constrained FO-definable PDA reduces to 

the core problem (with exponential blow-up)
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