Automata with timed atoms

Stawomir Lasota
University of Warsaw

joint work with Mikotaj Bojariczyk and Lorenzo Clemente

Inhimity 2015, Bengaluru

1



FO-dehnable automata

Stawomir Lasota
University of Warsaw

joint work with Mikotaj Bojariczyk and Lorenzo Clemente

Inhimity 2015, Bengaluru

1



FO-dehinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.



Plan



Plan

e Motivation



Plan

e Motivation

e FO-definable NFA



Plan

e Motivation

e FO-definable NFA

e FO-definable PDA



Motivation

FO-definable NFA

FO-definable PDA

The core problem: equations over sets of Integers



* reals
* rationals

* Integers

Time domain

dense time

discrete time a0y



e rationals

* Integers

Time domain

dense time

discrete time a0y



Time domain

-@ dense time

* rationals

* Integers discrete time any

No restriction to non-negative!



Time domain

-@ dense time

e rationals

* Integers discrete time any

No restriction to non-negative!

Let input alphabet be reals



Time domain

-@ dense time

e rationals

* Integers discrete time any

No restriction to non-negative!

Let input alphabet be reals

Monotonic input words :

o 9 *—0—0




Timed automata [Alur, Dill 1990]

with uninitialized clocks



Timed automata [Alur, Dill 1990]

with uninitialized clocks

™~



Timed automata [Alur, Dill 1990]

with uninitialized clocks




Timed automata [Alur, Dill 1990]

with uninitialized clocks




Timed automata [Alur, Dill 1990]

with uninitialized clocks

t
ci:=0 )‘ )‘

J<ci<?

c2:= ()



Timed automata [Alur, Dill 1990]

with uninitialized clocks

t t
c1:= 0 ® O<cr<? 0 (2 <c1<3) A O

c2:= 0 (C2=1 VC2=2)



Tlmed automata [Alur, Dill 1990]

with uninitialized clocks

eX
S
\ B
¢ 1 t t
@ ci:=0 ® O<ci<? 0 (2 <c1<3) A O
c2:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that




Tlmed automata [Alur, Dill 1990]

with uninitialized clocks

X
Nt
\ B
¢ ¥ t t
@ ci:=0 ® O<ci<? 0 (2 <c1<3) A O
c2:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that




Tlmed automata rAlur, Dill 1990]

with uninitialized clocks

X
Rt
\ B
¢ 3¢ t t
@ C1:= ® O<ci<? 0 (2 <c1<3) A O
ce:= () (szl VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3




Tlmed automata rAlur, Dill 1990]

with uninitialized clocks

X
Rt
\ B
¢ 3¢ t t
@ C1:= ® O<ci<? 0 (2 <c1<3) A O
ce:= () (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3




° ° ° ° ’ ° ® °
Deterministic timed automata don’t mimnimize

t t t
® c1:= 0 ® 0 (2<c1<d) A O

O<ci<?2
ce2 := () (szl VC2:2)




° ° ° ° ’ ° ® °
Deterministic timed automata don’t mimimize

t t t
® c1:= 0 ® 0 (2<c1<d) A O

O<ci<?2

ce2 := () (Cz=1 \/ C2=2)
—0 e
0 5 2Y3
o ¢ ¢




° ° ° ° ’ ° ® °
Deterministic timed automata don’t mimimize

t

O C1 :t= 0 O ; )O

O<ci<?

(2<c1<d) A O
c2:= 0 (Cz=1 VC2=2)

(C1=O, C2=%) = (C1=O, CQ=1%)

*—o o
0 % 25
* * *

0 13 25



Towards timed pushdown automata



Towards timed pushdown automata

* timed automata [Alur, Dill 1990]



Towards timed pushdown automata

finite stack alphabet
* timed automata [Alur, Dill 1990] LINLEE SeCls SUIRIIEIOIS

* pushdown timed automata [ Bouajjani, Echahed, Robbana 1994]



Towards timed pushdown automata

* timed automata [Alur, Dill 1990]

finite stack alphabet

* pushdown timed automata [Bouajjani, |

Hchahed, Robbana 1994]

* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

* clocks can be pushed onto stack

* the emptiness problem EXPTIME-complete



Towards timed pushdown automata

finite stack alphabet
* timed automata [Alur, Dill 1990] LINLEE SeCls SUIRIIEIOIS

* pushdown timed automata [ Bouajjani, Echahed, Robbana 1994]
* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

* recursive timed automata

[ Trivedi, Wojtczak 2010], [ Benerecetti, Minopoli, Peron 2010]

* clocks can be pushed onto stack

* the emptiness problem EXPTIME-complete



Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]

Dense-timed pushdown automata are expressively

equivalent to pushdown timed automata.



Dense-time

Theorem 1: [Clemente, L. 20

Dense-timed pus|

d PDA collapse

5]

hdown automata are expressively

equivalent to pus

hdown timed automata.

An accidental combination of e stack discipline

* monotonicity of time

* syntactic restrictions



FO-dehinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.



FO-dehinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

* do not invent a new definition



FO-dehinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

* do not invent a new definition

* re-interpret a classical definition in FO-definable sets, with

finiteness relaxed to OI’bit-ﬁl’litel’leSS



In search of lost defimtion

Motivation

FO-definable NFA

FO-definable PDA

The core problem: equations over sets of Integers

10



In search of lost defimtion

Motivation
NFA re-interpreted in

FO-definable NFA FO-definable sets

FO-definable PDA

The core problem: equations over sets of Integers

10



Timed automata are register automata
[ Bojariczyk, L. 2012]

e———0 ———0 ————0

O<ci<? (2<c1<d) A
c2:= 0 (c2=1 VvV c2=2)

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

e———0 ———0 ————0

O<ci<? (2<c1<d) A
c2:= 0 (c2=1 VvV c2=2)

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

e———0 ———0 ————0

O<ci<? (2<c1<d) A
c2:= 0 (c2=1 VvV c2=2)

t t
‘ Ci:=t ' 0<t-c1<2 )‘
C2:=1

11



Timed
auto
mata
are register aut
om
| Bojani ata
jafczyk, L. 2012]

O t
ci:=0 @ ;
@ t
O

0<c
1< 2
c2:= 0 .
C1< )
(C2 =1 v Cz)—AZ)

® t

® t
O

(<t-C1<5)A©

Cl t=
=t
0<
t-C1 <
C2:=1 -

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

e———0 ———0 ————0

O<ci<? (2<c1<d) A
c2:= () (c2=1 VvV c2=2)

t t t
® cri=t ® 0<t-c1<2 )‘(2<t-C1<5)/\)©
Coi=1t (t-c2=1 Vv t-c2=2)

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

oO——0, ', O " O

O<ci<? (2<c1<d) A
c2:= () (c2=1 VvV c2=2)

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<3)A©
Coi=1t (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g. O<t-c1<2 it ci<t<ci+2

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

oO——0, ', O " O

O<cr<? (2 <c1<3) A
c2:= () (c2=1 VvV c2=2)
1 C1 0 < co-c1 < 2 T

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<3)A©
Coi=1t (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g. O<t-c1<2 it ci<t<ci+2

11



Timed automata are register automata
[ Bojariczyk, L. 2012]

oO——0, ', O " O

O<cr<? (2 <c1<3) A
c2:= () (c2=1 VvV c2=2)

the only modifications of a clock: c:=t

1 C1 0 < co-c1 < 2 T

t t t
@ cr:=t ® 0<t-c1<2 C>(2<t-(:1<3)A)©>
Coi=1t (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g. O<t-c1<2 it ci<t<ci+2

11



FO(«, +1)-detinable sets

dimension
FO(«, +1) formula ¢(x1,..., :C,,%@es a subset of

n-tuples of reals, for instance

¢($1,£IZ‘2) — dx3 (331 < x3 N\ X9 = X3+ 3)

12



FO-dehinable sets

dimension
FO(«, +1) formula ¢(x1,..., mmes a subset of

n-tuples of reals, for instance

¢($1,£IZ‘2) — dx3 (561 < x3 N\ X9 = X3+ 3)

12



FO-dehinable sets

dimension
FO(«, +1) formula ¢(x1,..., mmes a subset of

n-tuples of reals, for instance

¢($1,£IZ‘2) — dx3 (561 < x3 N\ X9 = X3+ 3)

FO(<, +1) = QF(<, +1) =

12



FO-dehinable sets

dimension
FO(<, +1) formula ¢(£I?1, Cee airmes a subset of

n-tuples of reals, for instance

¢($1,£IZ‘2) — dx3 (513‘1 < x3 N\ X9 = X3+ 3)

FO(<, +1) = QF(<, +1) = \/ /\ T — X5 € 1
finite finite
%/_/

Z011€

12



FO-dehinable sets

dimension
FO(<, +1) formula ¢(£I?1, Cee xmes a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ X9 = X3+ 3)

FO(o, +1) = OF(<,s1) = VN wi—az; €1l
finite finite
—/_/

Z011€

for 1nstance

O(r1,x2) = 1+3<x9 = T9—121 € (3,00)

12



FO-definable NFA

* alphabet A
e states QO
e transitions 8 C QO x A x Q

- LFCQ

13



FO-definable NFA

* alphabet A

* states Q definable in FO(<, +1)
* transitions 8 C Q x A x Q

. LFCQO

13



FO-definable NFA

* alphabet A GA(T1y. ey Ty)
o states Q O (T1, ..., Tm)
* transitions 8 C Q x A x Q Gs(T1y .oy Trmdntm)
- LFCO O1(Z15- s Tm)y QF(T1y- -, Tin)

13



FO-definable NFA

alphabet A
states Q

transitions 6 € Q x A x Q

LFCQ

13

definable in FO(<, +1)

Pa(x1,...,%n
PQ(T1,. - Ty
Os(T1, .y Tmanim
,Tm), Or(T1, y T,



FO-definable NFA

* alphabet A
e states QO
e transitions 8 C Q x A x Q

. LFCQO

definable in FO(<, +1)

Pa(x1,...,%n

b (T1,. .., Tm
Gs(T1y -+ s Tmantm
,Tm), Or(T1, y T,

Runs, acceptance, 1anguage recognized, etc. are deﬁned

exactly as for classical NFA!

13



FO-definable NFA

* alphabet A
e states QO
e transitions 8 C Q x A x Q

. LFCQO

} orbit-finite
definable in FO(<, +1)

Pa(x1,...,%n

b (T1,. .., Tm
Gs(T1y -+ s Tmantm
,Tm), Or(T1, y T,

Runs, acceptance, 1anguage recognized, etc. are deﬁned

exactly as for classical NFA!

13



Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

14



Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

14



Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:

r1+3<xy = T9—x1 € (3,00) orbit-infinite

14



Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:

r1+3<xy = T9—x1 € (3,00) orbit-infinite

r1+3<zo<x1+7 = a9—11 € (3,7 orbit-finite

14



Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:
r1+3<xy = T9—x1 € (3,00) orbit-infinite
r1+3<xz<x1+7 = ax93—11 € (3,7] orbit-finite

An FO-definable set 1s orbit-finite
1

it 1s defined using bounded intervals only

14



Register automata are FO-definable NFA

o———@

t
0<t-c1<2 )‘(2<t-C1<5)/\)©

Coi=1 (t-c2a=1 Vv t-c2 =2)

15



Register automata are FO-dehinable NFA

t t t
O O )O(2<t-C1<3)A)©

C1:=1 0 <t-c1<2
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q={1l} U {caeR} U {(c, 2)eRxR:0<co-c:1 <2} U {T}

15



Register automata are FO-dehinable NFA

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<3)A©
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q={1l} U {caeR} U {(c, 2)eRxR:0<co-c:1 <2} U {T}

Po(cocrLcy =co=ci=caVeo+rl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

15



Register automata are FO-dehinable NFA

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-(:1<3)A)©>
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q = {J_} U {C1€R} U { (Cl, CQ)ERXR: 0 <ce-c1<2 } U {T}

Po(cocrLcy =co=ci=caVeo+rl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,c):c’=t} U

15



Register automata are FO-dehinable NFA

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<3)A@
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q = {J_} U {C1€R} U { (Cl, CQ)ERXR: 0 <ce-c1<2 } U {T}

Po(cocrLcy =co=ci=caVeo+rl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,c):c’=t} U
{ (e, t, (¢, c2)):0<t-ci<2Aci=cr A =t} U

15



Register automata are FO-dehinable NFA

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<5)A@
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q={Ll} U {ceR} U {(c, »)eRxR:0<cr-ci <2} U [T}

Po(cocrLcy =co=ci=caVeo+rl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,c):c’=t} U

{ (e, t, (¢, c2)):0<t-ci<2Aci=cr A =t} U
{ ((Cl, C2), t, T) : (2 < t-C1 < 3) A (t-C2 =1 v t-co= 2) }

15



Register automata are FO-dehinable NFA

t t t
@ cr:=t ® 0<t-c1<2 O(2<t-C1<5)A@
Coi=1t (t-c2=1 Vv t-c2=2)

states: Q={Ll} U {ceR} U {(c, »)eRxR:0<cr-ci <2} U [T}

Po(cocrLcy =co=ci=caVeo+rl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,c):c’=t} U

{ (e, t, (¢, c2)):0<t-ci<2Aci=cr A =t} U
{ ((Cl, C2), t, T) : (2 < t-C1 < 3) A (t-C2 =1 v t-co= 2) }

@s(co, 1,02, t, C0, 01, 02) = ...

15



Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

16



Timed automata vs. FO-dehinable NFA

FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

* in every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

16



Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

* in every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

* number of clocks may vary from one location to another

16



Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

* number of clocks may vary from one location to another

* the input needs not be monotonic (but can be enforced to be)

16



Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

* number of clocks may vary from one location to another
* the input needs not be monotonic (but can be enforced to be)

* alphabet letters may be a tuples of timestamps

16



Timed automata vs. FO-dehinable NFA

FO-definable NFA

17



Timed automata vs. FO-dehinable NFA

deterministic FO-definable NFA

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

Integer

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

Integer

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

Integer

??

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

Integer

??

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

Integer

|

ClOSCd under

17



deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

Integer

ClOSCd under

17



FO-detinable DFA do minimize

[Bojariczyk, L. 2012]

deterministic FO-definable NFA

18



FO-detinable DFA do minimize

[ Bojariczyk, L. 2012]

t t
® )O(2<t-C1<5)A©

0<t-c1<2

Coi=1t (t-c2=1 Vv t-c2=2)
®

25

O < C2-C1 < 2

e
(@)
\]
H
o ©

deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

1%5 2Y5

18



FO-detinable DFA do minimize

O

[ Bojariczyk, L. 2012]

@ @ O

deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

0 < t-c1 <2 2 <t-c1<3) A
Coi=1t (t-c2=1 Vv t-c2=2)
2,

o 0 < co-c1 <2

25

Q—— @ ——_—-0

if 0 <t-ci1<=1 (2 <t-c1<3) A
Co :=1 (t-CZ =1 v t-co= 2)

if 1 <t-c1<2
Co:=t-1
0 < C2=C1 <= 1

18



Presburger NFA

[ Bojariczyk, L. 2012]

Minimization holds also if FO(<, +1) 1s replaced by FO(<, +)

19



In search of lost defimtion

Motivation

FO-definable NFA

FO-definable PDA

The core problem: equations over sets of Integers

20



In search of lost defimtion

Motivation

FO-definable NFA

PDA re-interpreted in
FO-definable PDA FO-definable sets

The core problem: equations over sets of Integers

20



FO-definable PDA

alphabet A

states O orbit-finite

stack alphabet S
definable in FO(«, +1)
push C QO xAxQ xS
pop & OxSxAxQ

I)FQQ

21



FO-definable PDA

alphabet A

states O orbit-finite

stack alphabet S

push C O xAxQ xS qbpush(ml,--.
POPQQXSXAXQ ¢pop(x1,.

LFCQ Gr(x1y. ., Tm),

21




FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S
definable in FO(<, +1)

e pushC QO xAxQxS

da(rl, ..., T

e pop &C OxSxAxQ bolErs..
ds(xy, ..., T
* I’ K g Q Ppush (T1 -« s Trmtntmtk
qbpop(xl ----- LTm+k+n+m

Acceptance defined as for classical PDA.

21



Example

input alphabet: A =reals U {¢}
language: '"ordered palindromes of even length over reals"
states:
stack alphabet:

transitions:

initial state:

accepting state:

22



Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet:
transitions:

initial state:  init
accepting state:  acc

22



Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet: S = reals W {1}
transitions:

initial state:  init
accepting state:  acc

22



Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet: S = reals W {1}

transitions: push C QO x A xQ xS

(init, & t, L)
In state 1nit, without (t, u, u, u) t<u
reading input, change (¢, u, , 1) t<u

state to an arbitrary

real t, and push L on pop & QxSxAxQ
stack ( ot )

( , L, & acc)

initial state:  init
accepting state:  acc

22



Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet: S = reals W {1}

transitions: push C QO x A xQ xS

: init, g, t, L
1In state ,popar eal Eim 3 ) ) t
t from stack, read the » U, U, U <u
same t from input, and (t, u, , 1) t<u
stay 1n the same state pop € QxSxAxQ

|

( ot )

( y J—; &, aCC)

initial state:  init
accepting state:  acc

22



FO-dehnable prefix rewriting

alphabet A

states O orbit-finite

stack alphabet S definable in FO(<, +1)

PpC O xS* xAxQxS*
I, FC QO

23



FO-dehnable prefix rewriting

alphabet A

states O orbit-finite

stack alphabet S definable in FO(<, +1)

PCQxSM xAxQxSm

LFCQ

23



FO-dehnable prefix rewriting

* alphabet A

e states O orbit-finite

* stack alphabet S definable in FO(<, +1)

. pQQxSSHxAxQxSSm

- LFCO

Acceptance defined as for classical prefix rewriting.

23



FO-dehnable context-free grammars

* nonterminal symbols S S
orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

* p & Sx(SWUA)*

24



FO-dehnable context-free grammars

* nonterminal symbols S S
orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

* o C Sx(SWA)="

Generated language defined as for classical PDA.

24



Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting

25



Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting

palindromes

25



Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting :
............................. palindromes

.......
....
. ®
o ®
o ®
.
o ®
.
.
.
. ®
. ®
.




Expressiveness of FO-dehinable models

[Clemente, L. 2015]

palindromes over {a,b}xreals with
the same number of a’s and b’s

prefix rewriting :
............................ palindromes

constrained PDA

25



Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
e pushC O xAxQ xS

definable in FO(<, +1)

e pop € OxSxAxQ

- LFCQ

26



Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
e pushC O xAxQ xS

orbit-finite?

e pop € OxSxAxQ

- LFCQ

26



Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
orbit-finite?
e pushC O xAxQ xS
e pop € OxSxAxQ

- LFCQ

Too strong restriction! Span of transitions 1s bounded.

26



Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
orbit-finite?

e pushC QO xAxQxS

e pop € OxSxAxQ

- LFCQ

Too strong restriction! Span of transitions 1s bounded.

For instance, such PDA do not recognize palindromes over reals.

26



Constrained FO-definable PDA

* alphabet A

e gstates O orbit-ﬁnite

* stack alphabet S
definable in FO(«<, +1)

e pushC O xAxQ xS

e pop € OxSxAxQ

. LFCQ

27



Constrained FO-definable PDA

* alphabet A

e gstates O orbit-ﬁnite

* stack alphabet S .
definable in FO(«<, +1)

. pusthxAxQxS
=—erbit-finite

O

e pop € OxSxAxQ

. LFCO orbit-finite

27



Constrained FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S
definable in FO(«<, +1)

e pushC QO xAxQxS
_'-’blt finite

e pop &C OxSxAxQ
orbit-finite

- LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem i1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

27



Constrained FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S .
definable in FO(«<, +1)

e pushC QO xAxQxS
_'-’blt finite

e pop &C OxSxAxQ
orbit-finite

- LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem i1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PDA with uninitialized clocks.

27



Complexity of non-emptiness
[Clemente, L. 2015]

prefix rewriting

28



Complexity of non-emptiness
[Clemente, L. 2015]

prefix rewriting

28



Complexity of non-emptiness
[Clemente, L. 2015]

prefix rewriting

28



Complexity of non-emptiness
[Clemente, L. 2015]

28



Complexity of non-emptiness
[Clemente, L. 2015]

28



Complexity of non-emptiness
[Clemente, L. 2015]

28



Motivation

FO-definable NFA

FO-definable PDA

The core problem: equations over sets of Integers

29



The core problem

Systems of equations over sets of integers

where right-hand sides use:

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:
Ty = 12 * constants {-1}, {0}, {1}

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:
Ty = 12 * constants {-1}, {0}, {1}

e set union U

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:
e constants {-1}, {0}, {1}
* set union U

* point-wise addition +

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:
e constants {-1}, {0}, {1}
e set union U

* point-wise addition +

e limited intersection N

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:

T2 = 12 e constants {-1}, {0}, {1}
e set umion U

Tp = Un * point-wise addition +

e limited intersection N

for instance:

{xl = {0} U 2o+ {1} U x2+{-1}

To = SBl—I—{l} U CEl—I—{—l}

30



The core problem

Systems of equations over sets of integers

where right-hand sides use:

T2 = 2 e constants {-1}, {0}, {1}
e set umion U

Tp = Un * point-wise addition +

e limited intersection N

for instance:

{331 — {O} U ZEQ—I—{l} U ZEQ—I—{—l}

To = 331—|-{1} U CEl—I—{—l}

What is the least solution with respect to inclusion?

30



The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

31



The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?

31



The core problem - no Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?

r1 = {O} U CE‘Q—|—{1} U £L“2-|—{—1}
Lo = :L’1+{1} U CEl—|—{—1}

31



The core problem - no Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?
r1 = {O} U X9 + {1} J X9 + {—1}
To = T1 -+ {1} U r1 + {—1}

Decidable in P

31



The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

32



The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

The problem 1s undecidable for unlimited intersections.

[Jez, Okhotin 2010]

32



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L .
* point-wise addition +
x — 1 e .
2 2 e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?

33



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

33



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U

T = U L iy

* point-wise addition +
Ty = b e limited intersection N
Tpn = n

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{5171 = {O} U CEQ‘l‘{l} U CEQ—|—{—1}
(.’,131—|—{1} @ $1—|—{—1}) f {1}

33

=
N
|



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{il?l — {O} U ZBQ‘l‘{l} U .CIZ'Q—I-{—l}

ro = x1+{1} U x1+{-1} membership problem

33



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U
* point-wise addition +

e ]imited intersection N

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{5131 — {O} U ZIZ’Q—I-{l} U ZCQ—|—{—1}
L9 — {1}

33



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

34



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

* NP-complete

34



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

* NP-complete

* non-emptiness of constrained FO-definable PDA reduces to
the core problem (with exponential blow-up)

34



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L .
* point-wise addition +
x — 1 e .
2 2 e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?

35



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L. .
* point-wise addition +
T2 = Iy e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?

What about _ N I, for I an arbitrary interval?

35



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L. .
* point-wise addition +
T2 = Iy e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?

What about _ N I, for I an arbitrary interval?

* decidability status open!

35



The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about _ M I, for I an arbitrary interval?

* decidability status open!

* non-emptiness of FO-definable PDA reduces to the core problem
(with exponential blow-up)

35



1 Odebra L2 - 5S¢

mimuw.edu.p

Atompress

Competation with stoms

RECENT POSTS
Charscterization of Standard

Alphabets

Standard slphabets vi. homog-
erirability

A conjecture concerning Brao-
2owki algorithm (PRIZEY)

Derived alphabets

A pumping lemma for atom
ata with atoens

Standar

http

swi

brandes

zarska Hiking a

Reporty ¥ Anatyza

COMPUTATION WITH ATOMS

This page is devoted to exchanging information regarding computa-
tion with atoms, and techniques in Computer Science involving sets

with atoms.

Sets with atoms are also known under the names:
Fraenkel-Mostowski sets, sets with urelements, permutation mod-

els, nominal sets, and others.

Below are some recent posts about stuff under development

PAPIRS

CHARACTERIZATION OF
STANDARD ALPHABETS

q

36

brain co

' * Ulotka ) mereo O

Q

HOME ATOM BOOK PEOPLE Q

uestions:



