
Sławomir Lasota

Automata with timed atoms

joint work with Mikołaj Bojańczyk and Lorenzo Clemente

University of Warsaw

Infinity 2015, Bengaluru
1

Sławomir Lasota

joint work with Mikołaj Bojańczyk and Lorenzo Clemente

University of Warsaw

Infinity 2015, Bengaluru

FO-definable automata

1

FO-definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

2

Plan

3

Plan

• Motivation

3

Plan

• Motivation

• FO-definable NFA

3

Plan

• Motivation

• FO-definable NFA

• FO-definable PDA

3

Plan

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

3

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

4

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

4

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Let input alphabet be reals

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Let input alphabet be reals

Monotonic input words :

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Timed automata
with uninitialized clocks

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

[Alur, Dill 1990]

5

?

Timed automata
with uninitialized clocks

t rea
l	nu
mbe
r

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t rea
l	nu
mbe
r

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t rea
l	nu
mbe
r

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

treal
	nu
mbe
r

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

treal
	nu
mbe
r

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

treal
	nu
mbe
r

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

{ 0..2

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

treal
	nu
mbe
r

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

{ 0..2

{
2..3

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

treal
	nu
mbe
r

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

[Alur, Dill 1990]

5

Deterministic timed automata don’t minimize

t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

6

Deterministic timed automata don’t minimize

⅓0 2⅓

0 2⅓1⅓
t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

6

Deterministic timed automata don’t minimize

⅓0 2⅓

0 2⅓1⅓
t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

(c₁=0, c₂=⅓) ≡ (c₁=0, c₂=1⅓)

6

Towards timed pushdown automata

7

Towards timed pushdown automata

• timed automata [Alur, Dill 1990]

7

Towards timed pushdown automata

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

finite stack alphabet

7

Towards timed pushdown automata

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-complete

7

Towards timed pushdown automata

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

• recursive timed automata
[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-complete

7

Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively
equivalent to pushdown timed automata.

8

Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively
equivalent to pushdown timed automata.

An accidental combination of • stack discipline
• monotonicity of time
• syntactic restrictions

8

9

FO-definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

• do not invent a new definition

9

FO-definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

• do not invent a new definition

• re-interpret a classical definition in FO-definable sets, with

finiteness relaxed to orbit-finiteness

9

FO-definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

In search of lost definition

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

10

In search of lost definition

NFA re-interpreted in
FO-definable sets

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

10

Timed automata are register automata

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

11

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0
t

0 < c₁ < 2
c₂ := 0

t
(2 < c₁ < 3) ∧

(c₂ = 1 ∨ c₂ = 2)

t

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

11

the only modifications of a clock: c:= t

FO(<, +1)-definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

12

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

12

FO-definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

12

FO-definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =
_

finite

^

finite

xi � xj 2 I

| {z }
zone

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

12

FO-definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =
_

finite

^

finite

xi � xj 2 I

| {z }
zone

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

for instance

�(x1, x2) ⌘ x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

dimension

12

FO-definable sets

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

13

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q
}definable in FO(<, +1)

13

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

13

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q
�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}definable in FO(<, +1)

13

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

Runs, acceptance, language recognized, etc. are defined
exactly as for classical NFA!

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}definable in FO(<, +1)

13

FO-definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

}orbit-finite

Runs, acceptance, language recognized, etc. are defined
exactly as for classical NFA!

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}definable in FO(<, +1)

13

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

14

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

14

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1) orbit-infinite

Example:

14

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

x1 + 3 < x2  x1 + 7 ⌘ x2 � x1 2 (3, 7]

orbit-infinite
orbit-finite

Example:

14

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

x1 + 3 < x2  x1 + 7 ⌘ x2 � x1 2 (3, 7]

An FO-definable set is orbit-finite
iff

it is defined using bounded intervals only

orbit-infinite
orbit-finite

Example:

14

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata are FO-definable NFA

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}
𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪
 { ((c₁, c₂), t, ⊤) : (2 < t-c₁ < 3) ∧ (t-c₂ = 1 ∨ t-c₂ = 2) }

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

15

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata are FO-definable NFA

Q = {⊥} ∪ {c₁∊R} ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪
 { ((c₁, c₂), t, ⊤) : (2 < t-c₁ < 3) ∧ (t-c₂ = 1 ∨ t-c₂ = 2) }

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

𝜙𝛿(c0, c₁, c₂, t, c0’, c₁’, c₂’) ≡ ...

15

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

Timed automata vs. FO-definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

Timed automata vs. FO-definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

Timed automata vs. FO-definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another
• the input needs not be monotonic (but can be enforced to be)

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

Timed automata vs. FO-definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another
• the input needs not be monotonic (but can be enforced to be)
• alphabet letters may be a tuples of timestamps

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

17

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

{
integer

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

{
integer

{< 2

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

{
integer

{< 2 {< 2

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

{
integer

{< 2 {< 2
...

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

closed under
minimization

Timed automata vs. FO-definable NFA

{
integer

{< 2 {< 2
...

deterministic

deterministic

17

FO-definable NFA

timed automata
with uninitialized clocks

closed under
minimization

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

Timed automata vs. FO-definable NFA

{
integer

{< 2 {< 2
...

deterministic

deterministic

17

FO-definable DFA do minimize

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

18

[Bojańczyk, L. 2012]

FO-definable DFA do minimize

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c1 c2 t{1 or 2

{ 0..2

{

2..3

0 < c₂-c₁ < 2
⅓0 2⅓

0 2⅓1⅓

18

[Bojańczyk, L. 2012]

FO-definable DFA do minimize

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c1 c2 t{1 or 2

{ 0..2

{

2..3

0 < c₂-c₁ < 2

c₁ := t
t

if 0 < t-c₁ <= 1
c₂ := t

if 1 < t-c₁ < 2
c₂ := t-1

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

0 < c₂-c₁ <= 1

⅓0 2⅓

0 2⅓1⅓

18

[Bojańczyk, L. 2012]

Presburger NFA

Minimization holds also if FO(<, +1) is replaced by FO(<, +)

19

[Bojańczyk, L. 2012]

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

20

In search of lost definition

PDA re-interpreted in
FO-definable sets

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

20

In search of lost definition

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

21

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite
�A(x1

, . . . , xn)

�Q(x1

, . . . , xm)

�S(x1

, . . . , xk)

�

push

(x
1

, . . . , xm+n+m+k)

�

pop

(x
1

, . . . , xm+k+n+m)

�I(x1

, . . . , xm), �F (x1

, . . . , xm)

21

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite

Acceptance defined as for classical PDA.

�A(x1

, . . . , xn)

�Q(x1

, . . . , xm)

�S(x1

, . . . , xk)

�

push

(x
1

, . . . , xm+n+m+k)

�

pop

(x
1

, . . . , xm+k+n+m)

�I(x1

, . . . , xm), �F (x1

, . . . , xm)

}definable in FO(<, +1)

21

language: "ordered palindromes of even length over reals"
input alphabet: A = reals ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state:

Example

22

language:

Q = reals ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = reals ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

Example

22

language:

Q = reals ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = reals ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = reals ⨄ {⊥}

Example

22

language:

Q = reals ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = reals ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = reals ⨄ {⊥}

in state init, without
reading input, change
state to an arbitrary
real t, and push ⊥ on
stack

Example

(finish, t, t, finish)
(finish, ⊥, ε, acc)

pop ⊆ Q × S × A × Q

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

22

language:

Q = reals ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = reals ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = reals ⨄ {⊥}

Example

(finish, t, t, finish)
(finish, ⊥, ε, acc)

pop ⊆ Q × S × A × Q

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

in state finish, pop a real
t from stack, read the
same t from input, and
stay in the same state

22

FO-definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}definable in FO(<, +1)
}orbit-finite

23

FO-definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}definable in FO(<, +1)
}orbit-finite

≤n ≤m

23

FO-definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}definable in FO(<, +1)
}orbit-finite

Acceptance defined as for classical prefix rewriting.

≤n ≤m

23

orbit-finite	set	of	symbols	S

FO-definable context-free grammars

• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

24

orbit-finite	set	of	symbols	S

FO-definable context-free grammars

• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

Generated language defined as for classical PDA.

24

≤n

prefix rewriting

CFG

Expressiveness of FO-definable models

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

25

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of FO-definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

25

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of FO-definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

constrained PDA

25

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of FO-definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

constrained PDA

palindromes over {a,b}×reals with
the same number of a’s and b’s

25

[Clemente, L. 2015]

Constrained FO-definable PDA?

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

26

Constrained FO-definable PDA?

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

26

Constrained FO-definable PDA?

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

Too strong restriction! Span of transitions is bounded.

26

Constrained FO-definable PDA?

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

Too strong restriction! Span of transitions is bounded.
For instance, such PDA do not recognize palindromes over reals.

26

Constrained FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

27

Constrained FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

}

orbit-finite

}

orbit-finite

27

Constrained FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

}

orbit-finite

}

orbit-finite

 Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

27

Constrained FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}definable in FO(<, +1)

}orbit-finite

}

orbit-finite

}

orbit-finite

 Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PDA with uninitialized clocks.
27

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

28

[Clemente, L. 2015]

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA in NEXPTIME

28

[Clemente, L. 2015]

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

28

[Clemente, L. 2015]

undecidable

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

28

[Clemente, L. 2015]

undecidable

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

28

[Clemente, L. 2015]

undecidable

Complexity of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

?

28

[Clemente, L. 2015]

Plan

• Motivation

• FO-definable NFA

• FO-definable PDA

• The core problem: equations over sets of integers

29

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

for instance:

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

30

orbit-finite	set	of	symbols	S

The core problem
Systems of equations over sets of integers

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

where right-hand sides use:{x1 = t1

x2 = t2

. . .

xn = tn

for instance:

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

What is the least solution with respect to inclusion?

30

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

Decidable in P

31

orbit-finite	set	of	symbols	S

The core problem - intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

32

orbit-finite	set	of	symbols	S

The core problem - intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

The problem is undecidable for unlimited intersections.
[Jeż, Okhotin 2010]

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

32

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = (x1 + {1} [x1 + {�1}) \ {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

membership problem

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete
• non-emptiness of constrained FO-definable PDA reduces to

the core problem (with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• decidability status open!

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?
x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• decidability status open!
• non-emptiness of FO-definable PDA reduces to the core problem

(with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

questions?

Visit our blog...

36

