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The core problem: equations over sets of Integers
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* Integers discrete time any

No restriction to non-negative!

Let input alphabet be reals

Monotonic input words :
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finite stack alphabet
* timed automata [Alur, Dill 1990] LINLEE SeCls SUIRIIEIOIS

* pushdown timed automata [ Bouajjani, Echahed, Robbana 1994]
* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

* recursive timed automata

[ Trivedi, Wojtczak 2010], [ Benerecetti, Minopoli, Peron 2010]

* clocks can be pushed onto stack

* the emptiness problem EXPTIME-complete



Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]

Dense-timed pushdown automata are expressively

equivalent to pushdown timed automata.



Dense-time

Theorem 1: [Clemente, L. 20

Dense-timed pus|
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* monotonicity of time
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FO-dehinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

* do not invent a new definition

* re-interpret a classical definition in FO-definable sets, with

finiteness relaxed to OI’bit-ﬁl’litel’leSS
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FO-dehinable sets

dimension
FO(<, +1) formula ¢(£I?1, Cee xmes a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ X9 = X3+ 3)
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Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:
r1+3<xy = T9—x1 € (3,00) orbit-infinite
r1+3<xz<x1+7 = ax93—11 € (3,7] orbit-finite

An FO-definable set 1s orbit-finite
1

it 1s defined using bounded intervals only
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FO-definable NFA are like updatable timed automata
[ Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

* number of clocks may vary from one location to another
* the input needs not be monotonic (but can be enforced to be)

* alphabet letters may be a tuples of timestamps
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deterministic FO-definable NFA
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FO-detinable DFA do minimize

[ Bojariczyk, L. 2012]
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FO-detinable DFA do minimize

O

[ Bojariczyk, L. 2012]

@ @ O

deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

0 < t-c1 <2 2 <t-c1<3) A
Coi=1t (t-c2=1 Vv t-c2=2)
2,

o 0 < co-c1 <2

25

Q—— @ ——_—-0

if 0 <t-ci1<=1 (2 <t-c1<3) A
Co :=1 (t-CZ =1 v t-co= 2)

if 1 <t-c1<2
Co:=t-1
0 < C2=C1 <= 1

18



Presburger NFA

[ Bojariczyk, L. 2012]

Minimization holds also if FO(<, +1) 1s replaced by FO(<, +)
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stack alphabet S
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push C QO xAxQ xS
pop & OxSxAxQ
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FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S
definable in FO(<, +1)

e pushC QO xAxQxS

da(rl, ..., T

e pop &C OxSxAxQ bolErs..
ds(xy, ..., T
* I’ K g Q Ppush (T1 -« s Trmtntmtk
qbpop(xl ----- LTm+k+n+m

Acceptance defined as for classical PDA.
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transitions:

initial state:

accepting state:
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Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet: S = reals W {1}

transitions: push C QO x A xQ xS

(init, & t, L)
In state 1nit, without (t, u, u, u) t<u
reading input, change (¢, u, , 1) t<u

state to an arbitrary

real t, and push L on pop & QxSxAxQ
stack ( ot )

( , L, & acc)

initial state:  init
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Example

input alphabet: A =reals U {¢}

language: '"ordered palindromes of even length over reals"
states: Q = reals U {init, , acc}
stack alphabet: S = reals W {1}

transitions: push C QO x A xQ xS

: init, g, t, L
1In state ,popar eal Eim 3 ) ) t
t from stack, read the » U, U, U <u
same t from input, and (t, u, , 1) t<u
stay 1n the same state pop € QxSxAxQ

|

( ot )

( y J—; &, aCC)

initial state:  init
accepting state:  acc
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FO-dehnable prefix rewriting

* alphabet A

e states O orbit-finite

* stack alphabet S definable in FO(<, +1)

. pQQxSSHxAxQxSSm

- LFCO

Acceptance defined as for classical prefix rewriting.
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* nonterminal symbols S S
orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

* p & Sx(SWUA)*
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FO-dehnable context-free grammars

* nonterminal symbols S S
orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

* o C Sx(SWA)="

Generated language defined as for classical PDA.

24



Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting
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Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting

palindromes

25



Expressiveness of FO-definable models

[Clemente, L. 2015]

prefix rewriting :
............................. palindromes

.......
....
. ®
o ®
o ®
.
o ®
.
.
.
. ®
. ®
.




Expressiveness of FO-dehinable models

[Clemente, L. 2015]

palindromes over {a,b}xreals with
the same number of a’s and b’s

prefix rewriting :
............................ palindromes

constrained PDA

25



Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
e pushC O xAxQ xS

definable in FO(<, +1)

e pop € OxSxAxQ

- LFCQ
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Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
e pushC O xAxQ xS

orbit-finite?

e pop € OxSxAxQ

- LFCQ
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Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
orbit-finite?
e pushC O xAxQ xS
e pop € OxSxAxQ

- LFCQ

Too strong restriction! Span of transitions 1s bounded.
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Constrained FO-definable PIDA?

* alphabet A

e states O orbit-finite

* stack alphabet S
orbit-finite?

e pushC QO xAxQxS

e pop € OxSxAxQ

- LFCQ

Too strong restriction! Span of transitions 1s bounded.

For instance, such PDA do not recognize palindromes over reals.

26



Constrained FO-definable PDA

* alphabet A

e gstates O orbit-ﬁnite

* stack alphabet S
definable in FO(«<, +1)

e pushC O xAxQ xS

e pop € OxSxAxQ

. LFCQ
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Constrained FO-definable PDA

* alphabet A

e gstates O orbit-ﬁnite

* stack alphabet S .
definable in FO(«<, +1)

. pusthxAxQxS
=—erbit-finite

O

e pop € OxSxAxQ

. LFCO orbit-finite

27



Constrained FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S
definable in FO(«<, +1)

e pushC QO xAxQxS
_'-’blt finite

e pop &C OxSxAxQ
orbit-finite

- LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem i1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.
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Constrained FO-definable PDA

* alphabet A

e states O orbit-finite

* stack alphabet S .
definable in FO(«<, +1)

e pushC QO xAxQxS
_'-’blt finite

e pop &C OxSxAxQ
orbit-finite

- LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem i1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PDA with uninitialized clocks.

27



Complexity of non-emptiness
[Clemente, L. 2015]

prefix rewriting
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Complexity of non-emptiness
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Complexity of non-emptiness
[Clemente, L. 2015]
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Motivation

FO-definable NFA

FO-definable PDA

The core problem: equations over sets of Integers

29



The core problem

Systems of equations over sets of integers

where right-hand sides use:
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where right-hand sides use:
e constants {-1}, {0}, {1}
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* point-wise addition +

e limited intersection N
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The core problem

Systems of equations over sets of integers

where right-hand sides use:

T2 = 12 e constants {-1}, {0}, {1}
e set umion U

Tp = Un * point-wise addition +

e limited intersection N

for instance:

{xl = {0} U 2o+ {1} U x2+{-1}

To = SBl—I—{l} U CEl—I—{—l}
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The core problem

Systems of equations over sets of integers

where right-hand sides use:

T2 = 2 e constants {-1}, {0}, {1}
e set umion U

Tp = Un * point-wise addition +

e limited intersection N

for instance:

{331 — {O} U ZEQ—I—{l} U ZEQ—I—{—l}

To = 331—|-{1} U CEl—I—{—l}

What is the least solution with respect to inclusion?

30



The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?
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The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?
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The core problem - no Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?

r1 = {O} U CE‘Q—|—{1} U £L“2-|—{—1}
Lo = :L’1+{1} U CEl—|—{—1}
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The core problem - no Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

How to solve the problem in absence of intersections?
r1 = {O} U X9 + {1} J X9 + {—1}
To = T1 -+ {1} U r1 + {—1}

Decidable in P
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The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?
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The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

The problem 1s undecidable for unlimited intersections.

[Jez, Okhotin 2010]
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L .
* point-wise addition +
x — 1 e .
2 2 e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?
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Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U

T = U L iy

* point-wise addition +
Ty = b e limited intersection N
Tpn = n

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{5171 = {O} U CEQ‘l‘{l} U CEQ—|—{—1}
(.’,131—|—{1} @ $1—|—{—1}) f {1}

33
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{il?l — {O} U ZBQ‘l‘{l} U .CIZ'Q—I-{—l}

ro = x1+{1} U x1+{-1} membership problem
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U
* point-wise addition +

e ]imited intersection N

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

{5131 — {O} U ZIZ’Q—I-{l} U ZCQ—|—{—1}
L9 — {1}
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about limited intersections: _ M I, for I a finite interval?

* NP-complete

* non-emptiness of constrained FO-definable PDA reduces to
the core problem (with exponential blow-up)
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ry = U L. .
* point-wise addition +
T2 = Iy e |imited intersection N
Ty = 1y

decide, whether its least solution assigns a non-empty set to 21 ?

What about _ N I, for I an arbitrary interval?

* decidability status open!
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
r1 = U L. .
* point-wise addition +
T2 = 1 e ]imited intersection N
Tn = 1tn

decide, whether its least solution assigns a non-empty set to 21 ?

What about _ M I, for I an arbitrary interval?

* decidability status open!

* non-emptiness of FO-definable PDA reduces to the core problem
(with exponential blow-up)
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