
Faster Algorithm for Bisimulation Equivalence
of Normed Context-Free Processes

S�lawomir Lasota� and Wojciech Rytter��

Institute of Informatics, Warsaw University, Warsaw, Poland

Abstract. The fastest known algorithm for checking bisimulation equiv-
alence of normed context-free processes worked in O(n13) time. We give
an alternative algorithm working in O(n8polylog n) time, As a side ef-
fect we improve the best known upper bound for testing equivalence of
simple context-free grammars from O(n7polylog n) to O(n6polylog n).

1 Introduction

Equivalence checking, that is determining whether two systems are equal under
a given notion of equivalence, is an important verification problem with a long
history. In this paper we consider systems described by context-free grammars.
It is well known that language equivalence is undecidable in this class [1]. A
decidability result was obtained by Korenjak and Hopcroft [12] for a restricted
class of deterministic context-free grammars (simple grammars). Remarkably,
the language containment is undecidable even for simple grammars [6].

In the context of process algebras, a grammar may be considered as a de-
scription of a transition graph rather than a language. The adequate concept
of equivalence is then bisimilarity (bisimulation equivalence), a notion strictly
finer than language equivalence. For graphs generated by context-free grammars,
called context-free processes, bisimilarity is known to be decidable due to the re-
sult of [5]. It has also been demonstrated that bisimilarity is the only equivalence
in van Glabbeek’s spectrum [7] which is decidable for context-free processes. This
places bisimilarity in a very favourable position.

Historically the first decision procedure for bisimilarity on infinite-state sys-
tems was given by [3] for a class of normed context-free processes, those defined
by grammars in which, roughly, each nonterminal generates at least one word.
Clearly, language equivalence is still undecidable in this class, as normedness
assumption does not facilitate testing language equality. As language equiva-
lence and bisimilarity coincide on deterministic graphs (in fact, the whole van
Glabbeek’s spectrum collapses), the result of [3] was a strict extension of [12].

Later, decidability was extended to all context-free processes [5].
In the case of normed context-free processes, a number of simplifications of

the proof of [3] appeared [4,10], relying on particular decomposition properties of
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bisimilarity, and yielding an exponential upper bound for bisimilarity checking. A
side effect was an improvement for the equivalence of simple grammars, compared
to the complexity of the algorithm of [12] which was O(nv), where n is the
length of the grammar and v is the length of the shortest word generated, in
general exponential in n. Independently, Caucal [4] proposed an algorithm for
equivalence of simple grammars working in time O(n3v).

Huynh and Tian [11] did a next step and proved that complexity of bisimilarity
is in NPNP, the second level of the polynomial hierarchy. A first polynomial-time
procedure was finally presented by Hirshfeld, Jerrum and Moller [9].

The algorithm in [9] works in time O(n13) and is hence not satisfactory
from the practical point of view. This motivated a further research: in [2] an
O(n7polylog n) time algorithm was proposed for the equivalence of simple gram-
mars. In this paper we report a further progress: we give an O(n8polylog n) time
algorithm for bisimilarity on normed context-free processes, thus improving pre-
vious O(n13) time of [9]. We believe that our algorithm is conceptually simpler
than that of [9]. It is based on the following two insights. First, we avoid an
iterative computation of bisimilarity, by a chain of approximants of the greatest
fixed point; instead, we are able to reduce the problem of computing the greatest
bisimulation to the problem of finding the greatest solution of certain system of
boolean equations, and use the linear-time procedure to find this solution. Sec-
ondly, we contribute to the algorithmic theory of compressed strings: we develop
a fast algorithm for an auxiliary problem on strings called the First Mismatch
Problem, working in O(n5polylog n) time. As a direct corollary, the equivalence
of simple grammars can be decided in O(n6polylog n) time, which beats the
complexity of the (fastest known) algorithm of [2].

Context-Free Processes and Bisimilarity. Let Σ be a finite alphabet and
V = {X1, . . . , Xm} a finite set of variables. By a process definition Δ we mean
a finite set of rules of the form: X

a−→ α, with a ∈ Σ and α ∈ V∗. Such
process definitions are usually called in the literature Basic Process Algebra, or
Context-Free Processes. The explanation of the latter is that each rule can be
seen as a production X −→ aα of a context-free grammar in Greibach normal
form. Elements of V∗ are called here processes ; a variable X can be seen as an
elementary process.

Δ defines a transition system: its states are processes α ∈ V∗; and for each
a ∈ Σ, there is a transition relation containing triples (α, a, β), where a ∈ Σ

and α, β ∈ V∗, written α
a−→ β. The transition relations are defined by a prefix

rewriting: Xβ
a−→ αβ whenever Δ contains a rule X

a−→ α, and β ∈ V∗.

Definition 1. Given a binary relation R over V∗, we say that a pair (α, β) of
processes satisfies expansion in R if

– whenever α
a−→ α′, there exists some β′ with β

a−→ β′ and (α′, β′) ∈ R; and
– whenever β

a−→ β′, there exists some α′ with α
a−→ α′ and (α′, β′) ∈ R.

A binary relation S satisfies expansion in R if each pair (α, β) ∈ S does. A
relation R is a bisimulation if it satisfies expansion in itself. We say that α and
β are bisimilar, denoted by α ∼ β, if (α, β) belongs to some bisimulation.



648 S. Lasota and W. Rytter

Assume that Δ is normed, i.e., for each variable X ∈ V∗ there is a finite sequence
X

a1−→ α1 . . .
ak−→ αk = ε leading from X to the empty process ε. By |X | denote

the smallest length of such sequence and call it the norm of X (intuitively, |X |
is the length of the shortest word generated from X).

We consider the following Normed-BPA-Bisim Problem:

Instance: A normed Δ and X, Y ∈ V with |X | = |Y |, X �= Y .
Question: Is X ∼ Y ?

A more general problem of checking whether α ∼ β, for any α, β ∈ V∗, can be
easily reduced to the above one. We use notation ˜O(f(n)) for O(f(n) polylog n)
in the sequel. The size of Δ, denoted by n, is the sum of lengths of all the rules
in Δ. Our main result is the following:

Theorem 1. Normed-BPA-Bisim Problem can be solved in time ˜O(n8).

2 Terminology and Tools Used in the Main Algorithm

The normedness assumption implies that each variable has at least one rule in
Δ. We extend additively the norm to all processes: |ε| := 0, |Xα| := |X | + |α|.
Bisimilarity preserves norm, as a sequence of transitions X

a1−→ . . .
ak−→ ε leading

to ε must be necessarily matched by a sequence leading to ε as well:

Proposition 1. If α ∼ β then |α| = |β|.
Let Σ, V and Δ be fixed from now on. We assume that the variables in V are
ordered so that |Xi| ≤ |Xj | whenever i < j. It is easy to show the following:

Proposition 2. Norms of all variables can be computed in time ˜O(n).

The following fact is easily derived from the unique decomposition property [9].

Lemma 1. If αα′ ∼ ββ′ and |α| ≥ |β| then for some γ, α ∼ βγ and γα′ ∼ β′.

As s direct corollary we get a cancellation property:

Lemma 2. If γα ∼ γβ then α ∼ β.

We will need a notion of base, which is a slight adaptation of [9]. Intuitively, it
describes ways of decomposing an elementary process into smaller ones:

Definition 2. A base is a set B of pairs (Xj , Xiγ), at most one for each pair
(Xj , Xi), such that i < j, γ ∈ V∗ and |Xj | = |Xiγ|.

A base is full iff whenever Xj ∼ Xiβ, for j > i, then (Xj , Xiγ) ∈ B, for
some γ ∼ β.

Note that whenever (Xj , Xiγ) ∈ B then necessarily Xiγ ∈ {X1, . . . , Xj−1}+. In
the sequel we rely on the following lemma proved in [9]:

Lemma 3. A full base B0 can be constructed, in time O(n3), such that the
length of γ is O(n), for each (Xj , Xiγ) ∈ B0. Furthermore, B0 contains a pair
(Xj , Xiγ) for each i, j such that j > i.
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Remark 1. By cancellation, if Xj ∼ Xiγ, then γ is unique up to bisimilarity.
Basing on this observation, the construction of B0 is by inspecting an arbitrarily
chosen sequence of |Xi| norm-reducing moves from Xj . Any process obtained at
the end of such a sequence is a good candidate for γ.

Remark 2. Note that B0, being full, contains all pairs (Xj , Xi) with Xj ∼ Xi.

Fix the full base B0 from now on. Pairs (Xj , Xiγ) ∈ B0 we call decomposition
pairs, or d-pairs in short. A d-pair (Xj , Xiγ) will be denoted by zji.

In the sequel we will treat the d-pairs as boolean variables. The basic intuition
will be that zji = true just in case when Xj ∼ Xiγ holds. We will also build
the positive boolean formulas on top of d-pairs, by boolean connectives ∧, ∨
and symbols true, false (no negation). The empty conjunction (disjunction) is
allowed as a formula and understood as true (false, respectively).

A valuation is a mapping v from B0 to {true, false}. We extend valuations
to formulas in the obvious way.

Definition 3. A boolean equation system is a set of equations of the form

zji = ψji,

one for each zji ∈ B0, where ψji is a positive boolean formula with variables from
B0. A solution is any valuation v such that v(zji) = v(ψji) for each zji ∈ B0.

Valuations are in one-to-one correspondence with subsets of B0: for B ⊆ B0, a
corresponding valuation vB assigns true to a variable zji if and only if zji ∈ B.
Each boolean equation system has the greatest solution B̄: start with B = B0
and iteratively update B by removing zji from B if vB(ψji) = false, until B
eventually stabilizes yielding B̄. A relevant observation is a folklore (see e.g. [8]):

Lemma 4. The greatest solution of a boolean equation system can be computed
in time linear wrt. the size of the system.

The overall idea underlying the algorithm is as follows. Bisimilarity is the greatest
bisimulation, i.e., ∼ satisfies expansion in itself. Hence, by Knaster-Tarski fix-
point theorem, it is also the greatest fixed point: α ∼ β if and only if (α, β)
satisfies expansion in ∼. One crucial insight is that computing this greatest
fixed point can be reduced to finding the greatest solution of certain system
of boolean equations. Another insight is that the system of equations can be
constructed effectively (due to Lemma 5 below). These two insights allowed us
to obtain an algorithm working in time ˜O(n8).

Consider any sub-base B ⊆ B0 and two processes α, β ∈ V∗ of equal norm.
We write α =B β if α and β can be shown equal by applying any number of
substitutions Xj �−→ Xiγ, where (Xj , Xiγ) ∈ B. Formally:

Definition 4. For B ⊆ B0, let =B be the smallest symmetric relation over
processes containing all identical pairs α =B α and such that if (Xj , Xiγ) ∈ B
and αXiγβ =B δ then αXjβ =B δ.
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Example 1. If |A| > |B| > |C| > |D| > |E| and B0 = {(A, BBD), (A, ECEB),
(C, DE), (B, CD), (B, DED), . . .} then we have AEBBBD =B BBCCDA for
B = {(A, BBD), (B, CD), (C, DE)}, due to the derivations of the same string:

AEBBBD
A=BBD−−−−→ BBDEBBBD

B=CD−−−→ BBDECDBBD,

BBCCDA
C=DE−−−→ BBDECDA

A=BBD−−−−→ BBDECDBBD.

Note that B is inclusion-minimal, i.e., there is no B′ � B with AEBBBD =B′

BBCCDA.

As B0 contains a pair (Xj , Xiγ) for each i and j with j > i, it follows that for
α, β of equal norm some sub-base B with α =B β always exists; in particular
α =B0 β. The relevant issue will be to find such B possibly small. For future
reference, let B∼ ⊆ B0 be the set of all d-pairs (Xj , Xiγ) satisfying Xj ∼ Xiγ.

Definition 5. We say that B is a matching sub-base for α, β iff it is an
inclusion-minimal subset of B0 such that (i) α =B β and (ii) α ∼ β implies
B ⊆ B∼.

In particular, by inclusion-minimality the matching sub-base for α, α is ∅. Condi-
tion (ii) says that a bisimilar pair can be shown equal by using only bisimilar sub-
stitutions. This property will follow by the unique decomposition (cf. Lemma 1)
and by our intricate construction of the sub-base in the proof of Lemma 5. The
proof of the lemma is postponed to Section 4.

Lemma 5. For any processes α, β of length O(n) with |α| = |β|, we can compute
in ˜O(n6) time a matching sub-base Bα,β containing O(n) d-pairs.

3 The Main Algorithm

Basing on Bα,β , we define a matching formula for α, β, denoted by φα,β , as
follows: if |α| = |β|, then φα,β is a conjunction of all d-pairs zji belonging to
Bα,β , otherwise φα,β is false.

In the algorithm we construct a boolean equation system containing an equa-
tion zji = ψji for each zji and then apply Lemma 4. The intuition is that formula
ψji expresses the property that the d-pair zji satisfies expansion in ∼. However,
instead of directly referring to α ∼ β in ψji, we will prefer to use formulas φα,β

as subformulas in ψji, relying on condition (ii) in Definition 5.
Let zji = (Xj , Xiγ). The formula ψji is defined as follows:

ψji =
∧

a

(

∧

β

∨

α

φβ,αγ ∧
∧

α

∨

β

φβ,αγ

)

, (1)

where a ranges over Σ, α ranges over {δ : Xi
a−→ δ ∈ Δ} and β ranges over

{δ : Xj
a−→ δ ∈ Δ}.
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Example 2. As an illustration, consider Δ containing variables X1, . . . , X7 and
the rules X5

c−→ X1, X7
a−→ X5, etc., as shown in the picture:
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Δ is essentially finite-state. All variables have norm 1 except |X7| = |X6|
= 2. Let B0 = {z76 = (X7, X6), z72 = (X7, X2X5), z65 = (X6, X5X4), z64 =
(X6, X4X4), z62 = (X6, X2X4), z54 = (X5, X4), z32 = (X3, X2), . . .}. B∼ =
{(X3, X1), (X5, X4), (X7, X6), (X6, X2X4), (X7, X2X5)}. For instance, the equa-
tion for z76 is:

z76 =
(

φX5,X4∨φX5,X6

)

∧
(

φX6,X4∨φX6,X6

)

∧
(

φX6,X4∨φX5,X4

)

∧
(

φX6,X6∨φX5,X6

)

.

The first conjunct describes possible matchings for X7
a−→ X5, by X6

a−→ X4 or
X6

a−→ X6; the second conjunct describes possible matchings for X7
a−→ X6, etc.

Note for instance that φX5,X4 = z54. Furthermore φX6,X6 = true as BX6,X6 = ∅;
and φX5,X6 = false as |X5| �= |X6|. After simplification we derive: z76 = z54.
Similarly we derive:

z54 = z54 ∧
(

z51 ∨ z31
)

∧
(

z54 ∨ z43
)

∧
(

z31 ∨ z43
)

∧
(

z51 ∨ z54
)

.

The greatest solution of the equation system is {z31, z54, z76, z62, z72}.

Algorithm Normed-BPA-Bisim(Δ, X, Y ); // |X | = |Y |
(1) compute a full base B0; // c.f. Lemma 3
(2) for each (Xj , Xiγ) ∈ B0 and a ∈ Σ do

for each Xj
a−→ β and Xi

a−→ α in Δ do
compute the formula φβ,αγ ;

(3) for each zji = (Xj , Xiγ) ∈ B0 do
construct the boolean expression (1);

// this yields a boolean equation system S

(4) compute the greatest solution B̄ ⊆ B0 of S;
(5) return [(X, Y ) ∈ B̄].
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Lemma 6. The algorithm works in time ˜O(n8).

Proof. Step (1) requires time O(n3), by Lemma 3. The total number of invo-
cations of the procedure computing φβ,αγ in step (2) is O(n2). Hence, step (2)
can be completed in time ˜O(n8), by Lemma 5, and this is dominating the total
cost. The size of the boolean equation system built in step (3) is O(n3): indeed,
the length of each subformula φβ,αγ is O(n), and there is a quadratic number
of such formulas in the right-hand sides of equations. The equation system can
be constructed in time O(n3) and its greatest solution can be computed in the
same time, by Lemma 4. 
�

Lemma 7. The algorithm is correct.

Proof. Correctness follows directly from the equality B∼ = B̄, which is shown
below in two steps.

We show B∼ ⊆ B̄ first. Denote by ψji the right-hand side of equation (1) for
zji = (Xj , Xiγ). B̄, as the greatest solution of the equation system, is the greatest
subset B ⊆ B0 such that zji ∈ B (i.e., vB(zji) = true) implies vB(ψji) = true.
Hence we will only show that zji ∈ B∼ (i.e, Xj ∼ Xiγ) implies vB∼(ψji) = true.

Indeed. If Xj ∼ Xiγ then this pair satisfies expansion in ∼. Consider any pair
β ∼ αγ relevant for the expansion, with Xj

a−→ β and Xi
a−→ α for some a.

By point (ii) in Definition 5 we know that all d-pairs appearing in the matching
formula φβ,αγ are bisimilar. As this applies to any pair β ∼ αγ, the right-hand
side formula ψji is true under valuation vB∼ , as required.

Now we will prove B̄ ⊆ B∼. Consider any solution B of the equation system
and any d-pair zji = (Xj , Xiγ) ∈ B. Thus the right-hand side ψji evaluates to
true under valuation vB . Consider any matching formula φβ,αγ appearing in
ψji. If it is true under valuation vB then Bβ,αγ ⊆ B and hence β =B αγ, by
point (i) in Definition 5. Hence, by the very construction of ψji on top of the
matching formulas φβ,αγ it follows that (Xj , Xiγ) satisfies expansion in =B.

But =B is clearly contained in
B≡, the smallest congruence containing B. As

the d-pair z was chosen arbitrarily, we have shown that B satisfies expansion

in
B≡, i.e., B is a so called Caucal base, or self-bisimulation [4]. By a standard

argument
B≡⊆∼, and hence B ⊆ B∼. As all this was said for an arbitrary solution,

in particular B̄ ⊆ B∼ as required. 
�

4 Computing a Matching Sub-base

This section contains the construction of sub-bases Bα,β and the proof of Lemma 5.
To this aim we need to refine the concept of base a little bit further.

Definition 6. Aproductionisanypair(Xi, γ),writtenXi → γ,suchthat |Xi| = |γ|
and γ ∈ {X1, . . . , Xi−1}+. A decomposition grammar
(d-grammar) G is any set of productions Xi → γ, at most one for each variable Xi.

Let V(G) denote the set of all Xi such that (Xi → γ) ∈ G for some γ. Variables in
V(G) and V \ V(G) are called nonterminal and terminal symbols, respectively.
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Each nonterminal Xi has precisely one production, hence generates a single
nonempty word G(Xi) ∈ (V \ V(G))+. We extend this to words α ∈ V∗ in the
obvious way and write G(α) for the single word in (V \ V(G))∗ generated from
α. A d-grammar G induces an equivalence =G over V∗: α =G β iff α and β
generate the same word, i.e., G(α) = G(β).

Assume |α| = |β| hence |G(α)| = |G(β)|. One of G(α), G(β) can not be a
proper prefix of the other. Hence, if α �=G β, the words G(α) and G(β) must
have the left-most mismatching pair of variables. Formally: there is some i, j, γ
such that i �= j, γXi is a prefix of G(α) and γXj is a prefix of G(β). W.l.o.g.
assume i < j. The pair (Xj , Xi) is called the first mismatch-pair of α and β
wrt. G and denoted by First-MP(α, β, G). If |α| = |β| and α =G β, we put
First-MP(α, β, G) = nil. We define First Mismatch Problem:

Input: A d-grammar G and two processes α, β ∈ V∗ of equal norm.
Output: First-MP(α, β, G).

Lemma 8. First Mismatch Problem can be solved in time ˜O(n5), if the
lengths of α, β and all productions Xi → γ in G are in O(n).

Section 5 is devoted to the proof of this lemma. In the rest of this section
Lemma 8 will be used to prove Lemma 5.

Computation of Bα,β; // |α| = |β|
G := ∅;
while First-MP(α, β, G) �= nil do

(Xj , Xi) := First-MP(α, β, G);
// let γ be the unique process such that (Xj , Xiγ) ∈ B0

G := G ∪ {Xj → Xiγ};
Bα,β := G.

Note that G is always a d-grammar in the course of the computation, as whenever
a production Xj → Xiγ is added to G, Xj has no production yet in G.

For instance, for B0 and the two processes considered in Example 1 we obtain
BAEBBBD,BBCCDA = {(A, BBD), (C, DE), (B, DED)}.

Proof (of Lemma 5). The computation of Bα,β needs O(n) calls to First Mis-

match Problem, hence it completes in ˜O(n6) time.
Now we will show that Bα,β is a matching sub-base for α, β, in the sense of

Definition 5. By the very construction, Bα,β is an inclusion-minimal d-grammar
with α =Bα,β

β. Furthermore, clearly Bα,β ⊆ B0. Hence, the equivalence =Bα,β

induced by Bα,β as a d-grammar is a special case of the relation =B induced by
a sub-base B ⊆ B0, cf. Definition 4. This completes the proof of condition (i) in
Definition 5.
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For condition (ii), assume α ∼ β. We will show that Bα,β ⊆ B∼. It is sufficient
to prove that each production Xj → Xiγ added to G in the course of the
computation satisfies Xj ∼ Xiγ.

Assume therefore G ⊆ B∼ (this implies G(α) ∼ G(β)) and G(α) �= G(β). We
need to consider the first mismatch-pair of α and β wrt. G, say (Xj , Xi). By
Lemma 2 we can ignore the matching prefixes of G(α) and G(β), and then by
Lemma 1 applied to α = Xj and β = Xi, we conclude that for some γ′ it holds
Xj ∼ Xiγ

′. Let γ be the unique process for which (Xj , Xiγ) ∈ B0. As B0 is full,
it satisfies γ ∼ γ′. As a consequence, Xj ∼ Xiγ as required. 
�

5 Algorithm for the First Mismatch Problem

Let G be a given d-grammar. We start with the problem of equality-testing:
for two nonterminals S1, S2 test if they generate the same string. We identify
informally the names of nonterminals with their values, so it can be written as
S1 = S2 instead of S1 =G S2.

If A → A1A2 . . . Ar, then by cut-points, or decomposition points, we mean
the positions |A1|, |A1| + |A2|, . . . , |A1| + |A2| + |A3| + . . . |Ar−1|, see Figure 1.

i B

5A4A

k

3AA1

A

A2

Fig. 1. Assume there is a production A → A1A2 . . .. In this case i = |A1|+ |A2|+ |A3|
is the third cut-point of A (black circle) and k is the distance between the possible
occurrence of B and the beginning of A. Validity of the overlap item (A, B, i, k) is
equivalent to B = A[k + 1 . . . k + |B|].

An overlap item is a 4-tuple (A, B, i, k) such that i is a decomposition point
of A and k is a beginning position of a potential occurrence of B in A which
overlaps i, see Figure 1. Overlapping means that the occurrence of B is touching
the point i, i.e., k ≤ i ≤ k + |B| ≤ |A|. This overlap item is said to be valid iff
B = A[k + 1 . . . k + |B|].

The equality of two nonterminals S1, S2 is equivalent to the overlap item
α0 = (S1, S2, F irstDecPoint(S1), 0), where FirstDecPoint(S1) denotes the
first decomposition point of S1. Let us fix in this section S1, S2 and α0.

We say that a set of items Γ = {γ1, γ2, . . . , γp} covers an item β iff

[ α0 =⇒ ( γ1 & γ2 & . . . & γp) ] and [ ( γ1 & γ2 & . . . & γp ) =⇒ β ].
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Observe that if Γ covers α0 then equality of S1 = S2 is equivalent to validity
of all items in Γ .

Recall that nonterminals are ordered with respect to the increasing norms of
their values. If D is a set of items then DeleteLexMax(D) returns lexicograph-
ically maximal element of D and removes it from D. An item is atomic iff the
nonterminals occurring in this item generate only terminal symbols. We can test
validity of each individual atomic item in constant time.
We describe the basic functions in the equality testing.

The function SubtleInsert(β, D) inserts β into D in ˜O(n) time. For every
nonterminal B and every cut-point of A we keep only at most three occurrences
of B overlapping A on this cut-point. Correctness follows from the fact that the
set of occurrence of the same string overlapping a given cut-point is a single
arithmetic progression. The function SubtleInsert inserts only if it is necessary,
and if it inserts β and there are already three occurrences overlapping the same
cut-point then one of them is removed.

Next we describe how to implement the function GENERATE. Let α be a
non-atomic item. GENERATE(α) is a set of items satisfying the following prop-
erty: (1) it is of size O(n); (2) it contains only items lexicographically smaller
than α; (3) it covers α.

function EqTest(S1, S2); // |S1| = |S2|
for each production do

sort the set of its cut-points;
α0 := (S1, S2, F irstDecPoint(S1), 0); D := {α0};

while D contains a non-atomic item do
α := DeleteLexMax(D);
for each β ∈ GENERATE(α) SubtleInsert(β, D);

Comment: D covers α0 and consists only of atomic items;

return [(∀ α ∈ D) valid(α)]

Lemma 9. Let α = (A, B, i, k). We can compute GENERATE(α) satisfying
the conditions (1-3) above in ˜O(n) time.

Proof. In the proof we use temporarily other type of items: an internal item is
a triple (X, Y, t), where t is a potential occurrence of B in A, not necessarily
overlapping a cut-point of A. Assume α = (A, B, i, k), and there is a pro-
duction B → B1B2 . . . Br. We can locate each of Bi in A and we have a set
of internal items (A, B1, k), (A, B2, k + i1), . . . (A, Br, k + i1 + . . . + ir−1). We
can design a subroutine overlapify(A, Bp, k + i1 + . . . + ip−1), this subroutine
finds an overlap item which covers this internal item. It is possible to design
such a subroutine overlapify which, applied to all internal items, finds together
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in ˜O(n) time the set of overlap items covering them. Consequently it finds a
set of smaller overlap items covering (A, B, i, k). The leftmost and rightmost
internal item is overlapified in ˜O(n) time, all others are processed in logarith-
mic time, using the sorted order of cut-points and a kind of binary search. This
set of overlap items is returned by the function GENERATE. Figure 2 shows
how the overlap item (A, B, ∗, ∗) is decomposed into the set of internal items
(A, B1, ∗), (A, B2, ∗), . . . (A, B6, ∗). The leftmost and rightmost internal items
are covered by finding the lowest common ancestors (denoted by X, U in Fig-
ure 2) of the endpoints of B1 and B6. This takes O(n) time. All other internal
items are covered in logarithmic time, after merging cut-points of B and the set
S (illustrated as small darkened circles in Figure 2) of decomposition points of
nonterminals branching from the paths from the root to the nodes X, U . It is
crucial that after sorting cut-points for each nonterminal we can preprocess S
in such a way that binary searching (because S will be sorted) can be done in
logarithmic time. The set S is of size O(n2) but it consists of O(n) groups of
cut-points of nonterminals on the branches from A to X or U . Each group is
sorted. Also the beginning and ending positions (O(n) together) of these groups
can be first sorted. We omit the details.

X

Y

Z
U

B2 B3 B4 B5 B6B1

A

B

Fig. 2. (A,B1, ∗) is covered by (X, B1, ∗, ∗), (A, B4, ∗) is covered by (B, Z, ∗, ∗) and
(A,B3, ∗) is covered by (Y, B3, ∗, ∗), the ∗’s denote corresponding positions in the
items. The set S consists of small darkened circles.

Proof (of Lemma 8). First we analyse the function GENERATE. The total num-
ber of overlap items is O(n3), we process each item only once with the function
GENERATE, it takes ˜O(n) time per single item, according to Lemma 9. Alto-
gether the complexity of equality test is ˜O(n4).

Now we can find the first mismatch using the algorithm for equality testing
and a kind of binary search. We need at most O(n) instances of equality testing,
since the depth of the grammar is O(n). Hence the overall time is ˜O(n5).
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6 Equivalence of Simple Grammars

The class of simple grammar is the largest class of context-free grammars for
which equivalence problem can be tested in deterministic polynomial time. This
is nontrivial since inclusion problem for this class of grammars is undecidable. A
simple grammar is a context-free grammar in Greibach normal form, such that
whenever A → a α and A → a β then α = β. The main component in the ˜O(n7)
time algorithm of [2] is the computation of the first mismatch problem in ˜O(n6)
time. As we improved this to ˜O(n5) we have immediately the following result.

Theorem 2. Equivalence of simple grammars can be tested in ˜O(n6) time.
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