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Abstract

We investigate the simulation preorder between finite-state systems and a simple
subclass of Petri nets, communication-free nets (known also as BPP-nets). We
show EXPSPACE lower bounds for the simulation problems, in both directions,
as well as for the simulation equivalence. Our results improve previous PSPACE
and co-NP lower bounds, given by Kucera and Mayr in [5]. This paper is a
revised and improved version of [8].
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Fix a finite labeling set Act. A transition system A is determined by a
(possibly infinite) set of states .S, an initial state sin;x € S, and a family of
binary transition relations —— over states, one for each a € Act. We define the
simulation preorder in the standard way. Given two transition systems A and
B, consider a relation R between states of A and states of B such that for any
(q4,q8) € R, any a € Act, and any state ¢4 of A, with g4 —— ¢'4, there is g}
such that gg — ¢} in B and (¢/y,q}) € R. Each such R is called a simulation
relation between A and B. We write A < B if the initial states are related by
some simulation relation; equivalently, we could require that the initial states
are related by the greatest simulation relation. We write A ~ B, and say that
A and B are simulation equivalent, if A < B and B < A.

We investigate in this paper certain variants of the simulation problems
between a finite-state system on one side, and a Petri net on the other, in both
directions:

Problem: FS < PN (PN < FS, respectively)
INSTANCE: a finite-state transition system A and a labelled Petri net N’
QUESTION: AN (N < A, respectively) ?
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It is known that both problems FS < PN and PN < FS are decidable [3] and
EPXSPACE-hard (e.g., the first one is a generalization of the non-termination
of Petri nets).

A special case of FS < PN (PN < FS) is obtained by restricting the net A
to be a BPP-net, i.e., a net with each transition having precisely one incoming
arc. These restricted problems we call FS < BPP and BPP < FS, respectively.

A labeled BPP-net is given by a finite number of control states qi,...,qn
(with a distinguished initial one) and a finite number of transition rules of the
following form:

a
G — iy -+ i (1)

for arbitrary k > 0. The meaning is that in ¢;, an a-labeled transition is possible,
spawning k independent systems in control states ¢;,, ..., ¢, . Formally, a BPP-
net induces an infinite-state transition system, whose states are finite nultisets
qi"t ... g of control states (m;...my > 0), and transitions are induced by
transition rules. A rule (1) induces a transition

l
g g g gl
ifm; > 0and (Iy,...,1,) is obtained from (my, ..., m,) by decrementing m;, and
incrementing m;,, ..., m;,. Note that BPP-nets do not exhibit synchronization.

In [5] it was shown that FS < BPP is PSPACE-hard and BPP < FS is co-NP-
hard. We investigate in this paper some further simplifications of the latter two
problems.

The asynchronous product of two transition systems A and B, denoted AR B,
has as states pairs (g4, qs) where g4 is a state of A and ¢g a state of B. The
initial state is a pair of initial states. There is a transition (g4, ¢5) — (ds, a5)
if either g4 — ¢'4 in A and g = g5, or g — ¢ in B and ¢4 = qa.

For a finite-state system A, with state-space S and initial state sinis, by A!
we mean the infinite asynchronous product. Its states are all infinite sequences
of states from S. There is a transition (s;)ic, — (8))i<w in Al if 5, = s/
in A for some i, and s’ = s; for all j # i. The initial state of A! is given by
8i = Sinit, for all i < w. Equivalently, A! may be understood as the smallest
solution of the equation A! = A!'® A.

Two core problems investigated in this paper are the following:

Problem: FS < FS! (FS! < FS, respectively)

INSTANCE: finite-state transition systems A, B

QUESTION: A < B! (B! 5 A, respectively) ?
It is easy to see that FS < BPP and BPP < FS subsume FS < FS! and FS! < FS,
respectively, as one may easily describe, using a BPP-net, the behavior of B!. It

is sufficient to replace each transition giniz — ¢ of B, outgoing from its initial
state ¢init, by a BPP-transition:

a
Ginit — ¢ {init-



In this way, intuitively, whenever a transition leaves ¢init, & fresh copy of B is
spawn, in state ginijz- All the other transitions in B remain unchanged.

Therefore any lower bound for the two core problems applies immediately
to the more general problems as well. Our main results are:

Theorem 1. FS < FS! is EXPSPACE-hard.

Theorem 2. FS! X FS is EXPSPACE-hard, even if both given finite-state sys-
tems are deterministic.

Our results are an improvement of the lower bounds for FS < BPP and
BPP < FS given in [5]:

Corollary 1. FS < BPP, BPP < FS and FS >~ BPP are EXPSPACE-hard.

Furthermore, we show that our core problems are in fact as hard as FS < BPP
and BPP < FS:

Theorem 3. There are polynomial-time reductions of FS < BPP and BPP < FS
to FS < FS! and FS! X FS, respectively.

A trace of A is any finite sequence aj ...a, € Act* such that there is a
sequence of transitions Sipit A S1... An, sp in A, for some states s1,..., 5.
The trace inclusion A C B holds if any trace of A is also a trace of B. In general
the trace inclusion is strictly coarser than the simulation preorder. However,
they collapse when the “bigger” system is deterministic. Hence by Theorem 2
we get:

Corollary 2. Deciding whether B! T A is EXPSPACE-hard, for any relation
C which lies between the simulation preorder < and the trace inclusion C.

In Sections 1— 3 we present the proofs of Theorems 1-3. Theorems 1 and 2
are shown by reduction from two EXPSPACE-complete questions concerning
Petri nets: non-termination and place-markability (or control-state reachabil-
ity), respectively. We prefer to work with nondeterministic counter machines
without zero-tests, purely for technical convenience. Our crucial observation
is that it is possible to separate the control states of a machine (described by
A, say) from its counters (described by B!) in such a way that existence of a
simulation between A and B! (or between B! and A) corresponds faithfully to
an answer to the above-mentioned EXPSPACE-complete questions. In this re-
spect our approach is slightly related to those used in [1] and [10], to obtain
the lower bound for LTL model-checking of BPP-nets, and for the simulation
of a finite-state system by a product of such systems, respectively. However our
technique is different from those used in the cited papers.



Related research. No upper bound, except for decidability, is known for the
complexity of the simulation or trace inclusion between a finite-state system
and a Petri net (or a BPP-net), in whatever direction. Decidability was shown
in [3].

To our knowledge, the complexity of the core problems themselves was not
studied before. Related problems are the simulation and trace pre-order between
a given finite-state system A and a composition of given finite-states systems
Bl e Bnl

INSTANCE: finite state transition systems A, By, ..., B,
QUESTION 1: AXB1®...08,7
QUESTION 2: B1®...08B, < A7
QUESTION 3: B1®...08B, CA?

Questions 1 and 2 are trivially in EXPTIME; the EXPTIME lower bound
for Question 1 was shown in [10]. Question 3 is trivially PSPACE-hard; the
PSPACE-algorithm was given in [16] basing on an earlier insight of [14]. Ques-
tion 2 may be thus answered in PSPACE, when A is assumed to be deterministic,
but the exact complexity of the general case is not known '. Our core problems
may be readily seen as infinitary versions of questions 1 and 2. E.g., A < B!,
for B =B+ ...+ B, the nondeterministic choice of By, ..., B,, is the same as
A B!®...®B,!. It is however not clear whether the core problems subsume
the above-mentioned questions. On the other hand, FS < BPP and BPP < FS
certainly do subsume questions 1 and 2.

The EXPTIME lower bound was shown for certain variants of questions 1
and 2, where both sides are a composition of finite-state systems which moreover
synchronize on certain actions [7], and hiding operator is allowed [13]. In [11] the
EXPSPACE lower bound was given for the latter variant of trace equivalence.

As usually, the bisimulation equivalence is more tractable than the simula-
tion equivalence (preorder). For instance, the bisimulation equivalence between
a finite-state system and a BPP-net is in PTIME [4].

Game-theoretic characterization. A simulation relation witnessing A < B may
be seen as a winning strategy of Duplicator in the simulation game over A and
B. The game is played by two players, Spoiler and Duplicator, and proceeds in
rounds. The first round starts in the configuration (g4, ¢s) consisting of initial
states of A and B, respectively. Each round consists of one Spoiler’s move,
followed by one Duplicator’s move. Spoiler chooses a label a € Act and a state
¢’y in A such that gu N ¢’4- Then, Duplicator answers by choosing a state
qp in B such that gz = qg in B. Afterwards, the next round continues from
the new configuration (¢/4,¢z). One of the players wins, if a configuration is
reached such that the other player has no possible move. Otherwise, the play

LQur preliminary research on this problem leads to the EXPTIME lower bound. Thus,
surprisingly, simulation preorder is computationally harder than the trace inclusion.



is infinite — in this case Duplicator wins unconditionally. A < B if and only if
Duplicator has a winning strategy in the simulation game over A and B5.

1. EXPSPACE lower bound for FS < FS!

We provide a reduction from non-termination problem for nondeterministic
counter machines without zero-tests. Instead, one could equivalently consider
Petri nets, or vector addition systems with states. EXPSPACE-hardness of non-
termination follows from [9]; it is EXPSPACE-complete [12]. The intuition is
that the protocol between Spoiler and Duplicator during the simulation game
enables them to imitate jointly a computation of a given counter machine.

A counter machine without zero-tests has a set of states @, a distinguished
initial state giniz € @, a set of counters C = {¢1,...,ck}, and a finite set of
increment or decrement transitions of the following form:

in state ¢, increment (decrement) ¢; and go to state ¢’.

A counter can always be incremented, but can only be decremented if it is
greater than zero. A computation of M is a (finite or infinite) sequence of
states ¢; and counter valuations v; : C' — N

(qo,Uo) (Q1av1) (qQ,UQ)

consistent with transitions of M. We assume that M starts in g¢iniy, with all
counters set to 0: go = ginit, vo(c;) = 0 for ¢ < k. We say that M terminates if
all computations of M are finite.

Assume, wlog, that each state of M has precisely two outgoing transitions.
(If there is only one, add a duplicate identical transition. If there are more
than two, organize them into a binary tree, and use increments of an additional
artificial counter on the branches. If there is no transition, add two decrementing
self-loops. Note that this construction does not affect termination.)

We describe now a construction that, for a given machine M, yields two
finite-state systems A, B such that M does not terminate if and only if A < B!
During the simulation game, A will keep track of the actual control state of M
while the values of counters will be stored in B!.

Let ¢ be an arbitrary state of M. To simplify the presentation assume that
the two transitions from ¢ are the following: increment ¢; and go to state ¢i;
decrement c; and go to ¢o (all other possibilities, i.e., two increments or two
decrements, are dealt with in exactly the same way).

A will contain the transitions drawn on the left-hand side below, while the
B system will contain the transitions drawn on the right-hand side:



inc;
s
< )choice

dec;
—()

As a whole, A will contain such transitions for each state q. Hence states of
A will include the states of M, and additional three temporary states for each
state ¢ of M. The initial state is giqi¢.

> stands for the whole alphabet hence the state of B with the X-loop is
unconditionally winning for Duplicator. The Spoiler plays first with the choice-
move, but the actual choice between transition 1 and 2 is done as a response of
Duplicator. Then in his second move, Spoiler has to respect the Duplicator’s
choice, otherwise he loses.? Finally, in the third step, Spoiler checks whether
the transition of M chosen by Duplicator is doable (this is relevant only in case
of decrement, as increments are always doable). To answer this moves, in the B
system there is also a small component for each counter ¢;:

inc;

To make all the right-hand side components into a single finite-state B, we
simply collapse state ch and states zeroq,...,zero; into one initial state ch.
It is irrelevant which copy of B will be used by Duplicator to decide between 1
and 2. The very construction of A guarantees that in each position in the game,
at most one copy of B is in ch; or chs state, as each Spoiler’s choice move is

2This construction in an adaptation of the “Duplicator’s choice” technique of [2, 15]. While
mostly used in the context of bisimulation, it was also applied for the simulation equivalence
in [6].



immediately followed by his 1 or 2 move. The whole B system will look like:

@)

2

choice

O

choice b}
1

decy, //
/ / :: :
// incy

The states of B are {ch, chy, cha} U {one;};—1.. x U {the loop state}. The initial
state is ch. ¥ = {choice, 1,2} U {inc;,dec;};=1.. k. As explained above, pre-
cisely one of copies of B will be used for making choices by Duplicator at each
stage of the game; all the other copies will only be used to store the values of
the counters.

We have: M does not terminate iff Duplicator wins, i.e., iff A < B!.

Indeed, if M has an infinite computation, Duplicator’s strategy is to follow
precisely this computation. If Spoiler does not respect a Duplicator choice
between 1 and 2, it is immediately punished by Duplicator in B by going to
the loop state. Otherwise, assume that all computations of M are finite. Even
if Spoiler has no actual initiative in the game, it is guaranteed that after a
finite number of steps of M no further transition is doable. This means that
Duplicator has no response to Spoiler’s check (note that this can only take place
in case of decrement). This completes the proof.

2. EXPSPACE lower bound for FS! < FS

We will give a reduction from the control state reachability of a nondeter-
ministic counter machine without zero-tests (this is equivalent to markability
of a given place of a Petri net, an EXPSPACE-complete problem [9, 12]). As
before we assume that in each state of M there are precisely two transitions, ex-
cept for the distinguished state gy, from which there are no outgoing transitions
(hence M always stops when it enters gy). Observe that the transformation
sketched in the previous section, applied to all states except for gy, does not
affect control-state reachability of g;.

Given such an M, we construct finite-state systems A and B such that M
has a finite computation that ends in gy iff B! £ A.



Now the Spoiler plays in one of the (infinitely many) copies of B and Dupli-
cator responds in A. Let g be an arbitrary state of M different from ¢y, and
let the two transitions from ¢ be the following: increment ¢; and go to state ¢1;
decrement ¢; and go to ¢o (again, the other cases are dealt analogously). A will
contain the following transitions:

E\{inc; } inc;
C—

~ $\{1,2}
x

(@)
3\ {dec;} dec;

Thus states of A include the states of M, an additional ¥-loop state, and two
temporary states for each state of M, except for q;. Similarly as before, gini¢
will be the initial state in A. Finally, there is no transition from ¢y in A.

The B system will contain the following transitions:

\

\
\

\ inc;

deco \decl
inco
decy

incy

Thus each copy of B either remembers a single increment of a counter, or is
used to choose between 1 and 2 — it is irrelevant in which copy Spoiler performs
this choice. The initial state of B is ch. ¥ = {1,2} U {inc;,dec;}. A is
constructed so that at each stage of the game, Duplicator narrows down the
possible Spoiler moves. Spoiler may either choose between 1 or 2 only, which
corresponds to a choice of the next transition of M to be executed; or may
execute the appropriate single counter operation. As long as Spoiler correctly
follows a run of M in that way, Duplicator can only stay passive. Hence, if ¢; is
reachable by a finite computation, this computation may be used as a Spoiler’s
winning strategy. If g is not reachable, no matter what computation is chosen



by Spoiler, finite or infinite, the computation chosen never reaches ¢, and hence
Duplicator wins.

Remark 1. Both A and B in the above reduction are deterministic. Since
A is deterministic, all relations between the simulation preorder and the trace
inclusion collapse, and therefore the hardness result applies to all such relations.

3. Reductions of FS < BPP and BPP < FS

TODO ...
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