Efficient seeding techniques for
protein similarity search

Mikhail Roytberg!, Anna Gambin?, Laurent Noé?, Stawomir Lasota?,
Eugenia Furletova®, Ewa Szczurek?*, and Gregory Kucherov?

! Institute of Mathematical Problems in Biology, Pushchino, Moscow Region,
142290, Russia, mroytberg@mail.ru,furletova@impb.psn.ru
2 Institute of Informatics, Warsaw University, Banacha 2, 02-097, Poland,
{aniag|S.Lasota}@mimuw.edu.pl
3 LIFL/CNRS/INRIA, Bat. M3, Campus Scientifique, 59655 Villeneuve d’Ascq
Cédex, France, {Gregory.Kucherov|Laurent.Noe}@lifl.fr
4 Max Planck Institute for Molecular Genetics, Computational Molecular Biology,
Thnestr. 73, 14195 Berlin, Germany, ewa.szczurek@molgen.mpg.de

Abstract. We apply the concept of subset seeds proposed in [1] to sim-
ilarity search in protein sequences. The main question studied is the
design of efficient seed alphabets to construct seeds with optimal sensi-
tivity /selectivity trade-offs. We propose several different design methods
and use them to construct several alphabets. We then perform an analysis
of seeds built over those alphabet and compare them with the standard
BLASTP seeding method [2,3], as well as with the family of vector seeds
proposed in [4]. While the formalism of subset seed is less expressive
(but less costly to implement) than the accumulative principle used in
BLASTP and vector seeds, our seeds show a similar or even better per-
formance than BLASTP on Bernoulli models of proteins compatible with
the common BLOSUMG62 matrix.

1 Introduction

Similarity search in protein sequences is probably the most classical bioinfor-
matics problem, and a commonly used algorithmic solution is implemented in
the ubiquitous BLAST software [2,3]. On the other hand, similarity search al-
gorithms for nucleotide sequences (DNA, RNA) underwent several years ago a
significant improvement due to the idea of spaced seeds and its various general-
izations [5,6,7,8,9,10,11]. This development, however, has little affected protein
sequence comparison, although improving the speed/precision trade-off for pro-
tein search would be of great value for numerous bioinformatics projects. Due
to a bigger alphabet size, protein seeds are much shorter (typically 2-5 letters
instead of 10-20 letters in the DNA case) and also letter identity is much less rel-
evant in defining hits than in the DNA case. For these reasons, the spaced seeds
technique might seem not to apply directly to protein sequence comparison.
Recall that BLAST applies quite different approaches to protein and DNA
sequences to define a hit. In the DNA case, a hit is defined as a short pattern

2 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

of identically matching nucleotides whereas in the protein case, a hit is defined
through an accumulative contribution of a few amino acid matches (not necessar-
ily identities) using a given scoring matriz. Defining a hit through an additive
contribution of several positions is captured by a general formalism of wvector
seeds proposed in [7]. On the other hand, it has been understood [6,12,13,14,15]
that using simultaneously a family of seeds instead of a single seed can further
improve the sensitivity/selectivity ratio. Papers [4,16] both propose solutions
using a family of vector seeds to surpass the performance of BLAST.

However, using the principle of accumulative score over several adjacent po-
sitions has an algorithmic cost. Defining a hit through a pattern of exact letter
matches allows for a direct hashing scheme, where each key of the query sequence
is associated with a unique hash table entry storing positions of the subject se-
quence (database) where the key can hit. On the other hand, defining a hit
through an accumulative contribution of several positions leads to an additional
pre-computed table storing, for each key, its neighborhood i.e., the list of subject
keys (or corresponding hash table entries) with which it can form a hit. For ex-
ample, in a standard BLASTP setting (Blosum62 scoring matrix with threshold
11 for accumulative score of 3 contiguous positions) a 3-letter key hits on average
19.34 distinct keys, i.e. requires that many accesses to the hash table. For the
family of vector seeds from [4] with an equivalent selectivity level (score 18), a
(here 4-letter) key hits on average 15.99 keys. For some applications, for example
in setting large-scale protein comparisons on a specialized computer architecture
(see e.g. [17]) one might need to minimize the number of hash table accesses,
and therefore to use another seeding formalism.

In [1], we proposed a new concept of subset seeds that can be viewed as an
intermediate between ordinary spaced seeds and vector seeds: subset seeds al-
low one to distinguish between different types of mismatches (or matches) but
still treat seed positions independently rather than cumulatively. Distinguish-
ing different mismatches is not done by scoring them, but by extending the
seed alphabet such that each seed letter specifies different sets of mismatches.
For example, in the DNA case it is beneficial to distinguish between transition
mutations (A < G, C « T) and others (transversions) [18].

Since the protein alphabet is much larger than the one of DNA, subset seeds
provide a very attractive seeding option for protein alignment. The present study
is then motivated by following general questions: how far can we go with subset
seeds applied to protein sequences? Can we reach the performance of BLAST
seeds? the one of vector seeds? or maybe even outperform them? ...

In the paradigm of subset seeds, each seed letter specifies a set of amino acid
pairs matched by this letter. Therefore, a crucial question is the design of an
appropriate seed alphabet, which is one of the main problems we study in this
paper. In Section 2, we introduce some probabilistic notions we need to reason
about seed efficiency. Section 3 introduces the first simple approach to design a
seed alphabet, which, however, does not lead to so-called transitive seeds, useful
in practice. Section 4 presents three different approaches to designing transitive
seed alphabets, based on a pre-defined (Section 4.1) or newly designed (Sec-

subset seeds for protein similarity search 3

tion 4.2) hierarchical clustering of amino acids, as well as on a non-hierarchical
clustering (Section 4.3). Section 5 describes comparative experiments made with
the designed seeds on probabilistic models.

2 Preliminaries

Throughout the paper, ¥ = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} de-
notes the alphabet of amino acids.

In most general terms, a (subset) seed letter o is defined as any symmetric
and reflexive binary relation on X. Let B be a seed alphabet, i.e. a collection
of subset seed letters. Then a subset seed m = ...y is a word over B. 7
defines a symmetric and reflexive binary relation on words of X* (called keys):
for 51,89 € Xk, 81~y 59 iff Vi € [1..k], we have (s1]i], s2[i]) € .

For practical reasons, we would like seed letters to define a transitive rela-
tion, in addition. This induces an equivalence relation on keys, which is very
convenient and allows for an efficient indexing scheme (see Introduction). In
this paper, we will be mainly interested in transitive seed letters, but we will
also study the non-transitive case in order to see how restrictive the transitivity
condition is.

The quality of a seed letter or of a seed is characterized by two main pa-
rameters: sensitivity and selectivity. They are defined through background and
foreground probabilistic models of protein alignments. Foreground probabilities
are assumed to represent the distribution of amino acids matches in proteins of
interest, when two homologous proteins are aligned together. Background prob-
abilities, on the other hand, represent the distribution of amino acid matches in
random alignments, when two proteins are randomly aligned together.

In this paper, we restrict ourselves to Bernoulli models of proteins and protein
alignments, although some of the results we will present can be extended to
Markov models.

Assume that we are given background probabilities {b1,...,bo} of amino
acids in protein sequences under interest. The background probability of a seed
letter o is defined by b(ar) =3, ..)eq bibj- The selectivity of a is 1 — b(a) and
the weight of « is defined by

log b(«)
w(a) = ———, 1
)= ogb(#) W
where # = {(a,a)|a € X'} is the “identity” seed letter. For a seed m = a1 . .. o,

the background probability of 7 is b(7) = Hle b(a;), the selectivity of 7 is

1 —b(m) and the weight of 7 is w(m) = logyx) b(m) = Zle w(c;). Note that the
weight here generalizes the weight of of classical spaced seeds [19] defined as the
number of “identity” letters it contains.

Let fi; be the probability to see a pair (a;,a;) aligned in a target alignment.
The foreground probability of a seed letter « is defined by f(«a) = Z(ai’aj)ea fij-
The sensitivity of a seed 7 is defined as the probability to hit a random target

4 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

alignment®. Assume that target alignments are specified by a length N. Then
the sensitivity of a seed m = a ... ay is the probability that a randomly drawn
gapless alignment (i.e. string of pairs (a;,a;)) of length N contains a fragment
of length k& which is matched by 7. In [1] we proposed a general algorithm to
efficiently compute the seed sensitivity for a broad class of target alignment
models. This algorithm will be used in the experimental part of this work.

The general problem of seed design is to obtain seeds with good sensitiv-
ity /selectivity trade-off. Even within a fixed seed formalism, the quality of a
seed is dependent on the chosen selectivity value. This is why we will always be
interested in computing efficient seeds for a large range of selectivity levels.

3 Dominating seed letters

Our main question is how to choose seed letters that form good seeds? Intuitively,
“good letters” are those that best distinguish foreground and background letter
alignments.

For each letter «, consider its foreground and background probabilities f(«)
and b(«) respectively. Intuitively, we would like to have letters a with large f(«)
and small b(«). A letter « is said to dominate a letter 8 if f(a) > f(8) and
b(a) < b(B). Observe that in this case, § can be removed from consideration, as
it can be always advantageously replaced by «.

Consider all amino acid pairs (a;,a;) ordered by descending likelihood ra-
tio fi;/bib;. Consider the set of pairs (a;,a;) such that f;;/b;b; > s for some
threshold value s. Then one can show that this set forms a letter that cannot be
dominated by any other letter® (proof omitted). This observation leads to defin-
ing seed letters that consist of those pairs (a;,a;) for which the ratio f;;/b;b; is
above a given threshold.

Resulting alphabet We computed the likelihood ratio for all amino acid pairs,
based on practical values of background and foreground probabilities computed
in accordance with the BLOSUMG62 matrix (see Section 5.1). Not surprisingly,
amino acid identities (pairs (a,a)) have highest likelihood scores varying from
38.11 for tryptophan down to 3.69 for valine. Among distinct pairs, only 25 have
a score greater than 1 (Figure 1). A quick analysis shows that those do not form
transitive relations, and therefore do not verify the transitivity requirement. The
alphabet containing those 25 pairs is denoted Non-transitive. It will be used in
the experimental part of the paper (Section 5) in order to study how restrictive

5 Note that our definitions of sensitivity and selectivity are not symmetric: sensitivity
is defined with respect to the entire alignment and selectivity with respect to a
single alignment position. These definitions capture better the intended parameters
we want to measure. However, selectivity could also be defined with respect to the
entire alignment. We could suggest the term specificity for this latter definition.

5 It is interesting to point out the relationship to the well-known Neyman-Pearson
lemma which is a more general formulation of this statement.

subset seeds for protein similarity search 5

Fig. 1. Alphabet Non-transitive: amino acid pairs with likelihood ratio > 1

is the requirement of transitive letters, i.e. how much better are general seeds
than those obtained with the restriction of transitivity.

4 Transitive seed alphabets

In the case of transitive seed alphabets, every letter o € B is a partition of the
amino acid alphabet Y. In other words, the binary relation associated with each
letter (cf Section 2) is an equivalence relation. Transitive alphabets represent the
practical case when each amino acid is uniquely mapped to its equivalence class.
This, in turn, allows for an efficient hashing scheme during the stage of seed
search, when different entries of the hash table index non-intersecting subsets of
keys.

In Sections 4.1,4.2, we explore transitive seed alphabets verifying an addi-
tional condition: for any two seed letters a1, as € B corresponding to partitions
P,,, P,, respectively, one of P,,, P,, is a refinement of the other. Formally, for
any ai,as € B,

either every set o € P,, is a subset of some 0 € P,,, or vice versa. (2)

The purpose of the above requirement is to define seed letters using a bio-
logically significant hierarchical clustering of amino acids represented by a tree.
In Section 4.1, we will use a pre-defined hierarchical clustering to design effi-
cient seed alphabets. Then in Section 4.2, we construct our own clustering based
on appropriate background and foreground models of amino acids distribution.
Finally, in Section 4.3 we lift condition (2) and study “non-hierarchical” seed
alphabets.

4.1 Transitive alphabets based on a pre-defined clustering

Assume we have a biologically significant hierarchical clustering tree which is a
rooted binary tree T with 20 leaves labelled by amino acids. Such trees have been

6 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

proposed in [20,21], based on different similarity relations. The hierarchical tree
derived from [20] is shown on Figure 2. The tree, obtained with a purely bioinfor-

CFYWMLIVGPATSNHQEDRK

J CFYWMLIV ‘ ‘GPATS\IHQEDRK

Fig. 2. Hierarchical tree derived from [20].

matics analysis, groups together amino acids with similar biochemical properties,
such as hydrophobic amino acids L,M,I,V, hydrophobic aromatic amino acids
F,Y,W, alcohols S, T, or charged/polar amino acids E,D,N,Q. A similar grouping
is obtained in [21].

A seed letter is defined here as a subset « of nodes of T such that

(i) « contains all leaves,
(ii) for a node v, if v € «, then all descendants of v belong to « too.

In other words, a seed letter can be thought of as a “horizontal cut” of the tree.
For example, for the tree of Figure 2 there are 1597 different seed letters. Seed
letters are naturally ordered by inclusion. The smallest one is the “identity” seed
letter #, containing only the leaves. The largest one is the “joker” seed letter _,
containing all the nodes of T'. One particular seed letter is obtained by removing
from _ the root node. We denote it by Q.

Observe that each seed letter a represents naturally an equivalence relation
on X' a; and a; are related iff their common ancestor belongs to a. It is identity
relation in case of # and full relation in case of _.

Following condition (2), a hierarchical seed alphabet is a family B of seed
letters such that

for every ai,as € B, either a; C ag or as C ay. (3)

Hence, a seed alphabet is a chain in the inclusion ordering of seed letters. Let
us analyze what are the maximal seed alphabets wrt. inclusion. Clearly each
maximal seed alphabet B always contains the smallest and the largest seed letters
and _. Interestingly, each maximal B contains also @, as @ is comparable (by
inclusion) to any other seed letter.

subset seeds for protein similarity search 7

It can be shown that any maximal seed alphabet contains exactly 20 letters
that can be obtained by a stepwise merging of two subtrees rooted at immediate
descendants of some node v into the subtree rooted at v. Therefore, since a
binary tree with n leaves contains n — 1 internal nodes, a maximal seed alphabet
contains precisely 20 letters and can be specified by a permutation of internal
nodes in tree T.

Resulting alphabet Figure 3 shows alphabet Transitive-predefined de-
signed through the approach of this Section. The alphabet has been designed
from the tree of Figure 2. Each line corresponds to a letter (amino acid parti-
tion). Among the alphabets obtained with different parameter values, alphabet
Transitive-predefined produced better seeds and will be used in the experi-
mental part of this work (Section 5).

{CFYWMLIVGPATSNHQEDRK}
{CFYWMLIV} {GPATSNHQEDRK}
{CFYWMLIV} {GPATS} {NHQEDRK}

{CFYW} {MLIV} {GPATS} {NHQEDRK}

{CFYW} {MLIV} {G} {PATS} {NHQEDRK}

{C} {FYW} {MLIV} {G} {PATS} {NHQEDRK}

{C} {FYW} {MLIV} {G} {P} {ATS} {NHQEDRK}

{C} {FY} {W} {MLIV} {G} {P} {ATS} {NHQEDRK}
{CH{F} {Y} {W} {MLIV} {G} {P} {ATS} {NHQEDRK}
{CY{F} {Y} {W} {MLIV} {G} {P} {A} {TS} {NHQEDRK}
{CY{F} {Y} {W} {MLIV} {G} {P} {A} {T} {S} {NHQEDRK}
{CY{F} {Y} {W} {MLIV} {G} {P} {A} {T} {S} {NHQED} {RK}

{CH{F} {Y} {W} {MLIV} {G} {P} {A} {T} {S} {NHQED} {R} {K}
{CH{F}{Y} {W} {MLIV} {G} {P} {A} {T} {S} {NH} {QED} {R} {K}
{CH{F} {Y} {W} {MLIV} {G} {P} {A} {T} {S} {N} {H} {QED} {R} {K}
{CH{F} (Y} {W} {MLIV} {G} {P} {A} {T} {S} {N} {H} {QE} {D} {R} {K}
{CY{F} {Y} {W} {MLIV} {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}
{CY{F} {Y} {W} {ML} {IV} {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}
{CH{F} {¥Y} {W} {M} {L} {IV} {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}
{CY{F} {Y} {W} {M} {L} {I} {V} {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}

Fig. 3. Alphabet Transitive-predefined designed using the tree of Figure 2. Each
line corresponds to a seed letter (amino acid partition)

4.2 Transitive alphabets using an ab initio clustering method

Hierarchical clustering of amino acids A prerequisite to the approach of
Section 4.1 is a given tree describing a hierarchical clustering of amino acid based
on some similarity measure. In this section, we describe an ab initio approach
that constructs a hierarchical clustering of amino acids from scratch, using a
likelihood measure.

As in Section 4, our goal here is to construct a family of seed letters verifying
(3). This family will be obtained with a simple greedy neighbor-joining clustering
algorithm, starting with the family of twenty amino acid singletons.

We start with the partition of amino acids into 20 singletons. This partition
corresponds to the # letter. For a current partition P = {C1, ..., C,}, iteratively
apply the following procedure.

8 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

1 For each pair of sets Cy, Cy,
1.1 consider the set Bridge(Cy, Cy) = {(ai,a;)|a; € Ci, a; € Cy}.
1.2 compute ForeProb(k,£) = > {fijla; € Cx, a; € C¢}
and BackProb(k,0) = {b;bjla; € Ck, aj € Cy},
1.3 compute L(k,{) = ForeProb(k,()/BackProb(k,()
2 Find the pair of sets (Cy, Cy) yielding the maximal L(k,¢),
3 Merge C) and Cy into a new set, obtaining a new partition.

The rationale behind this simple procedure is that those two sets of amino
acid are merged together which produce the maximal increment in the likelihood
f(a)/b(a). An alternative method, when the likelihood of the whole resulting
set is maximized, yields biased results, as sets with a high likelihood tend to
“absorb” other sets.

Resulting alphabet An alphabet, called Transitive-ab-initio, obtained
with this greedy neighbor-joining approach is given in Figure 4. It will be used
in experiments presented later in Section 5.

{CFYWHMLIVPGQERKNDATS}
{CFYWHMLIV} {PGQERKNDATS}
{C} {FYWHMLIV} {PGQERKNDATS}
{C} {FYWHMLIV} {P} {GQERKNDATS}
{C}{FYWH} {MLIV} {P} {GQERKNDATS}
{C} {FYWH} {MLIV} {P} {GATS} {QERKND}

{C} {FYWH} {MLIV} {P} {G} {ATS} {QERKND}
{C} {FYWH} {MLIV} {P} {G} {ATS} {QERK} {ND}
{CY{FYW} {H} {MLIV} {P} {G} {ATS} {QERK} {ND}
{CY{FYW} {H} {MLIV} {P} {G} {A} {TS} {QERK} {ND}

{CY {FYW} {H} {MLIV} {P} {G} {A} {TS} {QE} {RK} {ND}
{CY{FYW} {H} {ML} {IV} {P} {G} {A} {T'S} {QE} {RK} {ND}
{CY{FYwW} {H} {ML} {IV} {P} {G} {A} {TS} {QE} {RK} {N} {D}
{CY{FYW} {H} {ML} {IV} {P} {G} {A} {T} {S} {QE} {RK} {N} {D}
{CHY{FY} {W} {H} {ML} {1V} {P} {G} {A} {T} {S} {QE} {RK} {N} {D}
{CY{FY} {W} {H} {ML} {IV} {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{CY{FY} {W} {H} {M} {L} {1V} {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{CY{FY} {W} {H} {M} {L} {I} {V} {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{CY{FY Y} {W} {H} {M} {L} {I} {V} {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{CY{F} {Y} {W} {H} {M} {L} {I} {V} {P} {G} {A} {T} {S} {Q} {E} {R} {K} {N} {D}

Fig. 4. Alphabet Transitive-ab-initio obtained with the method of Section 4.2

4.3 Non-hierarchical alphabets

Previous approaches (Sections 4.1 and 4.2) were based on requirement (3) spec-
ifying that letters of the seed alphabet should be embedded one into another
to form a “nested” hierarchy. This requirement is biologically motivated and,
on the other hand, computationally useful as it reduces considerably the space
of possible letters. However, this requirement is not necessary to implement the
direct indexing (see Introduction). Therefore, we also designed non-hierarchical
alphabets in order to compare them to hierarchical ones. We used the following
heuristic consisting in generating first a large number of seed candidates, and
selecting the ones with (1) high likelihood ratio, (2) a range of different weights.

subset seeds for protein similarity search 9

Resulting alphabet An alphabet obtained with the above heuristic, called
Non-tree-transitive, is shown in Figure 5. This alphabet will be used in the
experiments reported in Section 5.

{ARNDCQEGHILMKFPSTWYV}
{ARNDQEGHILMKFPSTWYV} {C}
{ARNDCQEHILMKFPSTWYV} {G}
{ARNDQEHILMKFSTYV} {CGPW}
{ARCQEHILMKFSTYV} {NDGPW}
{ARNDCQEGHKPST} {ILMFWYV}

{ARNDQEGHKST} {CILMFWYV} {P}
{ARNDQEHKPST} {CW} {G} {ILMFYV}
{ARNDQEKST} {CP} {GHW} {ILMFYV}

{AGPST} {RNDQEHK} {C} {ILMFWYV}
{APST} {RNDQEHK} {CW} {G} {ILMFYV}
{AGST} {RNDQEK} {C} {HFWY} {ILMV} {P}

{AST} {RNDQEK} {CH} {G} {ILMV} {FWY} {P}
{AST} {RQEHK} {ND} {CP} {G} {ILMV} {FWY}
{AST} {RQK} {NH} {DE} {C} {G} {ILMV} {FWY} {P}
{A} {RQK} {N} {DE} {C} {G} {H} {ILMV} {FY} {P} {ST} {W}
{A} {RK} {N} {DE} {C} {QH} {G} {ILV} {M} {FY} {P} {ST} {W}
{A} {RQK} {ND} {C} {E} {G} {H} {IV} {LM} {FWY} {P} {ST}

{A} {RK} {ND} {C} {Q} {E} {G} {H} {IV} {LM} {FWY} {P} {S} {T}
{A} {RK} {N} {D} {C} {Q} {B} {G} {H} {IV} {L} {M} {FY} {P} {S} {T} {W}
{A} {R} {N} {D} {C} {QE} {G} {H} {I} {L} {K} {M} {FWY} {P} {S} {T} {V}

{A} {R} {N} {D} {C} {Q} {E} {G} {H} {I} {L} {K} {M} {F} {P} {S} {T} {W} {V}

Fig. 5. Non-hierarchical alphabet Non-tree-transitive.

5 Experiments

This section describes the experiments we made to test the efficiency of seeds we
designed with different methods of previous sections. Sections 5.1-5.3 describe
the experimental protocol, from the assignment of background and foreground
probabilities, to the seed design. In Section 5.4, we analyze the power of different
seed models proposed in Sections 3-4 with respect to probabilistic models.

5.1 Probability assignment and alphabet generation

First of all, we derived probabilistic models in accordance with the BLOSUM62
data from the original paper [22]. We obtained the BLOCKS database (version
5) [23] and the software of [22] to infer Bernoulli probabilities for the back-
ground and foreground alignment models. These probabilities have been used
throughout the whole pipeline of experiments.

Different seed alphabets have then been generated by the methods presented
in Section 3 (alphabet Non-tramsitive), Section 4.1 (alphabet
Transitive-predefined), Section 4.2 (alphabet Transitive-ab-initio) and
Section 4.3 (alphabet Non-tree-transitive).

5.2 Seed design

To each alphabet, we applied a seed design procedure that we briefly describe
now. Since each seed (or seed family) is characterized by two parameters — sensi-
tivity and selectivity — it can be associated with a point on a 2-dimensional plot.

10 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

Best seeds are then defined to be those which belong to the Pareto set among
all seeds, i.e. those than cannot be strictly improved by increasing sensitivity,
selectivity, or both.

For different selectivity levels, we designed good seed families containing one
to six individual seeds, among which the best family was selected. In each seed
family, each individual seed has been assumed to have approximately the same
weight, within 5% tolerance. This requirement is natural as in the case of diver-
gent weights, seeds with lower weight would dominantly affect the performance.
In practice, having individual seeds of similar weight allows an efficient parallel
implementation (see e.g. [17]).

Estimation of sensitivity of individual seeds or seed families has been done
with the algorithm described in [1] and implemented in the IEDERA software,
available at http://bioinfo.lifl.fr/yass/iedera.php. The selectivity of an in-
dividual seed has been computed according to the definition (Section 2). For a
seed family, its selectivity has been lower-estimated by summing the background
probabilities of individual seeds.

Seed family design has been done using a hill climbing heuristics (see [24,25,11])
alternating seed generation and seed estimation steps. All experiments were con-
ducted for alignment lengths 16 and 32.

5.3 BrasTP and the vector seed family from [4]

Our goal is to compare between different seed design approaches proposed in
this paper, but also to benchmark them against other reference seeding methods.
We used two references: the BLASTP seeding method and the family of vector
seeds proposed in [4]. Both of them use a score (or weight) resulting from the
accumulative contribution of several neighboring positions to define a hit (see
Introduction). Therefore, they use a more powerful (and also more costly to
implement) formalism of seeding.

To estimate the sensitivity and selectivity of those seeds, we modified our
methods described in the previous section by representing an alignment by a
sequence of possible individual scores. Foreground and background probability
of each score is easily computed from those for amino acid pairs. After that,
sensitivity and selectivity is computed similarly to the previous case.

5.4 Results

We compare the performance of the different approaches by plotting ROC curves
of Pareto-optimal sets of seeds on the selectivity /sensitivity graph. The two plots
in Figure 6 show the results for alignment length 16 and 32 respectively. The two
first polylines show the performance of BLASTP with word size 3 and the vector
seed family from [4], for different score thresholds. The other curves show the
performances of different seed alphabets from Sections 3-4 represented by the
Pareto-optimal seeds (seed families) that we were able to construct over those
alphabets. As mentioned earlier in Section 5.2, each time we selected the best
seed family among those with different number of individual seeds. Typically

sensitivity

sensitivity

subset seeds for protein similarity search 11

Fig. 6. ROC curves of seed performance measured on the probabilistic model

B62 L16

0.9

0.6

Blastp (thr.) ——

Protein vector seeds (thr.) ---<---

Transitive-predefined ---*---
Transitive-ab-initio =

Non-tree-transitive —-a-—-

Non-transitive 'I"i‘f -

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9

0.996 0.997

selectivity

B62 L32

0.998

Blastp (thr) ——
Protein vector seeds (thr.) --—>--

Transitive-predefined ------

Transitive-ab-initio =

Non-tree-transitive —-=--—

Non-transitive Lo

0.996 0.997

selectivity

0.998

12 M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Szczurek, G. Kucherov

(but not exclusively), points on the plots correspond to seed families with 3 to
5 seeds. Typically, the seed span ranges between 3 and 5 (respectively, 3 and 6)
for alignment length 16 (respectively, 32). Seeds with langer span (> 4) tend to
occur in seed families with larger number of seeds (> 3).

We observe that non-transitive seeds over the alphabet of Section 3 are com-
parable in performance with the vector seed family from [4] and clearly outper-
forms seeds over other alphabets. This result is interesting in itself, although
this alphabet is unpractical in many cases, due to its incompatibility with the
transitivity condition.

As for the other alphabets, they roughly show a comparable performance
among them. Note that using non-hierarchical alphabet (Section 4.3) does not
bring much of improvement, which justifies condition (3). For the alignment
length 16, our seeds perform comparably to BLASTP, with a slightly better per-
formance for high thresholds and a slightly worse performance for low thresholds.
On the other hand, for alignments of length 32, our seeds clearly outperform
BLaAsTP.

6 Conclusion

The main conclusion of our work is that although the subset seed model is less
expressive than the method of accumulative score used in BLASTP, carefully
designed subset seeds can reach the same or even a higher performance. To put
it informally, the use of the accumulative score in defining a hit can, without
loss of performance, be replaced by a careful distinction between different amino
acid matches without using any scoring system. From a practical point of view,
subset seeds can provide a more efficient implementation, especially for large-
scale protein comparisons, due to a much smaller number of accesses to the
hash table. In particular, this can be very useful for parallel implementations or
specialized hardware (see e.g. [17]).

Note that the seed design heuristic sketched in Section 5.2 does not guarantee
to compute optimal seeds, and therefore our seeds could potentially be further
improved by a more advanced design procedure, possibly bringing a further
increase in performance. This is especially true for seeds of large weight (due to
a bigger number of those), for which our seed design procedure could produce
non-optimal seeds, thus explaining some “drop-offs” in high-selectivity parts of
plots of Figure 6.

As far as further research is concerned, the question of efficient seed design
remains an open issue. Improvements of the hill climbing heuristics used in this
work are likely to be possible.

Acknowledgements Parts of this work have been done during visits to LIFL of
Ewa Szczurek (June-August 2006), Anna Gambin and Stawomir Lasota (Au-
gust 2006) and Mikhail Roytberg (October-December 2006). Those visits were
supported by the ECO-NET and Polonium programs of the French Ministry of
Foreign Affairs.

subset seeds for protein similarity search 13

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Kucherov, G., Noé, L., Roytberg, M.: A unifying framework for seed sensitivity
and its application to subset seeds. JBCB 4(2) (2006) 553-570

Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic Local Alignment
Search Tool. Journal of Molecular Biology 215 (1990) 403-410

Altschul, S. et al.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25(17) (1997) 3389-3402

Brown, D.: Optimizing multiple seed for protein homology search. IEEE/ACM
TCBB 2(1) (2005) 29-38 (earlier version in WABI 2004).

Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and more sensitive homology
search. Bioinformatics 18(3) (2002) 440-445

Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: Highly sensitive and fast
homology search. JBCB 2(3) (2004) 417-439 (earlier version in GIW 2003).
Brejova, B., Brown, D., Vinar, T.: Vector seeds: an extension to spaced seeds.
Journal of Computer and System Sciences 70(3) (2005) 364-380

Noé, L., Kucherov, G.: YASS: enhancing the sensitivity of DNA similarity search.
Nucleic Acid Res. 33 (2005) W540-W543

Mak, D., Gelfand, Y., Benson, G.: Indel seeds for homology search. Bioinformatics
22(14) (2006) e341-349

Cslirés, M., Ma, B.: Rapid homology search with neighbor seeds. Algorithmica
48(2) (2007) 187-202

Zhou, L., Stanton, J., Florea, L.: Universal seeds for cDNA-to-genome comparison.
BMC Bioinformatics 9(36) (2008)

Sun, Y., Buhler, J.: Designing multiple simultaneous seeds for DNA similarity
search. In: RECOMB. (2004) 76-84

Kucherov, G., Noé, L., Roytberg, M.: Multi-seed lossless filtration. In: CPM.
Volume 3109 of LNCS., Springer Verlag (2004) 297-310

Yang, I.LH. et al.: Efficient methods for generating optimal single and multiple
spaced seeds. In: IEEE BIBE. (2004) 411-416

Xu, J., Brown, D., Li, M., Ma, B.: Optimizing multiple spaced seeds for homology
search. In: CPM. Volume 3109 of LNCS., Springer (2004) 47-58

Kisman, D., Li, M., Ma, B., Wang, L.: tPatternHunter: gapped, fast and sensitive
translated homology search. Bioinformatics 21(4) (2005) 542-544

Peterlongo, P. et al.: Protein similarity search with subset seeds on a dedicated
reconfigurable hardware. In: PBC. Volume 4967 of LNCS. (2007)

Noé, L.and Kucherov, G.: Improved hit criteria for DNA local alignment. BMC
Bioinformatics 5(149) (2004)

Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete
Applied Mathematics 138(3) (2004) 253—263 (earlier version in 2002).

Li, T., Fan, K., Wang, J., Wang, W.: Reduction of protein sequence complexity
by residue grouping. Journal of Protein Engineering 16 (2003) 323-330

Murphy, L., Wallqvist, A., Levy, R.: Simplified amino acid alphabets for protein
fold recognition and implications for folding. J. of Prot. Eng. 13 (2000) 149-152
Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89 (1992) 10915-10919

Henikoff, S., Henikoff, J.: Automated assembly of protein blocks for database
searching. Nucleic Acids Res. 19(23) (1991) 6565-6572

Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in genomic
DNA. In: RECOMB. (2003) 67-75

Ilie, L., Ilie, S.: Long spaced seeds for finding similarities between biological se-
quences. In: BIOCOMP. (2007) 3-8

